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Abstract. It was proved in [25] that for a contact Riemannian manifold
with non-integrable almost complex structure, the Yamabe problem is
subcritical in the sense that its Yamabe invariant is less than that of the
Heisenberg group. In this paper we give a complete proof of the solvability
of the contact Riemannian Yamabe problem in the subcritical case. These
two results implies that the Yamabe problem on a contact Riemannian
manifold is always solvable. By constructing normal coordinates on a
contact Riemannian manifold, we can osculate the contact Riemannian
structure at each point by the standard structure on the Heisenberg group.
This osculation makes the machine of singular integral operators work
on general contact Riemannian manifolds. We apply it to obtain the
regularity of the SubLaplacians and the Yamabe equation, which allow us
to solve the contact Riemannian Yamabe problem in the subcritical case
by Jerison-Lee’s approach in the CR case. We also clarify two claims in
their proof.
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1 Introduction

Let M be a (2n + 1)-dimensional contact manifold, i.e. it is equipped with a real
1-form θ, called a contact form, such that θ∧dθn ̸= 0 everywhere on M . There exists
a unique vector field T , called the Reeb vector field, such that θ(T ) = 1 and iT dθ = 0,
where i is the interior product. It is known that given a contact manifold (M, θ),
there exist a Riemannian metric h and a (1, 1)-tensor field J on M , called an almost
complex structure, such that

h(X,T ) = θ(X), J2 = −Id+ θ ⊗ T, dθ(X,Y ) = h(X, JY ),(1.1)
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for any vector field X,Y (cf. p. 278 in [4]). Given a contact form θ, h is uniquely
determined once J is fixed and vise versa. (M, θ, h, J) is called a contact Riemannian
manifold. H(M) := Ker(θ) is the horizontal subbudle of the tangent bundle TM .
Tanno [20] constructed a canonical connection for a contact Riemannian manifold,
called the Tanaka-Webster-Tanno connection now (or TWT connection briefly). In
the CR case, this is exactly the Tanaka-Webster connection. Recently, people are
interested in geometric analysis of contact Riemannian manifolds (cf. [3] [4] [9] [10]
[24] [25] and references therein).

Under the conformal transformation

(1.2) θ̂ = fθ

for some positive function f , the contact Riemannian structure (θ, J, T, h) is changed

to (θ̂, Ĵ , T̂ , ĥ) (cf. (2.28)). The contact Riemannian Yamabe problem is to find θ̂
conformal to θ such that its scalar curvature is constant. This problem was formulated
by Tanno [20] as an analog of the CR Yamabe problem. Denote by sθ and sθ̂ the

scalar curvatures of the TWT connection for (M, θ, h, J) and (M, θ̂, ĥ, Ĵ), respectively.

If we write the conformal transformation (1.2) with f = u
4

Q−2 , the scalar curvatures
transform as

(1.3) bn△θu+ sθu = sθ̂u
2∗−1, bn =

4(n+ 1)

n
,

(cf. Proposition 2.2), where 2∗ = 2Q
Q−2 = 2+ 2

n , i.e.
1
2∗ = 1

2 −
1
Q , is the critical Sobolev

exponent, Q = 2n+2 is the homogeneous dimension ofM and △θ is the SubLaplacian
(2.18). (1.3) is the contact Riemannian Yamabe equation. When J is integrable, the
manifold is CR. The CR Yamabe problem was solved by Jerison and Lee [17] [18]
[19] for non-spherical CR manifolds with dimension > 3, while the remaining cases
were solved by Gamara and Yacoub [13] [14].

Denote by ψθ be the volume element associated to the metric h, which is θ∧ (dθ)n

up to a constant. Let db = π◦d, where π be the projection from T ∗M toH∗. As in the
Riemannian and CR cases, (1.3) is the Euler-Lagrangian equation for the constrained
variational problem

(1.4) λ(M) = inf
θ
{Aθ(u);Bθ(u) = 1},

where

(1.5) Aθ(u) =

∫
M

(bn|dbu|2θ + sθu
2)ψθ, Bθ(u) =

∫
M

|u|2
∗
ψθ.

We prove the following result for the contact Riemannian Yamabe problem.

Theorem 1.1. Suppose that (M, θ, h, J) is a compact contact Riemannian manifold
with dimM = 2n+ 1. Then,

(1) λ(M) ≤ λ(Hn), where Hn is the Heisenberg group with standard contact Rieman-
nian structure;

(2) If λ(M) < λ(Hn), then the infimum of (1.4) is achieved by a positive C∞ solution

u to (1.3), i.e. the contact form θ̂ = u
4

Q−2 θ has constant scalar curvature sθ̂ = λ(M).
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We proved in [25] that for a contact Riemannian manifold (M, θ, h, J) with non-
integrable almost complex structure J , we have λ(M) < λ(Hn). This result together
with Theorem 1.1 implies that the contact Riemannian Yamabe problem is solvable.
To make the solvability of the contact Riemannian Yamabe problem in [25] have a
solid basis, we need a complete proof of Theorem 1.1. Note that in [1] the authors
sketched a proof of Theorem 1.1 for a different connection on a contact Riemannian
manifold. Although it is possible to use [1] to give a proof by proving several analytic
assumptions, we here give a detailed proof along the approach of Jerison and Lee [17]
in the CR case. Geometry and analysis involved in this proof might have applications
to other problems on contact Riemannian manifolds. We also clarify two claims in
their proof. The compactness of the imbedding of the Folland-Stein space Ss

1(M)
into Lr(M) for 1

r >
1
s − 1

2n+2 (cf. proposition 5.6 of [17]) plays a key role in solving
the CR Yamabe equations with subcritical exponents. They used the calculus of
pseudodifferential operators on the Heisenberg group to prove this compactness, but
details have not been published so far. We give a simple proof of this compactness for
the case s = 2 in Proposition 4.15, which is sufficient for our purpose. The other claim
is the regularity of the Yamabe equation and Harnack inequality, which is uniform
under the small perturbation of the pseudohermitian structures (details have not been
published yet so far). We use Darboux’s theorem to avoid the uniform estimates (cf.
Remark 5.1).

In Section 2, we recall the standard contact Riemannian structure on the Heisen-
berg group and give the expression of the SubLaplacian, and show the contact Rie-
mannian Yamabe equation (1.3) under a conformal transformation. In Section 3,
we prove that the contact Riemannian structure at any given point ξ can be oscu-
lated by the standard structure of the Heisenberg group, and construct local normal
coordinates, which depend on the point ξ smoothly. This kind of coordinates were
originally constructed by Folland and Stein [12] for strictly pseudoconvex CR mani-
folds, and the smooth dependence is very important to make the machine of singular
integral operators work. The method of harmonic analysis on CR manifolds can also
be adapted to contact Riemannian manifolds, in particular the theory of singular in-
tegral operators. Many aspects of harmonic analysis has already been generalized to
spaces equipped with smooth vector fields satisfying the Hörmander’s condition (see,
e.g. [6]), and the Harnack inequality and Poincaré-type inequality in such setting are
known. We obtain the regularity of the SubLaplacians and the Yamabe equation on
contact Riemannian manifolds in Section 4. The main theorem is proved in the last
section.

2 Some basic facts

2.1 The standard contact Riemannian structure on the Heisen-
berg group

The multiplication of the Heisenberg group Hn can be written as

(2.1) (x, t) · (y, s) =

x+ y, t+ s+
2n∑

a,b=1

Babxayb

 ,
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where x = (x1, . . . , x2n), y = (y1, . . . , y2n) ∈ R2n, t, s ∈ R, and B = (Bab) is the
antisymmetric matrix

(2.2)

(
0 In

−In 0

)
.

Here In is the n×n identity matrix. The group of automorphisms of Hn is generated
by the following transformations: (1) dilations: Dδ : (x, t) −→ (δx, δ2t), for (x, t) ∈
Hn, δ > 0; (2) translations: τ(x,t) : (y, s) −→ (x, t) · (y, s), for (x, t), (y, s) ∈ Hn; (3)
rotations: (x, t) −→ (Ux, t), for U ∈ U(n); (4) the inversion R, which is defined on

Hn \ {0} by R : (x, t) −→
(

−x
|x|2−t ,

−t
|x|4+|t|2

)
. The following vector fields

(2.3) Yb =
∂

∂xb
+

2n∑
a=1

Babxa
∂

∂t
,

are left invariant on the Heisenberg group by the multiplication law (2.1) of the
Heisenberg group, and

(2.4) [Ya, Yb] = 2Bab
∂

∂t
,

for a, b = 1, · · · , 2n. Then the horizontal subspace H0 := spanR{Y1, · · · , Y2n} gener-
ates the corresponding Lie algebra of the Heisenberg group. Denote

(2.5) θ0 := dt−
2n∑

a,b=1

Babxadxb.

It is obvious that θ0(Ya) = 0 for a = 1, · · · , 2n and

(2.6) dθ0 = −
2n∑

a,b=1

Babdxa ∧ dxb.

Define the standard Riemannian metric h0 on Hn by

(2.7) h0(T, T ) = 1, h0(Y, T ) = 0, h0(Ya, Yb) = 2δab, a, b = 1, · · · , 2n,

for any Y ∈ H0, and the standard almost complex structure J0 as a transformation
given by

(2.8) JT = 0, J0Yb =
2n∑
a=1

BbaYa,

for b = 1, . . . , 2n. It is easy to see that J0 satisfies the second identity in (1.1) and

(2.9) dθ0(Ya, Yb) = −2Bab = h0(Ya, J0Yb),

by (2.6) and the definition of wedge products: for 1-forms ω and ω′,

(2.10) ω ∧ ω′(X,Y ) = ω(X)ω′(Y )− ω(Y )ω′(X)

for any vector fields X and Y . (H, h0, θ0, J0) is the standard contact Riemannian
structure on the Heisenberg group.
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2.2 The SubLaplacian on a contact Riemannian manifold

On a contact Riemannian manifold (M, θ, h, J), there exists a unique linear connection
∇ such that

(2.11)

∇θ = 0, ∇T = 0, ∇h = 0,

τ(X,Y ) = 2dθ(X,Y )T, X, Y ∈ Γ(HM),

τ(T, JX) = −Jτ(T,X), X ∈ Γ(TM),

(cf. (7)-(9) in [4]), where τ is the torsion of ∇, i.e. τ(X,Y ) = ∇XY −∇YX − [X,Y ]
for X,Y ∈ Γ(TM). This connection is called the TWT connection. The Tanno
tensor is the (1, 2)-tensor field Q defined by Q(X,Y ) := (∇Y J)X, for X,Y ∈ Γ(TM).
Tanno prove that a contact Riemannian manifold is a CR manifold if and only if
Q ≡ 0 (cf. proposition 2.1 of [20]). The curvature tensor of the TWT connection is
R(X,Y ) = ∇X∇Y − ∇Y ∇X − ∇[X,Y ]. The Ricci tensor is defined by Ric(Y, Z) =
tr{X −→ R(X,Z)Y } for any X,Y, Z ∈ TM . The scalar curvature is sθ = tr(Ric).

