Hypersurfaces with parallel Laguerre form in R"”

Shichang Shu

Abstract. For a given (n — 1)-dimensional hypersurface  : M — R™,
consider the Laguerre form ®, the Laguerre tensor L and the Laguerre
second fundamental form B of the immersion x. In this article, we address
the case when the Laguerre form of x is parallel, i.e., V® = 0. We prove
that V® = 0 is equivalent to ® = 0, provided that either L+AB+ ug =0
for some smooth function A and pu, or x has constant Laguerre eigenvalues,
or x has constant para-Laguerre eigenvalues, where V is the Levi-Civita
connection of the Laguerre metric g.
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1 Introduction

The Laguerre geometry of surfaces in R® was studied by Blaschke [1], and by other
authors (see Musso and Nicolodi [8], [9]). In the Laguerre geometry of submanifolds
in Euclidean space R™, Li and Wang [4] investigated the invariants of the hypersur-
faces in R™ under the Laguerre transformation group. We recall that the Laguerre
transformations are the Lie sphere transformations which take oriented hyperplanes
in R™ to oriented hyperplanes and preserve the tangential distance.

Let UR™ be the unit tangent bundle over R™. An oriented sphere in R" centered
at p with radius r can be regarded as the oriented sphere {(z,{)|x — p = r&} in
UR"™, where x is the position vector and £ the unit normal vector of the sphere. An
oriented hyperplane in R™ with a constant unit normal vector £ and a constant real
number ¢ can be regarded as the oriented hyperplane {(z,§)|x - £ = ¢} in UR"™. A
diffeomorphism ¢ : UR™ — UR"™ which takes oriented spheres to oriented spheres,
oriented hyperplanes to oriented hyperplanes, preserving the tangential distance of
any two spheres, is called a Laguerre transformation. All the Laguerre transformations
in UR" form a group of dimension (n+1)(n+2)/2, called the Laguerre transformation

group.
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An oriented hypersurface = : M — R™ can be identified as the submanifold (z,¢) :
M — UR"™, where £ is the unit normal of x. Two hypersurfaces x,z* : M — R"
are called Laguerre equivalent, if there is a Laguerre transformation ¢ : UR™ — UR"™
so that (z*,£*) = ¢ o (x,&) (see [4]). Li and Wang [4] gave a complete Laguerre
invariant system of hypersurfaces in R™ and proved that two umbilical free oriented
hypersurfaces in R™ with non-zero principal curvatures are Laguerre equivalent if and
only if they have the same Laguerre metric g and Laguerre second fundamental form
B.

From Li and Wang [4], we know that the Laguerre metric g of the immersion x
can be defined by g = (dY,dY’). Let {E1, Ea,...,E,_1} be an orthonormal basis for
g with dual basis {w1,ws,...,w,—1}. The Laguerre form ®, Laguerre tensor L and
the Laguerre second fundamental form B of the immersion x are defined by

n—1 n—1 n—1
(1.1) P = ZCiwi, L= Z Lijwi®wj, B = Z Bijwi®wj,
i=1 =1 ii=1

respectively, where C;, L;; and B;; are defined by
(1.2) C; 2—072{]@1’(7‘)—Ei(logp)(ri—f)}7
_ ~ ~ 1
(1.3) Lij =p~*{Hess;;(log p) — Ei(log p)Ej(log p) + 5 (|Vlog pl* = 1) dy; },
(1.4) Bij =p~'(ri —)dij,

where g = > .(r; — r)2II1 = p?I1I, r; and r are the curvature radii and mean
curvature radius of x, respectively. We define a symmetric (0,2) tensor

(1.5) D =L+ \B,

which is called the para-Laguerre tensor of x, where X is a constant. We notice that
g, ®, L, B and D are Laguerre invariants (see [4]).

