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Abstract. For a given (n − 1)-dimensional hypersurface x : M → Rn,
consider the Laguerre form Φ, the Laguerre tensor L and the Laguerre
second fundamental form B of the immersion x. In this article, we address
the case when the Laguerre form of x is parallel, i.e., ∇Φ ≡ 0. We prove
that ∇Φ ≡ 0 is equivalent to Φ ≡ 0, provided that either L+λB+µg = 0
for some smooth function λ and µ, or x has constant Laguerre eigenvalues,
or x has constant para-Laguerre eigenvalues, where ∇ is the Levi-Civita
connection of the Laguerre metric g.
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1 Introduction

The Laguerre geometry of surfaces in R3 was studied by Blaschke [1], and by other
authors (see Musso and Nicolodi [8], [9]). In the Laguerre geometry of submanifolds
in Euclidean space Rn, Li and Wang [4] investigated the invariants of the hypersur-
faces in Rn under the Laguerre transformation group. We recall that the Laguerre
transformations are the Lie sphere transformations which take oriented hyperplanes
in Rn to oriented hyperplanes and preserve the tangential distance.

Let URn be the unit tangent bundle over Rn. An oriented sphere in Rn centered
at p with radius r can be regarded as the oriented sphere {(x, ξ)|x − p = rξ} in
URn, where x is the position vector and ξ the unit normal vector of the sphere. An
oriented hyperplane in Rn with a constant unit normal vector ξ and a constant real
number c can be regarded as the oriented hyperplane {(x, ξ)|x · ξ = c} in URn. A
diffeomorphism ϕ : URn → URn which takes oriented spheres to oriented spheres,
oriented hyperplanes to oriented hyperplanes, preserving the tangential distance of
any two spheres, is called a Laguerre transformation. All the Laguerre transformations
in URn form a group of dimension (n+1)(n+2)/2, called the Laguerre transformation
group.
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An oriented hypersurface x :M → Rn can be identified as the submanifold (x, ξ) :
M → URn, where ξ is the unit normal of x. Two hypersurfaces x, x∗ : M → Rn

are called Laguerre equivalent, if there is a Laguerre transformation ϕ : URn → URn

so that (x∗, ξ∗) = ϕ ◦ (x, ξ) (see [4]). Li and Wang [4] gave a complete Laguerre
invariant system of hypersurfaces in Rn and proved that two umbilical free oriented
hypersurfaces in Rn with non-zero principal curvatures are Laguerre equivalent if and
only if they have the same Laguerre metric g and Laguerre second fundamental form
B.

From Li and Wang [4], we know that the Laguerre metric g of the immersion x
can be defined by g = ⟨dY, dY ⟩. Let {E1, E2, . . . , En−1} be an orthonormal basis for
g with dual basis {ω1, ω2, . . . , ωn−1}. The Laguerre form Φ, Laguerre tensor L and
the Laguerre second fundamental form B of the immersion x are defined by

(1.1) Φ =
n−1∑
i=1

Ciωi, L =
n−1∑
i,j=1

Lijωi ⊗ ωj , B =
n−1∑
i,j=1

Bijωi ⊗ ωj ,

respectively, where Ci, Lij and Bij are defined by

Ci =− ρ−2
{
Ẽi(r)− Ẽi(log ρ)(ri − r)

}
,(1.2)

Lij =ρ
−2

{
Hessij(log ρ)− Ẽi(log ρ)Ẽj(log ρ) +

1

2

(
|∇ log ρ|2 − 1

)
δij

}
,(1.3)

Bij =ρ
−1(ri − r)δij ,(1.4)

where g =
∑

i(ri − r)2III = ρ2III, ri and r are the curvature radii and mean
curvature radius of x, respectively. We define a symmetric (0, 2) tensor

D = L+ λB,(1.5)

which is called the para-Laguerre tensor of x, where λ is a constant. We notice that
g, Φ, L, B and D are Laguerre invariants (see [4]).