Let ξ be an arbitrary point of a contact Riemannian manifold (M, θ, h, J) and U be
a sufficiently small neighborhood of ξ. Now choose a local real horizontal vector field
{X1} over U such that h(X1, X1) = 2 and set Xn+1 := JX1. Note that the metric h
restricted to the horizontal subbundle is invariant under J , i.e. h(JX, JY ) = h(X,Y )
for any horizontal vector fields X and Y by the third identity in (1.1). Then we get

h(X1, Xn+1) = h(X1, JX1) = dθ(X1, X1) = 0,

h(Xn+1, Xn+1) = h(JX1, JX1) = h(X1, X1) = 2,

i.e., Xn+1 is orthogonal to X1. We can choose X2 orthogonal to spanR{X1, JX1}
with norm

√
2 and define Xn+2 := JX2. Repeating the procedure, we find a local

orthogonal frame {X1, · · · , X2n} of the horizontal subspace H|U = ker θ|U with norm√
2 and

(2.12) JXα = Xα+n, JXα+n = −Xα, α = 1, . . . , n.

Here we choose the local frame with norm
√
2, because the standard frame (2.7) on

the Heisenberg group has the norm
√
2. Let {θ1, . . . , θ2n, θ} be the local coframe dual

to {X1, · · · , X2n, T}. Namely θa(T ) = 0, θ(Xb) = 0, θa(Xb) = δab , a, b = 1, . . . , 2n.
Then we have

(2.13) dθ(Xa, Xb) = h(Xa, JXb) = −2Bab,

by (2.12), where B is given by (2.2). (2.13) is equivalent to the structure equation:

(2.14) dθ = −
2n∑

a,b=1

Babθ
a ∧ θb, mod θ,

by the definition (2.10) of wedge products. Applying the formula of exterior derivative:
for a 1-form ω,

(2.15) dω(X,Y ) = X(ω(Y ))− Y (X(ω))− ω([X,Y ])
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for any vector fields X and Y , we see that the dual of (2.13) is

(2.16) [Xa, Xb] = 2BabT, mod H,

where T is the Reeb vector. Then the volume element ψθ associated to the metric h
is locally as

(2.17) ψθ = 2nθ ∧ θ1 ∧ · · · ∧ θ2n,

since {T, 1√
2
X1, . . . ,

1√
2
X2n} is a local orthonormal frame on the Riemannian manifold

(M,h). It is direct to see that ψθ is equal to θ∧(dθ)n up to a constant by the structure
equation (2.14).

The metric h restricted to H induces a dual metric on H∗. We denote it by ⟨·, ·⟩θ.
Define a norm |ω|2θ = ⟨ω, ω⟩θ for ω ∈ H∗. It induces an L2 inner product on Γ(H∗)
by ⟨ω, ω′⟩ :=

∫
M
⟨ω, ω′⟩θψθ. We define the SubLaplacian as the differential operator

△θ satisfying

(2.18)

∫
M

△θf · gψθ =

∫
M

⟨dbf, dbg⟩θψθ

for any f, g ∈ C∞
0 (M). This definition is convenient for handling the variational

problem (1.4). The SubLaplacian △θ also depends on the almost complex structure
J . But under a conformal transformation, the action of J on the horizontal subspace
H is unchanged (cf. (2.28)). So we omit the subscript J for the notations of the
SubLaplacian and the norm on H∗, etc..

Since the TWT connection ∇ preserves H by ∇θ = 0, there exist 1-forms ω b
a ∈

Γ(H∗) such that ∇YXa = ω b
a (Y )Xb for Y ∈ Γ(H). Write ω c

a (Xb) = Γ c
ab . Then

∇Xb
Xa = Γ c

ab Xc. The SubLaplacian △θ has the following expression.

Proposition 2.1. On a contact Riemannian manifold M , let {Xa}2na=1 be a local
orthogonal frame of the horizontal subspace H with norm

√
2. Then for f ∈ C∞(M),

we have

(2.19) △θf =
1

2

2n∑
a=1

(
−XaXaf +

2n∑
b=1

Γ a
bb Xaf

)
.

Proof. Let {θa}2na=1 be a dual basis of {Xa}2na=1 for H∗ and θa(T ) = 0 for each a.
Recall that for a 1-form ω ∈ Ω1(M), (∇Xω)(Y ) = ∇X(ω(Y ))− ω (∇XY ) . Since the
TWT connection ∇ preserves H∗ by ∇T = 0, we find that

(2.20) ∇Xb
θa = −Γ a

cb θ
c.

Let X∗
a be the formal adjoint operator of the differential operator Xa, i.e.

∫
M
Xaf ·

gψθ =
∫
M
fX∗

agψθ for any f, g ∈ C∞
0 (M). We claim that

(2.21) X∗
a = −Xa +

2n∑
b=1

Γ a
bb .
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By definition dbf =
∑2n

a=1Xaf · θa and ⟨θa, θa⟩θ = 1
2 . It follows from the definition

(2.18) of the SubLaplacian that

(2.22) △θ =
1

2

2n∑
a=1

X∗
aXa =

1

2

2n∑
a=1

(
−XaXau+

2n∑
b=1

Γ a
bb Xau

)
.

It remains to prove the claim (2.21). Note that Xf = iXdf , where iX is the
interior operator. By Stokes’ formula, we get∫

M

Xaf · gψθ =

∫
M

gdf ∧ iXaψθ = −
∫
M

fdg ∧ iXaψθ −
∫
M

fgd (iXaψθ)

= −
∫
M

fXagψθ −
∫
M

fgd(iXaψθ)

(2.23)

with ψθ as in (2.17). By the standard exterior differentiation formula,

(2.24) dϕ(X,Y ) = (∇Xϕ)(Y )− (∇Y ϕ)(X) + ϕ(τX,Y )

for a 1-form ϕ ∈ Ω1(M), where the torsion τX,Y = 2dθ(X,Y )T for X,Y ∈ H by
(2.11), and using (2.20), we find that dθb(Xc, Xd) = −Γ b

dc + Γ b
cd . Thus we get

(2.25) dθb =
1

2

2n∑
c,d=1

(
−Γ b

dc + Γ b
cd

)
θc ∧ θd, mod θ.

Note that

d(iXaψθ) =(−1)a2ndθ ∧ θ1 ∧ · · · ∧ θ̂a ∧ · · · ∧ θ2n +
∑
b̸=a

dθb ∧ iXb
iXaψθ.(2.26)

The first (2n + 1)-form in the right hand side of (2.26) vanishes since it annihilates
the Reeb vector T : iT dθ = 0. Inserting dθb =

∑
a

(
−Γ b

ba + Γ b
ab

)
θa ∧ θb + · · · by

(2.25) into the second sum in the right hand side of (2.26) and using antisymmetry
Γ a
bc = −Γ b

ac , which follows from the fact that the TWT connection ∇ preserves the
metric h, we find that

(2.27) d(iXaψθ) =
∑
b̸=a

(
−Γ b

ba + Γ b
ab

)
ψθ = −

∑
b̸=a

Γ a
bb ψθ = −

2n∑
b=1

Γ a
bb ψθ,

Here Γ b
ba ≡ 0 by antisymmetry. The claim (2.21) follows from (2.23) and (2.27). The

proposition is proved. �

2.3 The Yamabe equation on contact Riemannian manifolds

Under the conformal transformation (1.2), the contact Riemannian structure (θ, J, T, h)

is changed to (θ̂, Ĵ , T̂ , ĥ) with

(2.28)

T̂ =
1

f
(T + ζ),

ĥ = fh− f
(
θ ⊗ ω + ω ⊗ θ

)
+ f(f − 1 + ||ζ||2)θ ⊗ θ,

Ĵ = J +
1

2f
θ ⊗

(
∇f − T (f)T

)
,
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(cf. (12) in [4] or Lemma 9.1 in [20]), where ζ = 1
2f J∇f and ω satisfies ω(X) = h(X, ζ)

for X ∈ TM .

Proposition 2.2. Under the conformal transformation θ̂ = u
4

Q−2 θ, the scalar curva-
tures of the TWT connections transform as (1.3).

Proof. Tanno considered (cf. [20], p. 363) the second order differential operator △H

given by △Hu := △hu− T (Tu), u ∈ C∞(M), where △h is the Beltrami-Laplacian of
the Riemannian manifold (M,h). Tanno proved that the scalar curvature sθ̂ of the

TWT connection of (M, θ̂, ĥ, Ĵ) satisfies the equation

(2.29) −4(n+ 1)

n
△Hu+ sθ = sθ̂u

1+ 2
n

(cf. (10.10) in [20]). See also [4], p. 336-337, for a simpler proof by a different
technique. It remains to show △θ = −△H .

It is known that the TWT connection can be expressed in terms of the Levi-Civita
connection ∇†

X for the Riemannian metric h as

(2.30) ∇XY = ∇†
XY + θ(X)JY − θ(Y )∇†

XT +
[(

∇†
Xθ
)
Y
]
T,

(cf. (6) in [4]). Let { 1√
2
Xa}2na=1 be a local orthonormal frame of the horizontal

subspace H as before. Then {T, 1√
2
X1, . . .} is a local orthonormal frame on the

Riemannian manifold (M,h). Recall that the Beltrami-Laplacian of the Riemannian

manifold (M,h) has the following form: △hu = T 2u+ 1
2

∑2n
a=1

(
XaXau−∇†

Xa
Xau

)
,

since

(2.31) ∇†
TT = 0

by lemma 1.1 of [20]. This together with the relationship (2.30) between the TWT
connection and the Levi-Civita connection for h implies that

(2.32) △Hu =
1

2

2n∑
a=1

(XaXau−∇XaXau) +
1

2

2n∑
a=1

[(
∇†

Xa
θ
)
Xa

]
Tu.