We call an eigenvalue of the Laguerre second fundamental form a Laguerre prin-
cipal curvature, an eigenvalue of the Laguerre tensor a Laguerre eigenvalue, an eigen-
value of the para-Laguerre tensor a para-Laguerre eigenvalue of x. An umbilic free
hypersurface x : M — R™ with non-zero principal curvatures and vanishing Laguerre
form ® = 0 is called a Laguerre isoparametric hypersurface if the Laguerre princi-
pal curvatures of x are constants. A hypersurface with a vanishing Laguerre form is
called a Laguerre isotropic hypersurface, if the Laguerre eigenvalues of x are equal.
We should notice that the Laguerre form ® = 0 plays an important role in the defini-
tions of Laguerre isoparametric hypersurfaces and Laguerre isotropic hypersurfaces.
In the study of Laguerre isoparametric hypersurfaces and Laguerre isotropic hyper-
surfaces, there have been many recent studies ( see [3, 6, 10-12]). In [3] and [6], Li
et al. obtained the complete classifications of all oriented Laguerre surfaces in R
and all oriented Laguerre isoparametric hypersurfaces in R*. In [10]-[12], we firstly
obtained the classification of Laguerre isoparametric hypersurfaces in R™ with three
distinct Laguerre principal curvatures, one of which is simple and then we obtained
the complete classifications of all oriented Laguerre isoparametric hypersurfaces in
R® and RS. In [5], Li, H. Li and Wang obtained the classification of all the Laguerre
isotropic hypersurfaces.
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fve = Z” C; jw; ® w; = 0, we call x has parallel Laguerre form, where V is
the Levi-Civita connection of the Laguerre metric g. We notice that if & = 0 then
V& = 0, conversely, if V® = 0 then & = 0 not necessarily holds. Thus, we see that
the condition V® = 0 is weaker than ® = 0. Then the next question follows: in what
conditions may we have V® = 0 if and only if ® = 07

In this article, we try to give some answers to the above question. We notice that
Fang [2] and Zhong et al. [13] recently proved independently that if the Laguerre
principal curvatures of x are constants, then V® = 0 if and only if ® = 0. Since we
know that the Laguerre eigenvalues and the para-Laguerre eigenvalues of x are also
the important Laguerre invariants, we prove the following results:

Theorem 1.1. Let x : M — R"™ be an umbilic free hypersurface with non-zero prin-
cipal curvatures. If L+AB+ ug = 0 for some smooth function X\ and p, then V® =0
if and only if ® = 0.

Theorem 1.2. Let x : M — R"™ be an umbilic free hypersurface with non-zero prin-
cipal curvatures. If the Laguerre eigenvalues of x are constants, then V® = 0 if and
only if ® = 0.

Theorem 1.3. Let x : M — R"™ be an umbilic free hypersurface with non-zero prin-
cipal curvatures. If the para-Laguerre eigenvalues of x are constants, then V® = 0 if
and only if ® = 0.

Thus, from Theorem 1.2, Theorem 1.3 and Theorem 1.1 of [2] or [13], we easily
see that

Theorem 1.4. Let x : M — R"™ be an umbilic free hypersurface with non-zero prin-
cipal curvatures. If the Laguerre principal curvatures, or the Laguerre eigenvalues, or
the para-Laguerre eigenvalues of © are constants, then V® =0 if and only if ® = 0.

Remark 1.1. If A =0, then L 4+ ug = 0 and z is a Laguerre isotropic hypersurface,
we see that Theorem 1.1 reduce to (2) of Theorem 1.1 of Zhong et al. [13]. From
Theorem 1.1, we see that if we replace ® = 0 by the weaker condition V® = 0 in
the definition of Laguerre isotropic hypersurfaces, then Theorem 1.1 of Li, H. Li and
Wang [5] also holds.

Remark 1.2. From Theorem 1.2 and Theorem 1.3, we see that if we replace ® = 0
by the weaker condition V® = 0 in Theorem 1.2 of [5] and Theorem 1.4 of [9], then
Theorem 1.2 of [5] and Theorem 1.4 of [9] also hold.

2 Fundamental formulas of Laguerre Geometry

We recall the fundamental formulas on Laguerre geometry of hypersurfaces in R™.
Let 2 : M — R™ be an (n — 1)-dimensional umbilical free hypersurface with vanish-
ing Laguerre form in R™. Let {E4,..., E,_1} denote a local orthonormal frame for
Laguerre metric g = (dY,dY’) with dual frame {wy,...,w,—1}. Putting ¥; = E;(Y),
we have

1
(21) N =38 o0

(2.2) (Y,Y) = (N,N) =0, (V,N)=—1,

AY,AY)Y,
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and the following orthogonal decomposition:
(2.3) R5*3 = Span{Y, N} @ Span{Y3,...,Y, 1} &V,

where {Y, N,Y1,...,Y,_1,n, g} forms a moving frame in R’;Jrg and V = {n, p} is called
the Laguerre normal bundle of x. We use the following range of indices throughout
this paper: 1 <i,j,k,I,m <n—1.