We call an eigenvalue of the Laguerre second fundamental form a Laguerre prin-
cipal curvature, an eigenvalue of the Laguerre tensor a Laguerre eigenvalue, an eigen-
value of the para-Laguerre tensor a para-Laguerre eigenvalue of x. An umbilic free
hypersurface x :M → Rn with non-zero principal curvatures and vanishing Laguerre
form Φ ≡ 0 is called a Laguerre isoparametric hypersurface if the Laguerre princi-
pal curvatures of x are constants. A hypersurface with a vanishing Laguerre form is
called a Laguerre isotropic hypersurface, if the Laguerre eigenvalues of x are equal.
We should notice that the Laguerre form Φ ≡ 0 plays an important role in the defini-
tions of Laguerre isoparametric hypersurfaces and Laguerre isotropic hypersurfaces.
In the study of Laguerre isoparametric hypersurfaces and Laguerre isotropic hyper-
surfaces, there have been many recent studies ( see [3, 6, 10–12]). In [3] and [6], Li
et al. obtained the complete classifications of all oriented Laguerre surfaces in R3

and all oriented Laguerre isoparametric hypersurfaces in R4. In [10]–[12], we firstly
obtained the classification of Laguerre isoparametric hypersurfaces in Rn with three
distinct Laguerre principal curvatures, one of which is simple and then we obtained
the complete classifications of all oriented Laguerre isoparametric hypersurfaces in
R5 and R6. In [5], Li, H. Li and Wang obtained the classification of all the Laguerre
isotropic hypersurfaces.



Hypersurfaces with parallel Laguerre form in Rn 77

If ∇Φ =
∑

i,j Ci,jωi ⊗ ωj ≡ 0, we call x has parallel Laguerre form, where ∇ is
the Levi-Civita connection of the Laguerre metric g. We notice that if Φ ≡ 0 then
∇Φ ≡ 0, conversely, if ∇Φ ≡ 0 then Φ ≡ 0 not necessarily holds. Thus, we see that
the condition ∇Φ ≡ 0 is weaker than Φ ≡ 0. Then the next question follows: in what
conditions may we have ∇Φ ≡ 0 if and only if Φ ≡ 0?

In this article, we try to give some answers to the above question. We notice that
Fang [2] and Zhong et al. [13] recently proved independently that if the Laguerre
principal curvatures of x are constants, then ∇Φ ≡ 0 if and only if Φ ≡ 0. Since we
know that the Laguerre eigenvalues and the para-Laguerre eigenvalues of x are also
the important Laguerre invariants, we prove the following results:

Theorem 1.1. Let x : M → Rn be an umbilic free hypersurface with non-zero prin-
cipal curvatures. If L+λB+µg = 0 for some smooth function λ and µ, then ∇Φ ≡ 0
if and only if Φ ≡ 0.

Theorem 1.2. Let x : M → Rn be an umbilic free hypersurface with non-zero prin-
cipal curvatures. If the Laguerre eigenvalues of x are constants, then ∇Φ ≡ 0 if and
only if Φ ≡ 0.

Theorem 1.3. Let x : M → Rn be an umbilic free hypersurface with non-zero prin-
cipal curvatures. If the para-Laguerre eigenvalues of x are constants, then ∇Φ ≡ 0 if
and only if Φ ≡ 0.

Thus, from Theorem 1.2, Theorem 1.3 and Theorem 1.1 of [2] or [13], we easily
see that

Theorem 1.4. Let x : M → Rn be an umbilic free hypersurface with non-zero prin-
cipal curvatures. If the Laguerre principal curvatures, or the Laguerre eigenvalues, or
the para-Laguerre eigenvalues of x are constants, then ∇Φ ≡ 0 if and only if Φ ≡ 0.

Remark 1.1. If λ ≡ 0, then L+ µg = 0 and x is a Laguerre isotropic hypersurface,
we see that Theorem 1.1 reduce to (2) of Theorem 1.1 of Zhong et al. [13]. From
Theorem 1.1, we see that if we replace Φ ≡ 0 by the weaker condition ∇Φ ≡ 0 in
the definition of Laguerre isotropic hypersurfaces, then Theorem 1.1 of Li, H. Li and
Wang [5] also holds.

Remark 1.2. From Theorem 1.2 and Theorem 1.3, we see that if we replace Φ ≡ 0
by the weaker condition ∇Φ ≡ 0 in Theorem 1.2 of [5] and Theorem 1.4 of [9], then
Theorem 1.2 of [5] and Theorem 1.4 of [9] also hold.