Note that ∇†
Xθ = h

(
·,∇†

XT
)
by (1.1) and the Levi-Civita connection preserving the

metric h. So we have

2n∑
a=1

(
∇†

Xa
θ
)
(Xa) =

2n∑
a=1

h
(
Xa,∇†

Xa
T
)
= 2div(T ) = 0,

by (2.31) again. Here the vanishing of the divergence of T with respect to the Rieman-
nian metric h is given again by lemma 1.1 of [20]. Consequently, we get △Hu = −△θu
by the expression of the SubLaplacian in Proposition 2.1. (1.3) follows from substi-
tuting this identity into (2.29). �
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3 Osculating the Riemannian contact structure by
the Heisenberg group

3.1 Normal coordinates

The purpose of this subsection is to define normal coordinates to approximate the
contact Riemannian structure at each point of a contact Riemannian manifold M
by the standard structure on the Heisenberg group. Let {X1, · · · , X2n} be a local
orthogonal frame of H with norm

√
2 under h constructed in section 2.2. As in the

CR case in Folland-Stein [12], for each ξ ∈M , we define the exponential map Eξ at ξ
based on the local frame {X0 := T,X1, · · · , X2n}. For v = (v0, v1, · · · , v2n) ∈ R2n+1,
we define Eξ(v) ∈ M to be the endpoint of integral curve η(s), 0 ≤ s ≤ 1, of the

vector field
∑2n

j=0 vjXj with η(0) = ξ. Then Eξ is a smooth mapping of a star shaped

neighborhood Uξ of 0 ∈ R2n+1 into M . It is clear that Eξ∗(
∂

∂vj
)|0 = Xj |ξ. So Eξ is

a diffeomorphism of a smaller neighborhood of Uξ of 0, denoted also by Uξ, onto a
neighborhood Vξ of M . Let

(3.1) Ω = {(ξ, η) ∈M ×M ; η ∈ Vξ}

be a neighborhood of the diagonal of M ×M . Denote by Θξ the coordinate mapping
E−1

ξ : Vξ −→ R2n+1 and Θ(ξ, η) := Θξ(η). We also write (x(η; ξ), t(η; ξ)) or v(η; ξ)

for the coordinates of Θξ(η). Define a norm on R2n+1 by

(3.2) ∥v∥ =
((
v21 + · · ·+ v22n

)2
+ v20

) 1
4

and ρ(ξ, η) := ∥Θ(ξ, η)∥.

A function f on Vξ is said to be Ok if f(η) = O(ρ(ξ, η)k) as η −→ ξ.

Proposition 3.1. In the coordinates x(·; ξ), t(·; ξ), we have

Xa =
∂

∂xa
+

2n∑
b=1

Bbaxb
∂

∂t
+

2n∑
c=1

O1 ∂

∂xc
+O2 ∂

∂t
, a = 1, · · · , 2n,

T =
∂

∂t
+

2n∑
c=1

O1 ∂

∂xc
+O2 ∂

∂t
.

(3.3)

In this proposition, we identify Θξ∗Xa with Xa. We need the following lemma (cf.
Lemma 14.2 and Lemma 14.5 in [12], p. 472-474; see also Lemma 3.2-3.3 in the book
[10]) to prove Proposition 3.1.

Lemma 3.2. Suppose that vector fields {Zµ}Nµ=1 satisfy the condition that they span

the tangential space at each point of a star shaped neighborhood U of 0 ∈ RN . Write
Zµ =

∑N
ν=1 Fµν(v)

∂
∂vν

. Let (Aµν) be the inverse transport matrix of (Fµν). Then,

(1) If v ∈ U , |s| < 1, we have
∑N

ν=1Aµν(sv)vν = vµ.

(2) Define real functions cµνκ on U by

(3.4) [Zµ, Zν ] =
N∑

κ=1

cµνκZκ,
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and matrices D(s, v) = (sAµν(sv)) and Γ(s, v) with entries Γµν(s, v) =
∑N

µ=1 cκνµ(sv)vκ
for v ∈ U , |s| < 1. We have

(3.5)
∂D

∂s
= I − ΓD.

Proof of Proposition 3.1. Apply this lemma to vector fields X0 := T, . . .X2n over
a neighborhood Uξ of ξ ∈M . Write Xa =

∑2n
b=0 Fab(v)

∂
∂vb

, a = 0, 1, · · · , 2n. We have

Fab(0) = δab by Eξ∗(
∂

∂va
)|0 = Xa|ξ. By Taylor’s theorem, we have the expansion

F (sv) = F (0) + sF (1)(v) + s2F (2)(v) + · · · , where F (0) = I and F (1), F (2), · · · are
certain matrices. Similarly, write

A(sv) = I + sA(1)(v) + s2A(2)(v) + · · · , D(s, v) = sI + s2A(1)(v) + · · · .

Since FAt = I, we have F (1)t = −A(1). Write Γ(s, v) = Γ(0)(v) + sΓ(1)(v) + · · · . The
above equation (3.5) implies that 2F (1)(v)t = Γ(0)(v). Since Γ

(0)
bc (v) =

∑2n
d=0 cdcb(0)vd

by definition and v0 = t = O2, we find that

F
(1)
a0 (v) =

1

2
Γ
(0)t
a0 =

1

2

2n∑
d=0

cda0(0)vd =
1

2

2n∑
b=1

cba0(0)vb +O2.(3.6)

To determine cba0(0) for a, b = 1, · · · , 2n, note that

2n∑
c=0

cbacXc = [Xb, Xa] = 2BbaT mod H,(3.7)

by the structure equation (2.16) and the definition of coefficients c... in (3.4). It follows
that at the origin

(3.8) cba0(0) = 2Bba,

for a, b = 1, · · · , 2n. Now in the coordinate chart Uξ, for a = 1, . . . , 2n, we have

Xa =
2n∑
b=0

Fab(v)
∂

∂vb
=

∂

∂va
+ Fa0(v)

∂

∂v0
+

2n∑
b=1

O1 ∂

∂vb

=
∂

∂va
+

1

2

2n∑
b=1

cba0(0)vb
∂

∂v0
+

2n∑
b=1

O1 ∂

∂vb
+O2 ∂

∂v0

=
∂

∂va
+

2n∑
b=1

Bbavb
∂

∂v0
+

2n∑
b=1

O1 ∂

∂vb
+O2 ∂

∂v0

(3.9)

by using (3.6) and (3.8).

For T , note that T = ∂
∂v0

+
∑2n

a=0 F
(1)
0a (v) ∂

∂va
+
∑2n

b=0O
2 ∂
∂vb

and F
(1)
00 (v) =

1
2

∑2n
b=1 cb00(0)vb+O

2 by (3.6). On the other hand, we have dθ(Xb, T ) = −iT dθ(Xb) =
0, which implies [Xb, T ] ∈ H. It is equivalent to cb00(0) = 0 for b = 1, . . . , 2n. Then
(3.3) for T follows. The lemma is proved.
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3.2 Osculating the contact Riemannian structure by the Heisen-
berg group

Theorem 3.3. In the normal coordinates constructed in section 3.1, we have

(1) Θξ(η) = −Θη(ξ) ∈ R2n+1;

(2) Θ : Ω −→ R2n+1 is C∞;

(3) Θ∗
ξ(2

ndv0 · · · dv2n)|ξ is the volume element on M at ξ;

(4) Suppose (ξ, η), (ξ, ζ), (ζ, η) ∈ Ω and ρ(ξ, η) ≤ ε0, ρ(ζ, η) ≤ ε0 for some sufficiently
small constant ε0 > 0. Then, there exists a constant C > 0 such that

∥Θ(ξ, η)−Θ(ζ, η)∥ ≤ C
(
ρ(ξ, ζ) + ρ(ξ, ζ)

1
2 ρ(ξ, η)

1
2

)
,

ρ(ζ, η) ≤ C (ρ(ξ, ζ) + ρ(ξ, η)) .
(3.10)

Namely, ρ(·, ·) is a local pseudodistance on M .

Proof. (1) follows from the definition of exponential map Eξ. (2) follows from the
well known theorem on smooth dependence on parameters of solutions to an O.D.E..
(3) follows from Θξ∗ mapping Xa|ξ to ∂

∂va
, a = 0, 1, · · · , 2n. For (4), we regard ζ as

a function of ξ ∈ M and v ∈ Uξ by the equation ζ = Eξ(v). We write Θ(ζ, η) =
f(η, ξ, v) ∈ R2n+1 with f(η, ξ, 0) = Θ(ξ, η). We expand f in Taylor’s series of the
variable v about 0 to get

(3.11) Θa(ζ, η) = Θa(ξ, η) +

2n∑
b=0

Λab(η, ξ)vb +O(|v|2),

a = 0, · · · 2n, where va = Θa(ξ, ζ), Λab(η, ξ) =
∂fa(η,ξ,0)

∂vb
. Using (3.11) for η = ξ, we

get

va = Θa(ξ, ζ) = −Θa(ζ, ξ) = −
2n∑
b=0

Λab(ξ, ξ)vb +O(|v|2).

Hence Λab(ξ, ξ) = −δab and |Λab(η, ξ)| = O(ρ(η, ξ)) for a ̸= b. It follows that

|Θ0(ξ, η)−Θ0(ζ, η)| ≤ C(ρ(ξ, ζ)2 + ρ(η, ξ)ρ(ξ, ζ)),

|Θa(ξ, η)−Θa(ζ, η)| ≤ Cρ(ξ, ζ), a = 1, · · · 2n.
(3.12)

Now the first inequality of (3.10) follows from (3.12). The second inequality of (3.10)
easily follows from the first one and definition of ρ(·, ·). �

For the standard contact Riemannian structure on the Heisenberg group in section
2.1, its TWT connection coefficients vanish, and so does its curvature. For f ∈
C1(Hn), df =

∑2n
a=1 Yaf · θa + ∂f

∂t · θ0 and dbf =
∑2n

a=1 Yaf · θa, where θa = dxa.
Recall that ⟨θa, θb⟩θ0 = 1

2δab, a, b = 1, · · · , 2n. Hence,

(3.13) ⟨dbf, dbg⟩θ0 =
1

2

2n∑
a=1

Yaf · Yag
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if f and g are real valued. ψθ0 = 2ndt ∧ dx1 ∧ · · · ∧ dx2n is the Lebegues’ measure on
R2n+1 up to a constant. The SubLaplacian on the Heisenberg group is

(3.14) △0 = −1

2

2n∑
a=1

YaYa.