The structure equations of x with respect to the Laguerre metric g can be written

as
(2.4) dy =) " wY;,
i
(2.5) AN = " 4;Yi + o,
(2.6) ay; = ;Y +wiN + sz‘ij + win,
J
(2.7) dp=—¢Y + Y winYi,
where {¢;, wi;,win, p} are 1-forms on = with
(28) Wwij + Wi = 0, dw; = ij' A Wi,
J
and

(29) wz = ZLijwja Lij = Lji7 Win = ZB/L'J'(JJ]', Bij = Bjia Y = ZCZQ}Z
J J

We define the covariant derivative of C, L;j, B;; by

(2.10) D Cijwj=dCi + Y Cluwjs,
J J

(211) Z Lmkwk = dL” + Z Likwkj + Z ijwki,
k & k

(2.12) Z Bijrwr = dB;; + Z Bipwj + Z By jwii,
k k k

and using [4], we infer
1
(2.13) dw;; = Zwik A wij — 3 ZRijklwk ANwi, Rijr = — Ry,
i Kl

R
J— 2 P = -
(2.14) ;Bn =0, ;BU =1, Z:Bij,i =(n—-2)C;, trL= “5n—9)’

(2.15) Lijr = L j,

(2.16) Oi,j — Cj’i = Z(szLk] - lechi)>
k

(2.17) Bijk — Bikj = Cjdir — Crdij,

(2.18) Rijii = Lji0y + Lydjr — Ligdj; — Ljid,
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where R;j;; and R denote the Laguerre curvature tensor and the Laguerre scalar
curvature with respect to the Laguerre metric g on z.

Denote by D =37, ; Djjw; ® w; the (0,2) para-Laguerre tensor,

(219) Dij = Lij + )\Bij, 1 § i,j S n,
where ) is a constant. The covariant derivative of D;; is defined by
(220) Z Dijﬁkwk = dD” + Z Dikwkj + Z ijw;ﬂ-.
k k k

Defining the second covariant derivative of B;; and C; by
(2.21) Z Bijriwr = dBijk + Z Bijrwii + Z Bigwij + Z Bij 1w,

1 1 1 l
(2.22) Z C’ij,kwk = dCiJ + Z C’kaj + Z C'k,jwki,

k k k
we have the Ricci identity
(223) Bij,kl - BZ] lk = Z ijRmzkl + Z Blmijkl7
(2.24) Cij,k: Cik g= Z Cnm Roiji-

3 Proofs of Theorems

From (2.17) and (2.23), we see that
(3.1) Bij ki =(Bik,j + Cjdir — Crbij) .k = Big jk + Cjr0it — Ch 105
:Bkk,ij + Z BmkRmijk + Z BimRmkjk
+ C j0kk + Cj it — ChjOgi — Ch 1045
From (2.14), (2.18) and (3.1), we have

(3.2) Z BijBij ki = Z Bij Bus Ruiji + Z Bij B Rukjn + ”ZBMCM

ik igkl igkd o
= Z Bi; Bix(Lijoik + Lixdi; — Li;j0ir — Lik0y;)
igkl
+ Z Bi; Bit(Ly;01k + Lirdrj — L1k — Lirdyj) + nz B;;Cj
vy g

— (n— 1)tr(LB?) — trL + ntr(BV®).
Thus, from (2.14) and (3.2), we have
1
(3.3) 0 =5A(ZB%) > B+ Y BBy
i igk 64,k

=Y B}, — (n—1)tr(LB?) — trL + ntr(BV®).
.5,k
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Proof of Theorem 1.1. If ® = 0, it is obvious that V® = 0. On the contrary, if
V® =0, that is, C; ; = 0, for all ¢, j, from (2.16), we may choose the local orthonormal
basis E1, Es, ..., E,_1 to diagonalize the matrix (B;;) and (L;;), that is

(34) Bij = Biéija Lij = Liéij.

Since L+ AB + g = 0, we have L; = —p — AB;. From (2.18) and (2.24), we see that

(3.5) 0= Z ClRlijk = Oj(Lj + Li)éik — Ck(Lk + Li)éij.
l

Putting i = k # j in (3.5), we have
(3.6) Cj(Lj + L) =0, k#j.