2 Fundamental formulas of Laguerre Geometry

We recall the fundamental formulas on Laguerre geometry of hypersurfaces in Rn.
Let x : M → Rn be an (n − 1)-dimensional umbilical free hypersurface with vanish-
ing Laguerre form in Rn. Let {E1, . . . , En−1} denote a local orthonormal frame for
Laguerre metric g = ⟨dY, dY ⟩ with dual frame {ω1, . . . , ωn−1}. Putting Yi = Ei(Y ),
we have

N =
1

n− 1
∆Y +

1

2(n− 1)2
⟨∆Y,∆Y ⟩Y,(2.1)

⟨Y, Y ⟩ = ⟨N,N⟩ = 0, ⟨Y,N⟩ = −1,(2.2)
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and the following orthogonal decomposition:

(2.3) Rn+3
2 = Span{Y,N} ⊕ Span{Y1, . . . , Yn−1} ⊕ V,

where {Y,N, Y1, . . . , Yn−1, η, ℘} forms a moving frame in Rn+3
2 and V = {η, ℘} is called

the Laguerre normal bundle of x. We use the following range of indices throughout
this paper: 1 ≤ i, j, k, l,m ≤ n− 1.

The structure equations of x with respect to the Laguerre metric g can be written
as

dY =
∑
i

ωiYi,(2.4)

dN =
∑
i

ψiYi + φη,(2.5)

dYi = ψiY + ωiN +
∑
j

ωijYj + ωinη,(2.6)

d℘ = −φY +
∑
i

ωinYi,(2.7)

where {ψi, ωij , ωin, φ} are 1-forms on x with

(2.8) ωij + ωji = 0, dωi =
∑
j

ωj ∧ ωji,

and

(2.9) ψi =
∑
j

Lijωj , Lij = Lji, ωin =
∑
j

Bijωj , Bij = Bji, φ =
∑
i

Ciωi.

We define the covariant derivative of Ci, Lij , Bij by∑
j

Ci,jωj = dCi +
∑
j

Cjωji,(2.10)

∑
k

Lij,kωk = dLij +
∑
k

Likωkj +
∑
k

Lkjωki,(2.11) ∑
k

Bij,kωk = dBij +
∑
k

Bikωkj +
∑
k

Bkjωki,(2.12)

and using [4], we infer

dωij =
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl, Rijkl = −Rjikl,(2.13)

∑
i

Bii = 0,
∑
i,j

B2
ij = 1,

∑
i

Bij,i = (n− 2)Cj , trL = − R

2(n− 2)
,(2.14)

Lij,k = Lik,j ,(2.15)

Ci,j − Cj,i =
∑
k

(BikLkj −BjkLki),(2.16)

Bij,k −Bik,j = Cjδik − Ckδij ,(2.17)

Rijkl = Ljkδil + Lilδjk − Likδjl − Ljlδik,(2.18)
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where Rijkl and R denote the Laguerre curvature tensor and the Laguerre scalar
curvature with respect to the Laguerre metric g on x.

Denote by D =
∑

i,j Dijωi ⊗ ωj the (0, 2) para-Laguerre tensor,

Dij = Lij + λBij , 1 ≤ i, j ≤ n,(2.19)

where λ is a constant. The covariant derivative of Dij is defined by∑
k

Dij,kωk = dDij +
∑
k

Dikωkj +
∑
k

Dkjωki.(2.20)

Defining the second covariant derivative of Bij and Ci by∑
l

Bij,klωl = dBij,k +
∑
l

Blj,kωli +
∑
l

Bil,kωlj +
∑
l

Bij,lωlk,(2.21) ∑
k

Cij,kωk = dCi,j +
∑
k

Ci,kωkj +
∑
k

Ck,jωki,(2.22)

we have the Ricci identity

Bij,kl −Bij,lk =
∑
m

BmjRmikl +
∑
m

BimRmjkl,(2.23)

Cij,k − Cik,j =
∑
m

CmRmijk.(2.24)

3 Proofs of Theorems

From (2.17) and (2.23), we see that

Bij,kk =(Bik,j + Cjδik − Ckδij),k = Bik,jk + Cj,kδik − Ck,kδij(3.1)

=Bkk,ij +
∑
m

BmkRmijk +
∑
m

BimRmkjk

+ Ci,jδkk + Cj,kδik − Ck,jδki − Ck,kδij .