Corollary 3.4. Let {X1, · · · , X2n} be a local orthogonal frame of H with norm
√
2

under h as before. Then in the normal coordinates constructed in section 3.1, we have

(1)
(
Θ−1

ξ

)∗
θ = θ0 +O1dt+O2dx;

(2)
(
Θ−1

ξ

)∗
ψθ = (1 +O1)ψθ0 ;

(3)
(
Θ−1

ξ

)∗
h = h0 +O1.

(4) Θξ∗△θ = △0+E(∂x)+O1E(∂t; ∂2x)+O2E(∂x ·∂t)+O3E(∂2t ). Where OkE indicates
an operator involving combinations of the indicated derivatives with coefficients in Ok.

Proof. (1) follows from the expansion of Xa in Proposition 3.1. (2) follows from
(1). Since Γ c

ab bounded, Γ c
ab Xc = E(∂x) + O1E(∂t) by expansion (3.3). (4) follows

from the expression of the SubLaplacian △θ in (2.19) and the expansion of Xa in
Proposition 3.1. �

4 The Regularity of △θ and the Yamabe equation

4.1 Singular integral operators on contact Riemannian mani-
folds and the regularity of △θ

In this subsection, let U be a relatively compact open subset of a normal coordi-
nate neighborhood of some point ξ in a contact Riemannian manifold M , and let
{X1, · · · , X2n} be a local orthogonal frame of H with norm

√
2 under h as before.

Define the Folland-Stein norm as

(4.1) ∥u∥Ss
k(U) :=

∑
|L|≤k

∥∥XLu
∥∥
Ls(U)

for u ∈ C∞(U), where XL = Xa1 · · ·Xal
for a multiindex L = (a1, · · · , al) with

a1, · · · , al ∈ {1, . . . , 2n}, |L| = l. The Folland-Stein space Ss
k(U) is the completion of

C∞(U) with respect to this norm. Define

(4.2) ∥u∥Γβ(U) := supx∈U |u(x)|+ supx,y∈U

|u(x)− u(y)|
ρ(x, y)β

, for 0 < β < 1,

and Γβ(U) is the completion of C∞(U) with respect to this norm. For k < β < k+1,
k ∈ Z+,

(4.3) Γβ(U) =
{
u ∈ C(U);XLu ∈ Γβ−k for any multiindex L with |L| ≤ k

}
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with the norm

(4.4) ∥u∥Γβ(U) = sup
|L|=k

∥∥XLu
∥∥
Γβ−k(U)

.

Now fix an open covering {U1, · · · , Uτ} of M such that each Uj is a relatively
compact open set of a normal coordinate neighborhood Ωξ ⊂M for some ξ ∈M . Let
{χj}τj=1 be a unit partition of M such that suppχj ⊂ Uj . Define

(4.5) Ss
k(M) = {u;χju ∈ Ss

k(Uj) for all j} ,

and the norm of u to be the sum of ∥χju∥Ss
k(Uj).

Theorem 4.1. Let U be a relatively compact open subset of a normal coordinate
neighborhood of some point ξ in a contact Riemannian manifold M . For 1 < s < ∞
and k = 0, 1, . . ., there exists a constant C > 0 such that for u ∈ C∞

0 (U), we have

∥u∥Ss
k+2(U) ≤ C(∥△θu∥Ss

k(U) + ∥u∥Ls(U)).

For strictly pseudoconvex CR manifolds, such estimates for �b were proved by
Folland and Stein in theorem 16.6 of [12]. We need the machine of singular integral
operators to prove this theorem. A smooth function k defined on R2n+1 \ {0} is said
to be of type λ (λ > 0) if k(Dδ(v)) = δ−Q+λk(v), for any v ∈ R2n+1 \ {0}, where Dδ

is the dilation. k is said to be of type 0 if the above holds for λ = 0 and the mean
value of k vanishes, i.e.

∫
α≤∥v∥≤β

k(v)ψθ0(v) = 0 for any α, β > 0. A function K(ξ, η)

on M ×M is said to be a kernel of type λ if for each positive integer m, we can write

(4.6) K(ξ, η) =
L∑

l=1

al(ξ)k
(l)
η (Θη(ξ))bl(η) + Em(ξ, η),

for some positive integer L and any (ξ, η) in the neighborhood Ω of the diagonalM×M
in (3.1), with (1) Em ∈ Cm(M ×M), al, bl ∈ C∞

0 (M); (2) for each l, functions k
(l)
η (·)

defined on R2n+1 \ {0} is of type ≥ λ and depends smoothly on η. An operator T
is said to be of type λ (λ > 0) if Tf(ξ) =

∫
M
K(ξ, η)f(η)ψθ(η) for some kernel K of

type ≥ λ, and an operator T is said to be of type 0 if

Tf(λ) = lim
ϵ→0

∫
ρ(ξ,η)>ϵ

K(ξ, η)f(η)ψθ(η) + a(ξ)f(ξ)

for some kernel K of type 0 and a ∈ C∞
0 (M). The kernel with k

(l)
η (·) replaced by

k
(l)
ξ (·) in (4.6) is also a kernel of type λ by the following argument (4.9).

Proposition 4.2. On a compact contact Riemannian manifold M ,

(1) If S is an operator of type 0 < λ < Q, then S is bounded from Ls(M) to Lr(M)
with 1

r = 1
s − λ

Q and 1 < s < r <∞.

(2) If S is an operator of type λ ≥ 1 and X be a horizontal vector field, then XS and
SX are operators of type λ− 1.
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(3) Given a normal coordinate neighborhood Ωξ for some ξ ∈ M , if S is an operators
of type 0, there exist operators S0, S1, . . . , S2n of type 1 such that

(4.7) Sf =
2n∑
a=1

SaXaf + S0f

for f ∈ Ss
1(M) and supported in Ωξ.

(4) The operator of type λ for λ = 0, 1, 2, · · · is bounded from Ss
k(M) to Ss

k+λ(M) for
k = 0, 1, · · · , 1 < s <∞.

(5) The operator of type λ for λ = 0, 1, 2, · · · is bounded from Ls(M) to Γβ(M) if
β = λ− 2n+2

s > 0 and s ≥ 1.

For strictly pseudoconvex CR manifolds, these results are theorem 15.11, theorem
15.15, theorem 15.19 and theorem 15.20 of Folland-Stein [12], respectively. With the
osculation by the Heisenberg group and the pseudodistance in Theorem 3.3, the ma-
chine of singular integral operators works on contact Riemannian manifolds without
modification as on strictly pseudoconvex CR manifolds. This is because that har-
monic analysis is a theory of real variables and the almost complex structure is not
involved. The proof is exactly the same and so we omit the details.

It is well known that the fundamental solution of the SubLaplacian △0 on the
Heisenberg group is given by G0(x, t) :=

CQ

∥(x,t)∥Q−2 for some constant CQ > 0. For

fixed η ∈ M and coordinates defined by Θη(ξ) = v, we have △θ = △η
0 + Rη where

△η
0 = −1

2

∑2n
b=1 YaYa by (3.14) with Ya = ∂

∂va
+
∑2n

b=1Bbavb
∂

∂b0
, and

Rη =
2n∑
b=1

O(1)
∂

∂vb
+O1 ∂

∂v0
+

2n∑
a,b=1

O1 ∂2

∂va∂vb
+

2n∑
b=1

O2 ∂

∂vb∂v0
+O3 ∂

2

∂v20

by Corollary 3.4 (4). For η ∈ M and v = (x, t) ∈ Hn, we have △η
0G0(v) = δ0(v) by

definition. Let ψ(ξ, η) be a real C∞
0 function supported in Ω ∩ {(ξ, η); ρ(ξ, η) ≤ 1}

with ψ(ξ, η) = ψ(η, ξ), and ψ(ξ, η) = 1 on a neighbourhood of the diagonal inM×M .
Now define an operator B by

(4.8) Bϕ(ξ) = ϕ(ξ)−△θAϕ(ξ),

where A is the operator of type 2 given by Aϕ(ξ) =
∫
M
ψ(ξ, η)G0(Θη(ξ))ϕ(η)ψθ(η).

Proposition 4.3. B is an operator of type 1.

Since G0 is of type 2, it is easy to see that YaG0 is of type 1, TG0 is of type 0,
and so RηG0 is a kernel of type 1. The proof is exactly the same as proposition 16.2
of Folland-Stein [12] for strictly pseudoconvex CR manifolds.

Proof of Theorem 4.1. For functions kη(u) of type λ ≥ 1 smoothly depending on
η ∈M , by Taylor’s expansion in terms of v = Θη(ξ), we have

(4.9) kξ(v) = kη(v) +
L∑

|α|=1

k(α)η (v)
vα

α!
+Rm(v, η, ξ),
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where k
(α)
η (v) denotes the appropriate derivatives of kη(v) with respect to η as we do

in (3.11). If kη(·) is of type λ, then so is k
(α)
η (·). k(α)η (v)vα is therefore of type ≥ λ

and for L sufficiently large, Rm(v, η, ξ) ∈ Cm(R2n+1 ×M ×M). Thus, kξ(Θξ(η)) =
kξ(−Θη(ξ)) is a kernel of type λ by the above argument. Note the adjoint T ∗ of the
operator T of type λ with kernel K(ξ, η) in (4.6) has the kernel

K∗(ξ, η) = K(η, ξ) =
L∑

l=1

al(η) k
(l)
ξ (Θξ(η))bl(ξ) + Em(η, ξ),

which is also a kernel of type λ by the above result. So T ∗ is also an operator of type
λ. As the adjoint of (4.8), we get

(4.10) I = A∗△θ +B∗

with A∗ and B∗ operators of type 2 and 1, respectively. Set A[p] :=
∑p−1

j=0(B
∗)jA∗.

Then, I − A[p]△θ = I −
∑p−1

j=0(B
∗)j(I − B∗) = (B∗)p. Note that ∥B∗ϕ∥Ss

k+1
≤

Cs,k∥ϕ∥Ss
k
, ∥A∗ϕ∥Ss

k+2
≤ Cs,k∥ϕ∥Ss

k
for some constant Cs,k > 0 for fixed positive

integers k and s by Proposition 4.2 (4). Then we get

∥ϕ∥Ss
k+2

≤ ∥A[k+2]△θϕ∥Ss
k+2

+ ∥(B∗)k+2ϕ∥Ss
k+2

≤ C
(
∥△θϕ∥Ss

k
+ ∥ϕ∥Ls

)
.