If there exists one point p on M, so that ® # 0 at p, without loss of generality, we
may assume Cy # 0 at p, thus from (3.6), we see that Ly + Ly = 0 at p, where k # 1.
Since L; = —p — AB;, we have —u — AB; — u— ABy, = 0 at p, where k # 1. Thus, at
point p, we have

(3.7) ABp = —(2u+ AB1), k#1.

If A =0 at p, we see that 4 = 0 at p. Thus L; = 0 at p for all ¢, which implies
that trL = 0 at p and also tr(LB?) = 0 at p. From (3.3), we see that B;;, =0 at p
for all 4, j, k. From (2.14), we have C1 =), B;1; = 0 at p, which is a contradiction.

If A # 0 at p, from (3.7), we see that By = B3 = --- = B,_1 at p. By (2.14), we
know that

Bi+(n—2)By=0, B+ (n—2)B2=1, at p.
Therefore,

n—2

3.8 B = o
( ) 1 + n_lv

By =+

1

From (2.12) and (3.8), we have

(3.9) ZBij,kwk = (Bi — Bj)wij, at p.
p

Thus, at point p,

(3.10) Bijr=0, for 2<4,j<n-1, 1<k<n-1
Putting i # j, i =k and 2 < 4,5,k <n —1in (2.17), we have
(3.11) C;=0, for 2<j<n-1.

On the other hand, from (2.10) and (3.11), we have

(3.12) 0= Cjrwp =dCj+ Y Crwpj = Ciwyj, for 2<j<n—1.
k k
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Since it is assumed C; # 0 at p, we have w; =0 at p, 2 < j <n—1. By (3.9), we see
that Bijr =0at pfor2 <j <n—1andall k. Thus Biso =0 at pand Ba; o =0
at p. From (3.10), we have By 1 = 0 at p. Putting i = j = 2 and k = 1 in (2.17),
we have 1 = Ba12 — Baa1 = 0 at p, which is a contradiction. Thus, it must have
® = 0. This completes the proof of Theorem 1.1. ]

Proof of Theorem 1.2. If ® = 0, it is obvious that V® = 0. On the contrary, if
V@ =0, that is, C; ; = 0, for all ¢, j, from (2.16), we may choose the local orthonormal
basis E1, Es, ..., E,_1 to diagonalize the matrix (B;;) and (L;;), that is, (3.4) holds.
(1) If the Laguerre eigenvalues of x are equal, from Theorem 1.1 (see Remark 1.1),
we know that Theorem 1.2 is true.
(2) If the Laguerre eigenvalues of x are not equal, from (2.18) and (3.4), we know
that

(3.13) Rijii =0, if three of {4, j,k,1} are either the same or distinct.

By (2.24) and (3.13), we obtain

(3.14) CiRijij =  CrRijij =0, i #j.
k

If there exists one point p on M, so that ® # 0 at p, without loss of generality, we may
assume C7 # 0 at p, thus from (3.14) and (2.18), we see that 0 = Ryg1p = —L1 — Lg
at p, where k # 1, that is, Ly = — L1, (k # 1) at p. Since the Laguerre eigenvalues of
x are constants and not equal, we know that at all points of z,

(3.15) Lp=—-L1#0, k#1.

Since L;jx = Lk ; and Ly, = —Lq = constant, from (2.11), we easily see that L;; 5 = 0
for all 4, j, k. From (2.11) again, we have (L1 — L;)wi; = 0 for j # 1, thus

Taking exterior differential of (2.6) and by (2.4)—(2.7), we have
(3.17) dipi — Y s Awji + win A = 0.
J

Since it is assumed C7 # 0 at p, we must have Co = C3 =--- =C,,_1 =0 at p. In
fact, if there is ig(2 < ip < n — 1) such that C;, # 0 at p, from (3.14) and (2.18), we
have

L Ly =0, k#£1, k+#i
_Lio_Lk:()a k#iOa kj#lv
Ly~ Ly =0, ig#1.