From (2.14), (2.18) and (3.1), we have∑
i,j,k

BijBij,kk =
∑
i,j,k,l

BijBlkRlijk +
∑
i,j,k,l

BijBilRlkjk + n
∑
i,j

BijCj,i(3.2)

=
∑
i,j,k,l

BijBlk(Lijδlk + Llkδij − Lljδik − Likδlj)

+
∑
i,j,k,l

BijBil(Lkjδlk + Llkδkj − Lljδkk − Lkkδlj) + n
∑
i,j

BijCj,i

=− (n− 1)tr(LB2)− trL+ ntr(B∇Φ).

Thus, from (2.14) and (3.2), we have

0 =
1

2
∆
(∑

i,j

B2
ij

)
=

∑
i,j,k

B2
ij,k +

∑
i,j,k

BijBij,kk(3.3)

=
∑
i,j,k

B2
ij,k − (n− 1)tr(LB2)− trL+ ntr(B∇Φ).
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Proof of Theorem 1.1. If Φ ≡ 0, it is obvious that ∇Φ ≡ 0. On the contrary, if
∇Φ ≡ 0, that is, Ci,j = 0, for all i, j, from (2.16), we may choose the local orthonormal
basis E1, E2, . . . , En−1 to diagonalize the matrix (Bij) and (Lij), that is

(3.4) Bij = Biδij , Lij = Liδij .

Since L+ λB+ µg = 0, we have Li = −µ− λBi. From (2.18) and (2.24), we see that

0 =
∑
l

ClRlijk = Cj(Lj + Li)δik − Ck(Lk + Li)δij .(3.5)

Putting i = k ̸= j in (3.5), we have

Cj(Lj + Lk) = 0, k ̸= j.(3.6)

If there exists one point p on M , so that Φ ̸= 0 at p, without loss of generality, we
may assume C1 ̸= 0 at p, thus from (3.6), we see that L1 +Lk = 0 at p, where k ̸= 1.
Since Li = −µ− λBi, we have −µ− λB1 − µ− λBk = 0 at p, where k ̸= 1. Thus, at
point p, we have

λBk = −(2µ+ λB1), k ̸= 1.(3.7)

If λ = 0 at p, we see that µ = 0 at p. Thus Li = 0 at p for all i, which implies
that trL = 0 at p and also tr(LB2) = 0 at p. From (3.3), we see that Bij,k = 0 at p
for all i, j, k. From (2.14), we have C1 =

∑
iBi1i = 0 at p, which is a contradiction.

If λ ̸= 0 at p, from (3.7), we see that B2 = B3 = · · · = Bn−1 at p. By (2.14), we
know that

B1 + (n− 2)B2 = 0, B2
1 + (n− 2)B2

2 = 1, at p.

Therefore,

B1 = ∓
√
n− 2

n− 1
, B2 = ± 1√

(n− 1)(n− 2)
, at p.(3.8)

From (2.12) and (3.8), we have

(3.9)
∑
k

Bij,kωk = (Bi −Bj)ωij , at p.

Thus, at point p,

(3.10) Bij,k = 0, for 2 ≤ i, j ≤ n− 1, 1 ≤ k ≤ n− 1.

Putting i ̸= j, i = k and 2 ≤ i, j, k ≤ n− 1 in (2.17), we have

(3.11) Cj = 0, for 2 ≤ j ≤ n− 1.

On the other hand, from (2.10) and (3.11), we have

(3.12) 0 =
∑
k

Cj,kωk = dCj +
∑
k

Ckωkj = C1ω1j , for 2 ≤ j ≤ n− 1.
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Since it is assumed C1 ̸= 0 at p, we have ω1j = 0 at p, 2 ≤ j ≤ n−1. By (3.9), we see
that B1j,k = 0 at p for 2 ≤ j ≤ n − 1 and all k. Thus B12,2 = 0 at p and B21,2 = 0
at p. From (3.10), we have B22,1 = 0 at p. Putting i = j = 2 and k = 1 in (2.17),
we have C1 = B21,2 − B22,1 = 0 at p, which is a contradiction. Thus, it must have
Φ ≡ 0. This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. If Φ ≡ 0, it is obvious that ∇Φ ≡ 0. On the contrary, if
∇Φ ≡ 0, that is, Ci,j = 0, for all i, j, from (2.16), we may choose the local orthonormal
basis E1, E2, . . . , En−1 to diagonalize the matrix (Bij) and (Lij), that is, (3.4) holds.