The theorem is proved. �

Theorem 4.4. (The Sobolev embedding) (1) The inclusion Ss
k(U) ⊂ Lr(U) is con-

tinuous for 1
r = 1

s − k
Q and 1 < s < r <∞.

(2) Suppose that β = k − 2n+2
s > 0. The inclusion Ss

k(U) ⊂ Γβ(U) is continuous
if β is not an integer.

Proof. (1) For strictly pseudoconvex CR manifolds, this is theorem 5.5 of Jerison-Lee
[17]. Now apply Proposition 4.2 (3) to the identity operator to get that given a normal
coordinates neighborhood Ωξ for some ξ ∈M , there exist operators S0, S1, . . . , S2n of
type 1 such that

(4.11) f =

2n∑
a=1

SaXaf + S0f,

for f ∈ Ss
1 and supported in Ωξ. Since Sa is bounded from Ls to Lr with 1

r = 1
s − 1

Q

by Proposition 4.2 (1), we get the result for k = 1. For higher k, we just substitute
(4.11) into itself repeatedly as in Folland-Stein [12].

(2) The proof is exactly the same as that of theorem 21.1 of Folland-Stein [12] if
we use the above representation formula repeatedly and Proposition 4.2 (5). �

The following regularity can be proved exactly as theorem 16.7 of Folland-Stein
[12].

Theorem 4.5. Suppose that f, g ∈ L1
loc(U) and △θf = g in the sense of distributions

on U . Then, for any η ∈ C∞
0 (U), we have

(1) if g ∈ Ls(U) with n+ 1 < s ≤ ∞, then ηf ∈ Γβ(U) with β = 2− 2n+2
s ;
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(2) if g ∈ Ss
k(U) with 1 < s <∞ and k = 0, 1, . . ., then ηf ∈ Ss

k+2(U);

Harmonic analysis on strictly pseudoconvex CR manifolds has already generalized
to general smooth vector fields Z1, . . . , Zm on U ⊂ RN satisfying the Hörmander’s
condition for hypoellipticity: the rank of Lie [Z1, . . . , Zm] = N, at every point x ∈ U .
See e.g. [6] for the theory of singular integral operators in this general setting, in
particular for results corresponding to our Theorem 4.1-4.4 and Proposition 4.2.

A piecewise C1 curve γ : [0, r] → U is said to be subunitary if for every ξ ∈ RN

and t ∈ (0, r), (γ′(t) · ξ)2 ≤
∑m

j=1(Zj(γ(t)) · ξ)2. A natural distance associated to the
vector fields Z1, . . . , Zm is defined as follows. Given two points x, y ∈ U , the distance
from x to y is defined by
(4.12)
d(x, y) := inf{r > 0; there exists a subunitary γ : [0, r] → U, with γ(0) = x, γ(r) = y}.

For x ∈ U and R > 0, let B(x,R) := {y ∈ U ; d(x, y) < R} be the ball of radius R
respect to this distance.

Denote by DLu = (Z1u, . . . , Zmu) the subelliptic gradient of u. Given an open set
U ⊂ RN , denote by Ss

k(U) the completion of Ck(U) under the norm (4.1) with the
vector fields Xj ’s replaced by Zj ’s. We also need the following subelliptic estimates
for operators more general than the SubLaplacian.

Theorem 4.6. (Theorem 0.1-0.2 in [6]) Let Z1, . . . , Zm be smooth vector fields on U ⊂
RN satisfying Hörmander’s condition and L =

∑m
i,j=1 aij(x)ZiZj . The coefficients

aij(x) are real valued bounded measurable functions defined in U belonging to the
class VMO(U); the matrix aij(x) (not necessarily symmetric) is uniformly elliptic:

(4.13) µ−1|ξ|2 ≤
m∑

i,j=1

aij(x)ξiξj ≤ µ|ξ|2, for any ξ ∈ Rm, a.e. x ∈ U

for some positive constant µ. Then, for every s ∈ (1,∞), any U ′ ⊂⊂ U , there exists
a constant c depending on the vector fields Zj’s, the numbers N,m, s, µ, the VMO
moduli of the coefficients aij, U

′, U such that for every u ∈ Ss
2(U),

(4.14) ∥u∥Ss
2(U

′) ≤ C(∥Lu∥Ls(U) + ∥u∥Ls(U)).

Moreover, the following estimate holds: for every u ∈ Ss
k+2(U),

(4.15) ∥u∥Ss
k+2(U

′) ≤ C(∥Lu∥Ss
k(U) + ∥u∥Ls(U))

for every positive integer k such that aij ∈ S∞
k (U). The dependence on the VMO

moduli of the coefficients aij is replaced by the S∞
k (U) norm of aij.

4.2 Harnack inequality, Poincaré inequality and the regularity
of the Yamabe equation

Let us recall the Harnack inequality and Poincaré-type inequality (See [7] [8] for
example). For smooth vector fields Z1, . . . , Zm on U ⊂ RN satisfying Hörmander’s
condition, consider the equation

(4.16)

m∑
j=1

Z†
jAj(x, u, Z1u, . . . , Zmu) = F (x, u, Z1u, . . . , Zmu),
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where Z†
j is the formal adjoint of Zj with respect to the Lebegues’ measure, with

measurable functions A = (A1, . . . , Am) : RN×R×Rm → Rm, F : RN×R×Rm → R1.
We assume that Aj ’s and F satisfy the following structural conditions: There exist
p ∈ (1,∞), c1 > 0, and measurable functions Fl, F2, F3, g2, g3, h3 on RN , such that
for a.e. x ∈ RN , u ∈ R and ζ ∈ Rm, we have

(4.17)
|A(x, u, ζ)| ≤ c1|ζ|p−1 + g2(x)|u|p−1 + g3(x),
|F (x, u, ζ)| ≤ F1(x)|ζ|p−1 + F2(x)|u|p−1 + F3(x),
A(x, u, ζ) · ζ ≥ |ζ|p − F2(x)|u|p−1 − h3(x).

Since the problem is local, we may assume A and F only defined over a fixed open
subset U of RN . The integrability requirements on the functions Fi, , gi, hi in the
structural assumptions are

(i) g2, g3 ∈ Lr
loc(U), with r = Q

p−1 if p < Q, and r > Q
Q−1 if p = Q;

(ii) F2, F3, h3 ∈ Ls
loc(U), with s > Q

p ;

(iii) F1 ∈ Lt
loc(U), with t > Q.

Theorem 4.7. (Theorem 3.1 of Capogna-Danielli-Garofalo [7]) Let u ∈ Sp
1 (U) be

a nonnegative solution to the equation (4.16). Then there exist constant C > 0,
only depending on U , p, ∥F1∥Lt , ∥F2∥Ls and ∥g2∥Lr , and R0 > 0 such that for any
BR = B(x,R) with B(x, 4R) ⊂ U and R < R0, we have

(4.18) ess supBR
u ≤ C(ess infBR

u+KR).

Here,

(4.19) KR :=
(
|BR|

s
Q ∥F3∥Ls(BR) + ∥g3∥Lr(BR)

) 1
p−1

+
(
|BR|

s
Q ∥h3∥Ls(BR)

) 1
p

with r, s as in (i), (ii) above.

See [7], p. 783, for the dependence of the constant C on U, p, . . .. This makes the
constant in the following Harnack inequality (4.20) not depend on u. It is better than
the constant of the Harnack inequality in proposition 5.12 of Jerison-Lee [17], which
depends on ∥u∥L2∗ (U).

Proposition 4.8. (Harnack inequality) Let U be a relatively compact open set of a
normal coordinate neighborhood of a point in a contact Riemannian manifoldM . Sup-
pose f ∈ L∞(U), u ∈ L2∗(U), u ≥ 0 and (△θ + f)u = 0 in the sense of distributions
on U . Then, for any K ⊂⊂ U ,

(4.20) ess supx∈Ku(x) ≤ Cess infx∈Ku(x),

where the constant C depends only on U , K, ∥f∥L∞(U) and the choice of the frame.

Proof. Note that △θu = −fu ∈ L2∗(U) ⊂ L2(U) by Hölder’s inequality since U is
bounded. Then u ∈ S2

1(U
′) for an open subset U ′ such that U ′ ⊂⊂ U by the regularity

Theorem 4.5. Note that if we write ψθ = V dv locally for some positive function V ,
where dv is the Lebegues’ measure, then we have X∗

a = X†
a − XaV , where X∗

a and
X†

a are the formal adjoint operators of Xa with respect to the measure ψθ and the
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Lebegues’ measure, respectively. So the equation △θu = 1
2

∑2n
a=1X

∗
aXau = −fu can

be written as
∑2n

a=1X
†
aXau =

∑2n
a=1XaV ·Xau − 2fu. Now we apply Theorem 4.7

to this equation with Z1 = X1, . . . , Z2n = X2n and

p = 2, A(x, u, ζ) = ζ, F (x, u, ζ) =

2n∑
a=1

XaV · ζa − 2f(x)u,

in the equation (4.16). In particular, we have

F1 =
2n∑
a=1

|XaV | ∈ L∞, F2 = 2|f | ∈ L∞, F3 ≡ 0, c1 ≡ 1, g2 ≡ g3 ≡ h3 ≡ 0.

Then KR = 0 by (4.19). The result follows from Theorem 4.7. �

Proposition 4.9. (Poincaré-type inequality) Suppose that vector fields Z1, . . . , Zm

satisfy Hörmander’s condition. Let BR ⊂ U be a ball of radius R with respect to
the natural distance (4.12) associated to the vector fields. Then, for each u with
|DLu|q ∈ L1(U) with 1 < q <∞, we have

(4.21)

∫
BR

|u− uBR |q ≤ CRq

∫
BR

|DLu|q,

for some constant C only depending on U and the choice of the frame, where uBR =∫
BR

u/|BR|, the average of u.

The inequality (4.21) was proved by Jerison [16] for all f ∈ C∞(BR). The general
case is a consequence. The following interpolation inequality for the space Ss

1 is
a simple corollary of the above Poincaré-type inequality as in proposition 5.14 of
Jerison-Lee [17].