Thus, we have L1 = L;, = Ly, =0, k # 1,k # 4, which is a contradiction. Therefore,
from (2.9), we have ¢ = Cyw; at p. By (3.17), (2.8), (2.9), (3.15) and (3.16), we see
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that for ¢ # 1

(3.18) —win N @ =L;dw; — Z ijj' N Wi
J

n—1
= — lewi — Llwl N wi; — Z Lj(.dj AN Wi
Jj=2

n—1
= — lewi + Llwl N wy; + L1 ij' AN Wi
Jj=2

= — Ll(dwi - ij' /\w]'i) =0.
J

Thus, from (2.9) and (3.18), we have
(319) —BZClwi Nwyp = 0, at p, 7 7& 1.

Since C7 # 0 at p and @ # 1, from (3.19), we have B; = 0 at p, i # 1. From (2.14),
we see that By = 0 at p, this contradicts with ), B? = 1. Thus, it must have ® = 0.
This completes the proof of Theorem 1.2. |

Proof of Theorem 1.53. If ® = 0, it is obvious that V® = 0. On the contrary, if
V@ =0, that is, C; ; = 0, for all 4, j, from (2.16) and (2.19), we can choose the local
orthonormal basis E1, Es, ..., E,_1 to diagonalize the matrix (B;;), (L;;) and (D;;).

(1) If the para-Laguerre eigenvalues of x are equal, from Theorem 1.1, we know
that Theorem 1.3 is true.

(2) If the para-Laguerre eigenvalues of  are not equal, since D = L+ B, if A =0,
from Theorem 1.2, we know that Theorem 1.3 is true. If A # 0, in order to prove
® = 0, we may consider the following four independent cases (i), (i), (¢i7) and (iv).

(i) If n > 3 and z has two distinct para-Laguerre eigenvalues, we also consider the
following two cases: n = 3 and n > 4.
If n = 3, from the Ricci identity (2.24), we have

(3.20) Z CrRi212 =0, Z CrRii21 = 0.
& k

Thus, we have from (3.13) and (3.20) that
CiRi212 =0, CoRi212 =0.

If there exists one point p on M, so that ® # 0 at p, without loss of generality, we may
assume C7 # 0 at p, thus Ri212 = 0 at p. From (2.18), we have trL = L1+ Ly = 0 at p.
Thus, from (2.14), we have D1+Dg = L1+ La+A(B1+Bs) = 0 at p, that is D1 = — Do
at p. Thus, 0 = D} — D3 = L? — L3+ 2Ly (B + By) + \(B? — B3) = \*(B} — B3) at
p. Since A # 0, we have B? = B3 at p. Thus, tr(LB?) = L1 B? + LyB3 = BtrL =0
at p. From (3.3), we see that B;;, = 0 at p for all ¢,7,k. From (2.14), we have
C) = Zi Bj1,; = 0 at p, which is a contradiction.
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If n > 4, let D; and D> be the two distinct para-Laguerre eigenvalues of x with
multiplicities m; and n — 1 — mq, respectively. We agree on the following ranges of
indices

1<a,b<m;, mi+1<a,f<n-—1.
From (2.15), (2.17) and (2.19), we have

(321) Dij,k — Dik,j = )\Cjéik — >\Ck§1]

Since D; and Dy are constants, from (2.20), we have

(322) Dab7i = Daﬂ,i = 0; ZDa(Lkwk = (Dl - D2)waa-
k

From (2.21) and (3.22), we also have

(323) Daa,b = Daa,b = )\Ca(saba Da(x,ﬁ - Daa,ﬂ - )\Ca6a5~

By (2.14) and (2.19), we also have

(3.24) > Diji =Y (Liji+ABiji) = Y _(Liij + ABij.)

= ( Z Lii) J + A Z Bij,i
By (3.22), (3.23) and (3.24), we get
(3.25) (n=2)ACa = Diai =Y Daga=(n—1-m1)ACa,

(3.26) (n—2)ACo =3 Dini= >  Dana=mCa.

Thus, we see that
(3.27) (mp —1)AC, =0, (m1 —n+2)AC, =0.

If there exists one point p on M, so that ® # 0 at p, then there must be some 14
such that C; #0 at p, 1 <i<n-—1.

If 1 <i < my, from (3.27) and A # 0, we see that my = 1, thus, C, = 0. We
get that ® = Chw; and Cy # 0 at p. On the other hand, from (2.10) and C, = 0,
2 <a<n-—1, we have

0= anﬁjw]' = dCa + chwja = Clwla.
J J

Hence wi, = 0 at p. By (3.22) and (3.23), we see that, at this point p,

0=(D1 — Ds)wia = Z D1 xwi
%

=Dig,1w1 + ZDla,gwg = A\Cw1 + Z)\Cléagwg = A Cwa,
B B
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thus, AC; = 0, which is a contradiction. Therefore, we conclude that in case (i), it
must have & = 0.