(1) If the Laguerre eigenvalues of x are equal, from Theorem 1.1 (see Remark 1.1),
we know that Theorem 1.2 is true.

(2) If the Laguerre eigenvalues of x are not equal, from (2.18) and (3.4), we know
that

(3.13) Rijkl = 0, if three of {i, j, k, l} are either the same or distinct.

By (2.24) and (3.13), we obtain

(3.14) CiRijij =
∑
k

CkRkjij = 0, i ̸= j.

If there exists one point p onM , so that Φ ̸= 0 at p, without loss of generality, we may
assume C1 ̸= 0 at p, thus from (3.14) and (2.18), we see that 0 = R1k1k = −L1 − Lk

at p, where k ̸= 1, that is, Lk = −L1, (k ̸= 1) at p. Since the Laguerre eigenvalues of
x are constants and not equal, we know that at all points of x,

(3.15) Lk = −L1 ̸= 0, k ̸= 1.

Since Lij,k = Lik,j and Lk = −L1 = constant, from (2.11), we easily see that Lij,k = 0
for all i, j, k. From (2.11) again, we have (L1 − Lj)ω1j = 0 for j ̸= 1, thus

(3.16) ω1j = 0, j ̸= 1.

Taking exterior differential of (2.6) and by (2.4)–(2.7), we have

(3.17) dψi −
∑
j

ψj ∧ ωji + ωin ∧ φ = 0.

Since it is assumed C1 ̸= 0 at p, we must have C2 = C3 = · · · = Cn−1 = 0 at p. In
fact, if there is i0(2 ≤ i0 ≤ n− 1) such that Ci0 ̸= 0 at p, from (3.14) and (2.18), we
have

− L1 − Lk = 0, k ̸= 1, k ̸= i0

− Li0 − Lk = 0, k ̸= i0, k ̸= 1,

− L1 − Li0 = 0, i0 ̸= 1.

Thus, we have L1 = Li0 = Lk = 0, k ̸= 1, k ̸= i0, which is a contradiction. Therefore,
from (2.9), we have φ = C1ω1 at p. By (3.17), (2.8), (2.9), (3.15) and (3.16), we see
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that for i ̸= 1

−ωin ∧ φ =Lidωi −
∑
j

Ljωj ∧ ωji(3.18)

=− L1dωi − L1ω1 ∧ ω1i −
n−1∑
j=2

Ljωj ∧ ωji

=− L1dωi + L1ω1 ∧ ω1i + L1

n−1∑
j=2

ωj ∧ ωji

=− L1(dωi −
∑
j

ωj ∧ ωji) = 0.

Thus, from (2.9) and (3.18), we have

−BiC1ωi ∧ ω1 = 0, at p, i ̸= 1.(3.19)

Since C1 ̸= 0 at p and i ̸= 1, from (3.19), we have Bi = 0 at p, i ̸= 1. From (2.14),
we see that B1 = 0 at p, this contradicts with

∑
iB

2
i = 1. Thus, it must have Φ ≡ 0.

This completes the proof of Theorem 1.2. �

Proof of Theorem 1.3. If Φ ≡ 0, it is obvious that ∇Φ ≡ 0. On the contrary, if
∇Φ ≡ 0, that is, Ci,j = 0, for all i, j, from (2.16) and (2.19), we can choose the local
orthonormal basis E1, E2, . . . , En−1 to diagonalize the matrix (Bij), (Lij) and (Dij).

(1) If the para-Laguerre eigenvalues of x are equal, from Theorem 1.1, we know
that Theorem 1.3 is true.

(2) If the para-Laguerre eigenvalues of x are not equal, since D = L+λB, if λ = 0,
from Theorem 1.2, we know that Theorem 1.3 is true. If λ ̸= 0, in order to prove
Φ ≡ 0, we may consider the following four independent cases (i), (ii), (iii) and (iv).

(i) If n ≥ 3 and x has two distinct para-Laguerre eigenvalues, we also consider the
following two cases: n = 3 and n ≥ 4.

If n = 3, from the Ricci identity (2.24), we have

(3.20)
∑
k

CkRk212 = 0,
∑
k

CkRk121 = 0.

Thus, we have from (3.13) and (3.20) that

C1R1212 = 0, C2R1212 = 0.