Proposition 4.10. (Interpolation inequality for the space Ss
1) If u ∈ L1(U) and∑2n

a=1 |Xau|s ∈ L1(U) with 1 < r <∞, then u ∈ Ss
1(U) and

(4.22) ∥u∥Ss
1(U) ≤ C

∥∥∥∥∥
2n∑
a=1

|Xau|s
∥∥∥∥∥
L1(U)

+ ∥u∥L1(U)

 ,

for some constant C only depending on U and the choice of the frame.

Proposition 4.11. Let U be a relatively compact open set of a normal coordinate
neighborhood of a point in a contact Riemannian manifold M . Suppose f ∈ Ln+1(U),
u ∈ L2∗(U), u ≥ 0 and

(△θ + f)u = 0

in the sense of distributions on U . Then, for any η ∈ C∞
0 (U), ηu ∈ Ls(U) for each

0 < s <∞.

This proposition is the contact Riemannian version of the higher integrability in
proposition 5.10 of [17], a variant of results of Yamabe [26], Trudinger [22] and Brezis
and Kato [5] for the original Yamabe equation. Its proof is the same as the CR case



On the existence of the Yamabe problem on contact Riemannian manifolds 119

given in the Appendix of [17]. We need the following lemma A.1 of [17]: Let U ′

be an open set such that U ′ ⊂⊂ U , then with the hypotheses in this proposition
we have u ∈ S2

1(U
′). The proof of this lemma is similar to that of lemma A.1 of

[17] if we use the representation formula (4.8), (4.10) and the regularity of singular
integral operators of type 0, 1, 2 on contact Riemannian manifolds given in §4.1. The
remaining part of proof is exactly the same as in the Appendix of [17].

Proposition 4.12. With the hypotheses of Proposition 4.11 and the additional as-
sumption f ∈ Ls(U) with s > n + 1, then u ∈ Γβ(U) for some β > 0 and for any
K ⊂⊂ U ,

∥u∥Γβ(K) ≤ C

for constant C depending only on K, ∥f∥Ls(U), ∥u∥L2∗ (U) and the choice of the frame.

It can be simply proved as proposition 5.10 of Jerison-Lee [17], without modifica-
tion, by using the regularity of the SubLaplacian △θ in Theorem 4.5 and the Sobolev
embedding Theorem 4.4.

Theorem 4.13. Let U be a relatively compact open set of a normal coordinate neigh-
borhood of of a point in a contact Riemannian manifold M . Suppose f, g ∈ C∞(U),
u ≥ 0 on U , u ∈ Ls(U), s > 2∗ and

△θu+ gu = fuq−1

in the sense of distributions on U for some 2 ≤ q ≤ 2∗. Then, u ∈ C∞(U) and u > 0.
If K ⊂⊂ U , then ∥u∥Ck(K) depends only on K, ∥u∥Ls(K), ∥f∥Ck(K), ∥g∥Ck(K), the
choice of the frame, but not on q.

Proof. It is similar to theorem 5.15 in Jerison-Lee [17]. The equation can be written
as △θu = hu with h = fuq−2 − g ∈ L

s
q−2 (U). By Hölder’s inequality, h ∈ Lr(U) with

r = s
2∗−2 >

2∗

2∗−2 = n+1 and ∥h∥r depends only on the stated bounds. Then choosing
K ′ with K ⊂⊂ K ′ ⊂⊂ U , we see that u ∈ Γβ(K

′) for some β > 0 by Proposition
4.12. Note that h is bounded by the continuity of Γβ(K

′) functions. So we can use
Harnack inequality in Proposition 4.8 to obtain that u is bounded away from zero by a
constant depending on the stated bounds. Apply subelliptic regularity in Theorem 4.5
to △θu = fuq−1 − gu ∈ Lr(U) to get u ∈ Sr

2(K). Since u is bounded away from zero,
uq−1 ∈ Sr

2(K) with the norm depending only on the stated bounds. Thus, replacing
K with a smaller set that we still denote K, we conclude from subelliptic regularity
in Theorem 4.5 that u ∈ Sr

4(K). Repeating this procedure, we get u ∈ Sr
2k+2(K) for

any positive integer k. Obviously u ∈ Γ2k(K) by Sobolev embedding Theorem 4.4
(2). We have Γ2k(K) ⊂ Ck(K) because [Xa, Xb] = 2BabT mod H locally. �

Corollary 4.14. Under the assumptions of Theorem 4.13, but s > 2∗ replaced by
s = 2∗, we still have u > 0 in U and u ∈ C∞(U).

Proof. The equation can be written as △θu = hu with h = fuq−2 − g ∈ Ln+1(U)
as above. Proposition 4.11 grantees u ∈ Ls(U ′) with s > 2∗ for any open subset
U ′ ⊂⊂ U . �

Proposition 4.15. On a compact contact Riemannian manifold, the unit ball in the
space S2

1(M) is compact in Ls(M) for 1 < s < 2∗ .
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To prove this proposition, we need the Sobolev space over the Euclidean space
Ls
σ(R2n+1) := {f ∈ Ls(R2n+1); (1+ |ξ|2)σ

2 f̂(ξ) ∈ Ls(R2n+1)} for 0 ≤ σ <∞, where f̂
is the Fourier transformation of f . As before, we choose an open covering {U1, · · · , Uτ}
of M such that each Uj is a relatively compact open set of a normal coordinate
neighborhood Ωξ ⊂ M for some ξ ∈ M . Let {χj}τj=1 be a unit partition of M such
that suppχj ⊂ Uj . Define Ls

σ(M) = {u;χju ∈ Ls
σ(Uj) for all j}, and the norm of u

to be the sum of ∥χju∥Ls
σ(Uj).

Proposition 4.16. For a compact contact Riemannian manifold M , we have the
continuous inclusion S2

1(M) ⊂ L2
1
2

(M).

This is a special case of theorem 5.4.7 of Folland-Kohn [11] for general smooth
vector fields satisfying Hörmander’s condition. See also section 19 in Folland-Stein
[12] for results over CR manifolds.

Proof of Proposition 4.15. See also proposition 4.10 of [23]. By Proposition 4.16,
we have continuous inclusion S2

1(M) ⊂ L2
1
2

(M). Now the usual Sobolev imbedding

theorem guarantees that the inclusion L2
σ+κ(M) ⊂ L2

σ(M) is compact for κ > 0,
0 ≤ σ < ∞ (cf. proposition 3.4 in the book [21]). In particular L2

1
2

(M) ⊂ L2(M) is

compact. Recall that we have obviously continuous inclusion L2(M) ⊂ L1(M) for a
compact manifold M by Hölder’s inequality. Consequently, the inclusion S2

1(M) ⊂
L1(M) is compact by Proposition 4.16. Now suppose that {ul} is a bounded sequence
of S2

1(M). Then, there exists a subsequence, which is still denoted by ul, converging
to u in L1(M). Note that for 1 < s < 2∗,
(4.23)

∥ul − ul′∥Ls(M) ≤ ∥ul − ul′∥aL1(M)∥ul − ul′∥1−a
L2∗ (M)

, for 0 < a =
1
s − 1

2∗

1− 1
2∗

< 1,

(cf. proposition 3.62 of [2]) by applying Hölder’s inequality to ∥ul−ul′∥sLs(M) =
∫
|ul−

ul′ |sa|ul − ul′ |s(1−a)ψθ with exponents 1
sa ,

2∗

s(1−a) > 1, which satisfy sa + s(1−a)
2∗ = 1.

Note that ∥ul − ul′∥L2∗ (M) is bounded by its S2
1(M) norm by the Sobolev embedding

Theorem 4.4 with the critical exponent 2∗. We see that {ul} is also a Cauchy sequence
in Ls. The compactness is proved. �

5 The existence of extremals

The extremal problem (1.4) on Hn is

(5.1) λ(Hn) = inf

{
1

2

∫
Hn

bn

2n∑
a=1

|Yau|2ψθ0 ;

∫
Hn

|u|2
∗
ψθ0 = 1

}
.

It is known that 0 < λ(Hn) <∞.

Lemma 5.1. λ(M) ≤ λ(Hn) for any compact contact Riemannian manifold M .

Proof. Its proof is similar to that in [17]. The class of test functions defining λ(Hn)
can be restricted to C∞

0 functions. For each ε > 0, choose u ∈ C∞
0 (Hn) such that

Bθ0(u) = 1 and Aθ0(u) < λ(Hn) + ε. Let

uδ(ζ) := δ−
Q−2

2 u(Dδ−1ζ), ζ ∈ Hn, and fδ(η) := uδ(Θξ(η)),
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for fixed ξ ∈ M . For δ sufficiently small, supp uδ is contained in Θξ(Ωξ). So fδ
has compact support in Ωξ, and can be extended to a C∞ function on M . It is
easy to check that Bθ0(uδ) = Bθ0(u) = 1 and Aθ0(uδ) = Aθ0(u) < λ(Hn) + ε by
rescaling. Also,

∫
Hn |uδ|2ψθ0 = δ2

∫
Hn |u|2ψθ0 −→ 0 as δ −→ 0. By Proposition 3.1

and Corollary 3.4, we have

(
Θ−1

ξ ◦Dδ

)∗
θ = δ2θ0 + δ3(O1dt+O2dx),

(
Θ−1

ξ ◦Dδ

)∗
h = δ2h0 + δ3O1,(

Θ−1
ξ ◦Dδ

)∗
ψθ = δQ(1 + δO1)ψθ0 ,

(Dδ−1 ◦Θξ)∗Xa = δ−1(Ya + δO1E(∂x) + δ1O2E(∂t)), a = 1, · · · , 2n,

(5.2)

where (Y1, · · · , Y2n) are left invariant vector fields on the Heisenberg group in (2.3).
For any fixed R > 0, Dδ−1Θξ(Ωξ) ⊃ BR for sufficiently small δ. Therefore,

Bθ(fδ) =

∫
M

|uδ(Θξ(η))|2
∗
ψθ =

∫
Hn

δ−Q|u|2
∗
(
Θ−1

ξ ◦Dδ

)∗
ψθ

=

∫
Hn

|u|2
∗
(1 + δO1)ψθ0 −→ Bθ0(u) = 1.

(5.3)

Similarly, Aθ(fδ) −→ Aθ0(u) < λ(Hn)+ ε. Since ε is arbitrary, the lemma follows. �

For each 2 ≤ q < 2∗, consider the following variational problem,
(5.4)

λq(M) := inf{Aθ(u);u ∈ S2
1(M), Bθ,q(u) = 1}, where Bθ,q(u) =

∫
M

|u|qψθ.