(#i) If n > 4 and = has n— 1 distinct constant para-Laguerre eigenvalues, let D; be
the n — 1 distinct para-Laguerre eigenvalues of x, where 1 < i < n — 1. From (2.20),
we have

(3.28) Dii i =0, Z D;jwwr = (D; — Dj)wij, ©# 7.
k

Putting k =i # j in (3.21) and from (3.28), we have
(3.29) Dijﬂ‘ = /\Cj, 1 75 7
By (2.24) and (3.13), we obtain

(3.30) CiRiji; =  CrRyjij =0, i#j.
k

If there exists one point p on M, so that ® # 0 at p, without loss of generality,
we may assume C7 # 0 at p, thus from (3.30), we see that Ri212 = Riz13 = -+ =
Rin_11n—1 =0 at p.

IfCy=---=C,_1 =0 at p, from (2.10), we have
(3.31) 0= ZCZ'J-wj =dC; + Ciwy;, at p.
J
Putting ¢+ = 2,...,n—1in (331), we have Ciwio = Cilwiz = - = Ciwip—1 = 0
at p. Thus, we see that wis = w3 = -+ = wip—1 = 0 at p. By (3.28), we have
Dlgyk = Dlg’k = = Dlnflyk =0 at p- Thus, from (329) and D12 = D21, we

have A\C; = D12 = Dig2 = 0 at p, which is a contradiction. This contradiction
implies that there exists at least one i, 2 < i <mn — 1, so that C; # 0, without loss of
generality, we may assume Cy # 0 at p. Since C; # 0,Cs # 0 at p, from (3.30) and
(2.18), we get, at point p, that

(332) 0= R1212 = —Ll — L2 = 0,
(333) OZleljz—Ll—LjZO, 3§]§n—1,
(334) 0:R2j2j:7L27Lj:0, 3§j§n71

From (3.32)—(3.34), we see that Ly = Ly = L; = 0 at p, where 3 < j <n — 1. Thus
trL = 0 at p and also tr(LB?) = >, L;B? = 0 at p. From (3.3), we see that B;;; = 0
at p for all 4, j, k. From (2.14), we have (n —2)C; = ), Bj1; = 0, therefore C; = 0 at
p, which is a contradiction. Thus, we conclude that in case (i¢), it must have ® = 0.

(#91) If n > 5 and x has three distinct constant para-Laguerre eigenvalues, let
D;, Dy and D3 be the three distinct constant para-Laguerre eigenvalues of x with
multiplicities m1, me and mg, respectively. We agree on the following ranges of indices

1<a,b<mi, m+1<s,t<mi+ma, mi+ma+1<a,f<n—1
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From (2.20), we have

(3.35) Di;j = Dap,j = Dstj = Dap,; =0,
(336) Z Dij,kwk = (Dz - Dj)wij7 ) 7& ]
k

From (3.21) and (3.35), we have

(3.37) Dijj = Djij = ACi, i # 7,

(3.38) 0= Daap — Dapa = ACoqdap — ACh0aq = —ACy, a # b,
(3.39) 0= Dyss — Dary = ACySyr — ACiSys = ~AChy 5 41,

( ) 0= Daa’g - Dag’a = )\Caéaﬁ - )\Cﬁém = —)\Cg, (0% 7& ﬂ

If there exists one point p on M, so that ® # 0 at p, we shall prove that m; =
ms = 1 and m3 = n—2. In fact, if 2 < m; < my < mg, from (3.38)—(3.40) and A # 0,
we see that C; = 0 for all 7 and therefore ® = 0, which is a contradiction.