If there exists one point p onM , so that Φ ̸= 0 at p, without loss of generality, we may
assume C1 ̸= 0 at p, thus R1212 = 0 at p. From (2.18), we have trL = L1+L2 = 0 at p.
Thus, from (2.14), we haveD1+D2 = L1+L2+λ(B1+B2) = 0 at p, that isD1 = −D2

at p. Thus, 0 = D2
1−D2

2 = L2
1−L2

2+2λL1(B1+B2)+λ
2(B2

1 −B2
2) = λ2(B2

1 −B2
2) at

p. Since λ ̸= 0, we have B2
1 = B2

2 at p. Thus, tr(LB2) = L1B
2
1 + L2B

2
2 = B2

1trL = 0
at p. From (3.3), we see that Bij,k = 0 at p for all i, j, k. From (2.14), we have
C1 =

∑
iBi1,i = 0 at p, which is a contradiction.
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If n ≥ 4, let D1 and D2 be the two distinct para-Laguerre eigenvalues of x with
multiplicities m1 and n − 1 −m1, respectively. We agree on the following ranges of
indices

1 ≤ a, b ≤ m1, m1 + 1 ≤ α, β ≤ n− 1.

From (2.15), (2.17) and (2.19), we have

Dij,k −Dik,j = λCjδik − λCkδij .(3.21)

Since D1 and D2 are constants, from (2.20), we have

(3.22) Dab,i = Dαβ,i = 0,
∑
k

Daα,kωk = (D1 −D2)ωaα.

From (2.21) and (3.22), we also have

(3.23) Dαa,b = Daα,b = λCαδab, Daα,β = Dαa,β = λCaδαβ .

By (2.14) and (2.19), we also have∑
i

Dij,i =
∑
i

(Lij,i + λBij,i) =
∑
i

(Lii,j + λBij,i)(3.24)

=
(∑

i

Lii

)
,j
+ λ

∑
i

Bij,i

=
(∑

i

Dii

)
,j
+ λ

∑
i

Bij,i = (n− 2)λCj .

By (3.22), (3.23) and (3.24), we get

(n− 2)λCa =
∑
i

Dia,i =
∑
α

Dαa,α = (n− 1−m1)λCa,(3.25)

(n− 2)λCα =
∑
i

Diα,i =
∑
a

Daα,a = m1λCα.(3.26)

Thus, we see that

(3.27) (m1 − 1)λCa = 0, (m1 − n+ 2)λCα = 0.

If there exists one point p on M , so that Φ ̸= 0 at p, then there must be some i
such that Ci ̸= 0 at p, 1 ≤ i ≤ n− 1.

If 1 ≤ i ≤ m1, from (3.27) and λ ̸= 0, we see that m1 = 1, thus, Cα = 0. We
get that Φ = C1ω1 and C1 ̸= 0 at p. On the other hand, from (2.10) and Cα = 0,
2 ≤ α ≤ n− 1, we have

0 =
∑
j

Cα,jωj = dCα +
∑
j

Cjωjα = C1ω1α.

Hence ω1α = 0 at p. By (3.22) and (3.23), we see that, at this point p,

0 =(D1 −D2)ω1α =
∑
k

D1α,kωk

=D1α,1ω1 +
∑
β

D1α,βωβ = λCαω1 +
∑
β

λC1δαβωβ = λC1ωα,
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thus, λC1 = 0, which is a contradiction. Therefore, we conclude that in case (i), it
must have Φ ≡ 0.

(ii) If n ≥ 4 and x has n−1 distinct constant para-Laguerre eigenvalues, let Di be
the n− 1 distinct para-Laguerre eigenvalues of x, where 1 ≤ i ≤ n− 1. From (2.20),
we have

(3.28) Dii,k = 0,
∑
k

Dij,kωk = (Di −Dj)ωij , i ̸= j.

Putting k = i ̸= j in (3.21) and from (3.28), we have

(3.29) Dij,i = λCj , i ̸= j.

By (2.24) and (3.13), we obtain

(3.30) CiRijij =
∑
k

CkRkjij = 0, i ̸= j.

If there exists one point p on M , so that Φ ̸= 0 at p, without loss of generality,
we may assume C1 ̸= 0 at p, thus from (3.30), we see that R1212 = R1313 = · · · =
R1n−11n−1 = 0 at p.

If C2 = · · · = Cn−1 = 0 at p, from (2.10), we have

(3.31) 0 =
∑
j

Ci,jωj = dCi + C1ω1i, at p.