Theorem 5.2. For each 2 ≤ q < 2∗, there exists a positive C∞ solution uq to the
equation

(5.5) bn△θuq + sθuq = λq(M)uq−1
q ,

satisfying Aθ(uq) = λq(M) and Bθ,q(uq) = 1.

Proof. The proof of this theorem is the same as that of theorem 6.2 of [17]. Choosing
a minimizing sequence uj for (5.4), namely, Aθ(uj) → λq(M) and Bθ,q(uj) = 1. We
may assume uj ≥ 0 after replacing uj by |uj |. Since {uj} is bounded in S2

1(M), there
exists a subsequence converging weakly in S2

1(M) to u ∈ S2
1(M). By the compactness

in Proposition 4.15, we can assume a subsequence converges in Lq, and so Bθ,q(u) = 1.
Applying Hölder’s inequality we see that

∫
sθu

2
j →

∫
sθu

2, and so Aθ(u) ≤ λq(M).
Consequently, Aθ(u) = λq(M) since λq(M) is the minimum. By a standard variational
argument, u satisfies the equation (5.5) in the sense of distributions. Moreover, u ∈
L2∗(M) by Sobolev embedding in Theorem 4.4. So u is strictly positive and smooth
by Corollary 4.14. �

To prove Theorem 1.1, it is enough to prove the following theorem.

Theorem 5.3. If λ(M) < λ(Hn), then there exists a sequence qj tending to 2∗ from
below such that uqj converges in Cm(M) for any m to a function u ∈ C∞(M) such
that u > 0 and

(5.6) bn△θu+ sθu = λ(M)u2
∗−1,
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with Aθ(u) = λ(M) and Bθ,2∗(u) = 1.

The following behavior of λq can be proved exactly as lemma 6.4 of [17].

Proposition 5.4. Suppose that θ is normalized, i.e.
∫
M
ψθ = 1. Then

(1) If λq(M) < 0 for some q, then λq(M) < 0 for all q ≥ 2. λq is a nondecreasing
function of q.

(2) If λq(M) ≥ 0 for some (hence all) q ≥ 2, then λq is nonincreasing of q and is
continuous from left.

Proof of Theorem 5.3. We assume that θ is normalized.
Case 1. λ(M) < 0. For each 2 ≤ q < 2∗, let uq be a positive C∞ solution of

equation (5.5) given by Theorem 5.2. For ϕ ∈ S2
1(M), we have

(5.7)

∫
M

(⟨dbuq, dbϕ⟩θ + sθuqϕ)ψθ =

∫
M

λqu
q−1
q ϕψθ.

Let ϕ = uq−1
q . Since λq(M) < 0, we have

(5.8)

∫
M

(q − 1)uq−2
q |dbuq|2θψθ ≤

∫
M

|sθuqq|ψθ.

It follows that

(5.9)

∫
M

|dbwq|2ψθ ≤ C

∫
M

w2
qψθ = C

∫
M

uqqψθ = C

for wq := u
q
2
q and some constant C > 0 independent of 2 ≤ q < 2∗. By Sobolev

embedding Theorem 4.4 and ∥wq∥S2
1(M) uniformly bounded, we get

∫
M
w2∗

q ψθ ≤ C ′ for
some positive constant C ′ independent of q. Now choose q0 > 2 and set r = q0

2 2
∗ > 2∗.

Then for q ≥ q0, ∥uq∥Lr(M) is uniformly bounded. It follows from regularity result in
Theorem 4.13 that ∥uq∥Ck(M) is uniformly bounded, and there exists a subsequence

uqj converging in Ck(M) to u for any k. The limit u satisfies bn△θu+ sθu = λu2
∗−1

with λ = Aθ(u) = limλqj (M) and Bθ,2∗(u) = 1. We also have λ ≤ λ(M) by
proposition 5.4 (1). Consequently, λ = λ(M) by the definition of λ(M).

Case 2. λ(M) ≥ 0.
Case 2i. For some sequence qj −→ 2∗, supM |dbuqj |θ is uniformly bounded. Note

that uqj ∈ Lqj (M) ⊂ L1(M). By the interpolation inequality (4.22), uqj are uniformly
bounded in Ss

1(M) for any s. In particular, uqj are in Ls(M) for any s. The result
follows as in the case 1.

Case 2ii. supM |dbuq|θ −→ ∞ as q −→ 2∗. Choose ξq ∈M such that |dbu(ξq)|θ =
supM |dbuq|θ. Let Θξq be the normal coordinates constructed in section 3.1. If
necessary by passing to a subsequence {qj} (we omit the subscript j), we can as-
sume that there is a fixed neighborhood U of the origin of Hn contained in the
image of Θξq for all q, and ξq −→ ξ ∈ M . We will identify U with a neigh-
borhood of ξq by (x, t) = Θξq (η) for η ∈ U . Define (x̃, t̃) := Dδ−1

q
(x, t). Then

θ̃0 := dt̃−
∑2n

a,b=1Babx̃adx̃b = δ−2
q (D∗

δq
θ0). Define

(5.10) fq(x̃, t̃) := δ
2

q−2
q uq(δqx̃, δ

2
q t̃), on the open set U(q) := Dδq−1U ⊂ Hn,
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where δq > 0 is so chosen that |dbfq(0)|θ̃0 = 1, where 0 is the origin. Note that

(5.11) 1 = |dbfq(0)|θ̃0 = δ
1+ 2

q−2
q |dbuq(ξq)|θ,

since θ|0 = θ0|0 = θ̃0|0 by (5.2). We have δq −→ 0 as q −→ 2∗ and Dδq−1U −→ Hn.
Define
(5.12)
θ(q) := δ−2

q ·D∗
δqθ, h(q) := δ−2

q ·D∗
δqh, J(q)Y := D−1

δq∗[J(Dδq∗Y )] on U(q).

By (5.2) we see that

(5.13) θ(q)
∣∣
0
= θ0|0 , h(q)

∣∣
0
= h0|0 , J(q)

∣∣
0
= J0|0 ,

where 0 is the origin. It is direct to check that (U(q), θ(q), h(q), J(q)) is a contact
Riemannian manifold, i.e. (1.1) holds. For example, its Reeb vector field is T(q) =

δ2qD
−1
δq∗T and

dθ(q)(X,Y ) = h(q)(X,J(q)Y ) on U(q).

Since the conformal factor in (5.12) is a constant, it is easy to show that the pull back
connection D∗

δq
∇ defined by(

D∗
δq∇

)
X
Y := D−1

δq∗

[
∇Dδq∗X

(
Dδq∗Y

)]
,

is the TWT connection for (U(q), θ(q), h(q), J(q)) by the uniqueness of the TWT con-
nection and checking (2.11) for it.

We claim that on the contact Riemannian manifold (U(q), θ(q), h(q), J(q)),

(5.14) △θ(q)fq(x̃, t̃) = δ
2+ 2

q−2
q (△θuq)

(
Dδq (x̃, t̃)

)
, for (x̃, t̃) ∈ U(q).

Let (Xq
1 , · · · , X

q
2n) be the local orthogonal frame of the horizontal subspace H|U with

norm
√
2, which is used to define Θξq . We may assume it converging to (X1, · · · , X4n)

as q −→ 2∗. Let

(5.15) Y q
a := δqD

−1
δq∗X

q
a , a = 1, · · · , 2n.

Then (Y q
1 , · · · , Y

q
2n) is a horizontal orthogonal frame for (U(q), θ(q), h(q), J(q)) with

norm
√
2, i.e. we have h(q)(Y

q
j , Y

q
k ) = h(Xj , Xk) = 2δjk, and so

(5.16) △θ(q)v =
1

2

2n∑
a=1

(
−Y q

a Y
q
a v +

2n∑
b=1

Γ̃ a
bb Y q

a v

)

by the expression (2.19) of the SubLaplacian in Proposition 2.1, where Γ̃ a
cb is the

connection coefficients of D∗
δq
∇ with respect to this frame, i.e.

Γ̃ a
cb Y q

a =
(
D∗

δq∇
)
Y q
b

Y q
c = D−1

δq∗

[
∇Dδq∗Y

q
b

(
Dδq∗Y

q
c

)]
= δ2qD

−1
δq∗

[
∇Xq

b
Xq

c

]
.

Thus

(5.17) Γ̃ a
cb (x̃, t̃) = δqΓ

a
cb (Dδq (x̃, t̃)).
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Now applying (5.16) to v = fq = δ
2

q−2
q D∗

δq
uq and using (5.17), we get (5.14). Apply

(5.14) to the equation (5.5) satisfied by uq to get the equation for fq:

(5.18) bn△θ(q)fq +D∗
δqsθ · δ

2
qfq = λq(M)fq−1

q on U(q).

By using (5.2), we see that the frame Yq := {Y q
1 , · · · , Y

q
2n} in (5.15) converge in

Ck(BR) to the standard frame Y := {Y1, · · · , Y2n} on the Heisenberg group for any
fixed k,R > 0 as δq −→ 0. Here and in the sequel BR is the ball in the Heisenberg
group, centered at the origin with radius R with respect to the norm (3.2). Obviously
U(q) ⊃ BR when δq sufficiently small. Similarly, △θ(q) converges uniformly in Ck(BR)
to △0 for each k,R > 0 by using (5.16) since the connection coefficients converges
uniformly to zero by (5.17). θ(q) and h(q) converge uniformly to θ0 and h0, respectively,
in the same way by (5.2).

Noting that

(5.19) |dbfq|θ(q) = δ
1+ 2

q−2
q |dbuq|θ ,

we see that |dbfq|θ(q) bounded in BR since it attains its maximum 1 at the origin by
(5.11), and

(5.20)

∫
|(x̃,t̃)|<R

|fq(x̃, t̃)|qψθ(q) = δ
2q

q−2−Q
q

∫
|(x,t)|<δqR

|uq(x, t)|qψθ.