If mi =1 and 2 < my < mg, then Cs = C, = 0 for all s, and therefore
® = Cjw;. Since it is assumed ® # 0 at p, we get C1 # 0 at p. On the other hand,
from (2.10) and Cy = C, = 0, we have

(341) 0= Z Ci,jwj == dCl + C’lwu.
J

Putting ¢ = s and ¢ = « in (3.41), we have Ciw1s = Ciwiq = 0, which implies that
wis = wiq = 0 at p. From (3.36), we see that D15 s = Dia,o = 0 at p. Thus, by (3.37)
and A # 0, we get C; = 0 at p, which also is a contradiction. Thus, we conclude
that if ® # 0 at p, then m; = mo = 1 and mg = n — 2. Therefore, 3 < a <n —1,
from (3.40), we have C, = 0. Since it is assumed ® # 0 at point p, without loss of
generality, we may assume Cy # 0 at p. If Cy = 0 at p, from (2.10) and C, = 0, we
have

(342) 0= Z Clv,jwj = dCz + C’lwli, at p-
J

By a similar method as above, we see that wis = wiq =0 and D22 = Dig,o =0 at
p. From (3.37) and A # 0, we get C; = 0 at p, which is a contradiction. Thus, we
infer that C3 # 0 at p. From (2.24) and (3.13), we have
(3.43) CiRijij = CwRyjij = 0,i # j.

k

From (2.18), (3.43), C1 # 0 and Cy # 0 at p, we see that at point p

(3.44) 0= R1212 = *L1 - L2 = Oa
(345) 0:R1a1a=—L1—La:0, 3§oz§n—1,
(3.46) 0=Ropgegp=—Lo—Lg=0, 3<B<n—-1

Hence, we have L1 = Ly = L, = 0 at p, where 3 < a < n — 1. This implies that
trL = 0 at p and also tr(LB?) = Y, L;B? = 0 at p. From (3.3), we see that B;;; = 0
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at p for all i, 4, k. From (2.14), we have C; = 0 at p, which is a contradiction. Thus,
we conclude that in case (i), it must have ® = 0.

(tv) f n > 6 and x has v (4 < v < n — 2) distinct constant para-Laguerre
eigenvalues, let Dy, Do, ..., D, be the « distinct constant para-Laguerre eigenvalues
of x with multiplicities m1,m2,...,m, and m; < my < --- < m,, respectively. From
(2.20), we have

(347) Dii,j = O7 ZDij’kwk = (Dz — Dj)wij, Z 7é ]
k

From (3.21) and (3.47), we have

(3.48) Dijj = Djij = ACi, i# j,
(3.49) 0 = Dyis — Dis = ACibin — ACibii = —ACh, i # k.

If there exists one point p on M, so that ® # 0 at p, we shall prove that m; =
mge = 1. In fact, if 2 < my < mg < --- < m,, from (3.49) and A # 0, we sce that
C; = 0 for all ¢ and therefore & = 0, which is a contradiction.

Ifmi=1land2<my <--- <m,, then C; =0 for all 2 < ¢ < n —1 and therefore
P = Chw;. Since it is assumed @ £ 0 at p, we get C; # 0 at p. By the similar method
in the proof of case (i4i), we see that wy; = 0 and Dy, ; = 0 at p, where 2 <i <n—1.
Thus, by (3.48) and A # 0, we get C; = 0 at p, also a contradiction. Therefore, we
conclude m; = mg = 1.

Since it is assumed ® # 0 at point p, without loss of generality, we assume C; # 0
at p. If C; =0 at p, where 2 <i <n — 1, from (2.10), we have

(350) 0= Z Ciijj = dCl + C’lwli, at p.
J

By the similar method in the proof of case (iii), we see that wy; = 0 and Dy;; = 0 at
p. Thus, from (3.48), we get C7 = 0 at p, which is a contradiction. This implies that
at least one of C} is not zero at p, where 2 < ¢ < n — 1, without loss of generality, we
may assume Cs # 0 at p. From (2.24) and (3.13), we have

(3.51) CiRijij = ZCkRkjij =0,i#j.
k

From (2.18), (3.51), C1 # 0 and Cy # 0 at p, we see that at point p

(3.52) 0=Rigiz=—-L1— L2 =0,
(353) OZRM‘M:*Ll*Li:O, SSZ‘SW,*].,
(354) O:RQijZ—LQ—Lj:O, 3§j§n—1.

Thus, we have Ly = Lo = L; = 0 at p, where 3 < i < n—1. This implies that trL. =0
at p and also tr(LB?) = 0 at p. From (3.3), we see that B;j, = 0 at p for all 4, j, k.
From (2.14), we have C; = 0 at p, which is a contradiction. Thus, we conclude that
in case (iv), it must have ® = 0. This completes the proof of Theorem 1.3. O
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