Putting i = 2, . . . , n − 1 in (3.31), we have C1ω12 = C1ω13 = · · · = C1ω1n−1 = 0
at p. Thus, we see that ω12 = ω13 = · · · = ω1n−1 = 0 at p. By (3.28), we have
D12,k = D13,k = · · · = D1n−1,k = 0 at p. Thus, from (3.29) and D12 = D21, we
have λC1 = D21,2 = D12,2 = 0 at p, which is a contradiction. This contradiction
implies that there exists at least one i, 2 ≤ i ≤ n− 1, so that Ci ̸= 0, without loss of
generality, we may assume C2 ̸= 0 at p. Since C1 ̸= 0, C2 ̸= 0 at p, from (3.30) and
(2.18), we get, at point p, that

0 = R1212 = −L1 − L2 = 0,(3.32)

0 = R1j1j = −L1 − Lj = 0, 3 ≤ j ≤ n− 1,(3.33)

0 = R2j2j = −L2 − Lj = 0, 3 ≤ j ≤ n− 1.(3.34)

From (3.32)–(3.34), we see that L1 = L2 = Lj = 0 at p, where 3 ≤ j ≤ n − 1. Thus
trL = 0 at p and also tr(LB2) =

∑
i LiB

2
i = 0 at p. From (3.3), we see that Bij,k = 0

at p for all i, j, k. From (2.14), we have (n− 2)C1 =
∑

iBi1,i = 0, therefore C1 = 0 at
p, which is a contradiction. Thus, we conclude that in case (ii), it must have Φ ≡ 0.

(iii) If n ≥ 5 and x has three distinct constant para-Laguerre eigenvalues, let
D1, D2 and D3 be the three distinct constant para-Laguerre eigenvalues of x with
multiplicitiesm1,m2 andm3, respectively. We agree on the following ranges of indices

1 ≤ a, b ≤ m1, m1 + 1 ≤ s, t ≤ m1 +m2, m1 +m2 + 1 ≤ α, β ≤ n− 1.
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From (2.20), we have

Dii,j = Dab,j = Dst,j = Dαβ,j = 0,(3.35) ∑
k

Dij,kωk = (Di −Dj)ωij , i ̸= j.(3.36)

From (3.21) and (3.35), we have

Dij,j = Dji,j = λCi, i ̸= j,(3.37)

0 = Daa,b −Dab,a = λCaδab − λCbδaa = −λCb, a ̸= b,(3.38)

0 = Dss,t −Dst,s = λCsδst − λCtδss = −λCt, s ̸= t,(3.39)

0 = Dαα,β −Dαβ,α = λCαδαβ − λCβδαα = −λCβ , α ̸= β.(3.40)

If there exists one point p on M , so that Φ ̸= 0 at p, we shall prove that m1 =
m2 = 1 and m3 = n−2. In fact, if 2 ≤ m1 ≤ m2 ≤ m3, from (3.38)–(3.40) and λ ̸= 0,
we see that Ci = 0 for all i and therefore Φ = 0, which is a contradiction.

If m1 = 1 and 2 ≤ m2 ≤ m3, then Cs = Cα = 0 for all s, α and therefore
Φ = C1ω1. Since it is assumed Φ ̸= 0 at p, we get C1 ̸= 0 at p. On the other hand,
from (2.10) and Cs = Cα = 0, we have

(3.41) 0 =
∑
j

Ci,jωj = dCi + C1ω1i.

Putting i = s and i = α in (3.41), we have C1ω1s = C1ω1α = 0, which implies that
ω1s = ω1α = 0 at p. From (3.36), we see that D1s,s = D1α,α = 0 at p. Thus, by (3.37)
and λ ̸= 0, we get C1 = 0 at p, which also is a contradiction. Thus, we conclude
that if Φ ̸= 0 at p, then m1 = m2 = 1 and m3 = n − 2. Therefore, 3 ≤ α ≤ n − 1,
from (3.40), we have Cα = 0. Since it is assumed Φ ̸= 0 at point p, without loss of
generality, we may assume C1 ̸= 0 at p. If C2 = 0 at p, from (2.10) and Cα = 0, we
have

(3.42) 0 =
∑
j

Ci,jωj = dCi + C1ω1i, at p.