When q < 2∗, we have that 2q
q−2 −Q > 0 since 2q

q−2 is decreasing in q for q > 2, and

so the right side of (5.20) is uniformly bounded. Moreover, ψθ(q) = (1 + δqO
1)ψθ0 on

BR by (5.2). We find that fq ∈ Lq(BR) is uniformly bounded. Here and in the sequel
the Lq norm is taken with respect to the standard volume on the Heisenberg group.
Consequently, fq ∈ L1(BR) with a uniform bound. This fact together with |dbfq|θ(q)
uniformly bounded by 1 implies fq ∈ Ss

1(BR,Y
q) for each s < ∞ by interpolation

inequality (4.22). Here Ss
k(BR,Y

q) denotes the Folland-Stein space with the norm
defined by the frame Yq. Consequently, ηfq ∈ Ls(M) for each s ≥ 1 by the Sobolev
embedding Theorem 4.4. We see that ηfq ∈ C∞(M) by applying Theorem 4.13 to
△θ(q) for any fixed q, but we can not obtain a uniform Ck bound from this theorem
directly. We claim that
(5.21)

when q is close to 2∗, ηfq is uniformly bounded in C4/3(BR) for any fixed R > 0.

Now taking a subsequence qj −→ 2∗ if necessary, we find a function f on Hn by
first choosing a subsequence fqj convergent in C1(B1); then choosing a subsequence
of fqj convergent in C1(B2), etc. Note f ≥ 0, f ∈ C1(Hn) and f is not zero since
|dbf(0)|θ0 = 1. Since θ(qj) −→ θ0 and λqj (M) −→ λ(M) by the continuity of λq(M)
from left in q in Proposition 5.4, by letting qj −→ 2∗ in (5.18), we get that for
ϕ ∈ C∞

0 (Hn),

(5.22)

∫
Hn

(
bn ⟨dbf, dbϕ⟩θ0 − λ(M)f2

∗−1ϕ
)
ψθ0 = 0.

Since ψθ(qj)
−→ ψθ0 by (5.2) again, (5.20) implies

∫
BR

|f |2∗ψθ0 ≤ 1 for each R > 0.

Hence,

(5.23)

∫
Hn

|f |2
∗
ψθ0 ≤ 1.
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On the other hand,∫
BR

|dbf |2θ0 ψθ0 = lim
j−→∞

∫
BR

∣∣dbfqj ∣∣2θ(qj) ψθ(qj)
≤ lim

j−→∞
∥fqj∥S2

1(BR,Yq) <∞(5.24)

Thus f ∈ S2
1(H

n).
By taking a subsequence ϕl ∈ C∞

0 (Hn) to approximate f in (5.22), we find that

(5.25) bn

∫
Hn

|dbf |2θ0ψθ0 = λ(M)

∫
Hn

|f |2
∗
ψθ0 .

Now taking g = f
∥f∥2∗

, we get

(5.26) bn

∫
Hn

|dbg|2θ0 ψθ0 = λ(M)∥f∥2
∗−2

2∗ ≤ λ(M) < λ(Hn), ∥g∥2∗ = 1,

by (5.23), which contradicts the definition of λ(Hn). Thus case 2ii is impossible.
Let us prove the claim (5.21) now. By Darboux theorem, there exists a differential

diffeomorphism Ξq : BR → Hn for each q such that

(5.27) Ξ∗
qθ(q) = θ0.

Such diffeomorphisms can be constructed by using Moser’s trick as follows (See section
2.5.1 in [15]). Suppose that θ is a contact form close to the standard 1-form θ0 on
Hn in the Ck(BR) norm for any fixed k,R > 0, and θ|0 = θ0|0, where 0 is the origin.
Consider a family of contact 1-forms

θu = (1− u)θ0 + uθ, u ∈ [0, 1].

We can construct a time dependent vector field Xu such that Ξu is the flow of Xu

and Ξ∗
uθu = θ0. The differentiation of Ξ∗

uθu = θ0 with respect to u implies that

(5.28) θ̇u + d(θu(Xu)) + iXudθu = 0,

where θ̇u is the derivative of θu with respect to u. Write Xu = HuRu +Yu, where Ru

is the Reeb vector field of θu, Hu is a function and Yu ∈ ker θu. Then Ru is close to
∂
∂t if θ closes to θ0 in the Ck(BR) norm. Inserting Ru into (5.28) gives

(5.29) θ̇u(Ru) + dHu(Ru) = 0.

This an ODE of Hu: Ru(Hu) = −θ̇u(Ru). Note that the integral curves of the Reeb
vector field Ru exist in BR since Ru is close to ∂

∂t in the Ck(BR) norm. So we can
integrate this ODE along the integral curves of Ru to get the solution Hu(x, t) with
Hu(x, 0) = 0. We may require Hu(0) = 0 and dHu|0 = 0 since θ̇u|0 = 0. Once Hu is
chosen, Yu is uniquely determined by (5.28), i.e. by

(5.30) θ̇u + dHu + iYudθu = 0,

which also have small Ck(BR) norm. Now we get the vector field Xu with small
Ck(BR) norm and Xu(0) = 0. Then we can integrate it to get diffeomorphisms Ξu

close to the identity in Ck(BR) norm with Ξu(0) = 0. Then Ξ1 satisfying Ξ∗
1θ = θ0.
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Now applying this construction to θ(q) we get a family of diffeomorphisms Ξq

satisfying (5.27) such that for any fixed k,R > 0, Ξq is close to the identity mapping
in the Ck(BR) norm uniformly for q sufficiently close to 2∗. Hence there exists small
η0 > such that B(1−η0)R ⊂ Ξq(BR) ⊂ B(1+η0)R. Thus
(5.31)

the frame Ỹq :=
{
Ξ−1
q∗ Y

q
1 , . . . ,Ξ

−1
q∗ Y

q
2n

}
is close to the standard frame Y on Hn

in the Ck(BR) norm uniformly for q. Then by pulling back, (BR, θ0,Ξ
∗
qh(q),Ξ

∗
qJ(q)) is

a contact Riemannian structure with Ξ∗
qh(q) and Ξ∗

qJ(q) close to h0 and J0 uniformly

in the Ck(BR) norms. It is easy to see that Ỹq is a frame for the horizontal subspace
H0 of the Heisenberg group, and Ξ∗

qf ∈ Ss
1(BR,Y) if f ∈ Ss

1(B(1+η0)R,Y
q). Note

that Ξ−1
q∗ Y

q
j = Yj +

∑2n
k=1 c

q
jkYk for some functions cqjk with small Ck(BR) norms uni-

formly, and the coefficients of TWT connection of (BR, θ0,Ξ
∗
qh(q),Ξ

∗
qJ(q)) is obviously

uniformly bounded. By the expression (5.16) of the SubLaplacian, we see that

Ξ∗
q(△θ(q)fq) =

2n∑
i,j=1

aqijYiYjΞ
∗
qfq +

2n∑
i,j=1

bqjYjΞ
∗
qfq on BR

for some aqij , b
q
j with uniformly bounded Ck(BR) norm and aqij satisfying uniformly

elliptic condition (4.13) with some absolute constant µ > 0, for q sufficiently close to
2∗.

Write f̃q := Ξ∗
qfq, which is C∞. Since f̃q ∈ Ss

1(BR) are uniformly bounded for

any fixed s ≥ 1, so are f̃q−1
q . Now pull back the equation (5.18) by Ξq to get

(5.32) Lq f̃q = g̃q, where Lq :=
∑

aqijYiYj +
∑

bqjYj ,

with g̃q := λq(M)f̃q−1
q − Ξ∗

q(D
∗
δq
sθ)δ

2
q f̃q. Obviously g̃q ∈ Ss

1(BR,Y) uniformly for q
close to 2∗ > 2 for any fixed s ≥ 1. Now applying the uniform estimate in Theorem
4.6 to the operator

∑
aqijYiYj for smooth f̃q, we get

∥f̃q∥Ss
3(BR/2,Y) ≤ C1

(∥∥∥∑ aqijYiYj f̃q

∥∥∥
Ss
1(B3R/4,Y)

+ ∥f̃q∥Ls(B3R/4)

)
≤ C1

(∥∥∥Lq f̃q

∥∥∥
Ss
1(B3R/4,Y)

+
∥∥∥∑ bqjYj f̃q

∥∥∥
Ss
1(B3R/4,Y)

+
∥∥∥f̃q∥∥∥

Ls(B3R/4)

)
(5.33)

and by using the uniform estimate in Theorem 4.6 again,

∥∥∥∑ bqjYj f̃q

∥∥∥
Ss
1(B3R/4,Y)

≤ C2

∥∥∥f̃q∥∥∥
Ss
2(B3R/4,Y)

≤ C2C
′
1

(∥∥∥∑ aqijYiYj f̃q

∥∥∥
Ls(BR,Y)

+ ∥f̃q∥Ls(BR)

)
≤ C2C

′
1

(∥∥∥Lq f̃q

∥∥∥
Ls(BR)

+ C ′
2

∥∥∥f̃q∥∥∥
Ss
1(BR)

+
∥∥∥f̃q∥∥∥

Ls(BR)

)
(5.34)

Here C1, C
′
1, C2 and C

′
2 are all constants only depending on n, s, R, µ and the C3(BR)

norms of aqij , b
q
j , but not on q. Consequently, we get∥∥∥f̃q∥∥∥

Ss
3(BR/2,Y)

≤ C

(
∥g̃q∥Ss

1(BR,Y) +
∥∥∥f̃q∥∥∥

Ss
1(BR,Y)

)
.(5.35)
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So f̃q ∈ Ss
3(BR/2,Y) uniformly bounded for each s ≥ 1. Then f̃q ∈ Γ3−ϵ0(BR/2,Y) uni-

formly for any fixed ϵ0 > 0 by Sobolev embedding Theorem 4.4 (2). Consequently, we

have f̃q ∈ C
4
3 (BR/2) uniformly bounded by the embedding Γβ(U) ↪→ Λβ/2(U) on the

Heisenberg group by theorem 20.1 of Folland and Stein [12], where Λβ/2 is the usual

Lipschitzian space of order β/2. Hence fq ∈ C
4
3 (BR/3). The claim is proved and so is

the theorem. �

Remark 5.1. We cannot apply the regularity Theorem 4.13 to the equation (5.18)
directly to obtain a uniform bound of ηfq in Ck(BR) for each k. This is because
we have a family of contact Riemannian structures, while Theorem 4.13 can only be
applied to a fixed contact Riemannian structure. Note that in general, horizontal
subspaces ker θ(q) and the Folland-Stein spaces Ss

1(BR,Y
q) may be different. This

phenomenon does not happen in the Rienannian case. The advantage of the diffeo-
morphisms Ξq in (5.27) is that they transform θ(q) to the standard one, and so do the
horizontal subspaces and the Folland-Stein spaces.
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