By a similar method as above, we see that ω12 = ω1α = 0 and D12,2 = D1α,α = 0 at
p. From (3.37) and λ ̸= 0, we get C1 = 0 at p, which is a contradiction. Thus, we
infer that C2 ̸= 0 at p. From (2.24) and (3.13), we have

(3.43) CiRijij =
∑
k

CkRkjij = 0, i ̸= j.

From (2.18), (3.43), C1 ̸= 0 and C2 ̸= 0 at p, we see that at point p

0 = R1212 = −L1 − L2 = 0,(3.44)

0 = R1α1α = −L1 − Lα = 0, 3 ≤ α ≤ n− 1,(3.45)

0 = R2β2β = −L2 − Lβ = 0, 3 ≤ β ≤ n− 1.(3.46)

Hence, we have L1 = L2 = Lα = 0 at p, where 3 ≤ α ≤ n − 1. This implies that
trL = 0 at p and also tr(LB2) =

∑
i LiB

2
i = 0 at p. From (3.3), we see that Bij,k = 0
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at p for all i, j, k. From (2.14), we have C1 = 0 at p, which is a contradiction. Thus,
we conclude that in case (iii), it must have Φ ≡ 0.

(iv) If n ≥ 6 and x has γ (4 ≤ γ ≤ n − 2) distinct constant para-Laguerre
eigenvalues, let D1, D2, . . . , Dγ be the γ distinct constant para-Laguerre eigenvalues
of x with multiplicities m1,m2, . . . ,mγ and m1 ≤ m2 ≤ · · · ≤ mγ , respectively. From
(2.20), we have

Dii,j = 0,
∑
k

Dij,kωk = (Di −Dj)ωij , i ̸= j.(3.47)

From (3.21) and (3.47), we have

Dij,j = Dji,j = λCi, i ̸= j,(3.48)

0 = Dii,k −Dik,i = λCiδik − λCkδii = −λCk, i ̸= k.(3.49)

If there exists one point p on M , so that Φ ̸= 0 at p, we shall prove that m1 =
m2 = 1. In fact, if 2 ≤ m1 ≤ m2 ≤ · · · ≤ mγ , from (3.49) and λ ̸= 0, we see that
Ci = 0 for all i and therefore Φ = 0, which is a contradiction.

If m1 = 1 and 2 ≤ m2 ≤ · · · ≤ mγ , then Ci = 0 for all 2 ≤ i ≤ n− 1 and therefore
Φ = C1ω1. Since it is assumed Φ ̸= 0 at p, we get C1 ̸= 0 at p. By the similar method
in the proof of case (iii), we see that ω1i = 0 and D1i,i = 0 at p, where 2 ≤ i ≤ n− 1.
Thus, by (3.48) and λ ̸= 0, we get C1 = 0 at p, also a contradiction. Therefore, we
conclude m1 = m2 = 1.

Since it is assumed Φ ̸= 0 at point p, without loss of generality, we assume C1 ̸= 0
at p. If Ci = 0 at p, where 2 ≤ i ≤ n− 1, from (2.10), we have

(3.50) 0 =
∑
j

Ci,jωj = dCi + C1ω1i, at p.

By the similar method in the proof of case (iii), we see that ω1i = 0 and D1i,i = 0 at
p. Thus, from (3.48), we get C1 = 0 at p, which is a contradiction. This implies that
at least one of Ci is not zero at p, where 2 ≤ i ≤ n− 1, without loss of generality, we
may assume C2 ̸= 0 at p. From (2.24) and (3.13), we have

(3.51) CiRijij =
∑
k

CkRkjij = 0, i ̸= j.

From (2.18), (3.51), C1 ̸= 0 and C2 ̸= 0 at p, we see that at point p

0 = R1212 = −L1 − L2 = 0,(3.52)

0 = R1i1i = −L1 − Li = 0, 3 ≤ i ≤ n− 1,(3.53)

0 = R2j2j = −L2 − Lj = 0, 3 ≤ j ≤ n− 1.(3.54)

Thus, we have L1 = L2 = Li = 0 at p, where 3 ≤ i ≤ n−1. This implies that trL = 0
at p and also tr(LB2) = 0 at p. From (3.3), we see that Bij,k = 0 at p for all i, j, k.
From (2.14), we have C1 = 0 at p, which is a contradiction. Thus, we conclude that
in case (iv), it must have Φ ≡ 0. This completes the proof of Theorem 1.3. �
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