A geodesic connection in Fréchet Geometry
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Abstract. In this paper first we propose a formula to lift a connection on
M to its higher order tangent bundles T"M, r € N. More precisely, for
a given connection V on T"M, r € NU {0}, we construct the connection
V¢ on TTTIM. Setting V¢ = V-1 we show that V¢~ = Hm Ve exists
and it is a connection on the Fréchet manifold T°M = r&lTiM and the
geodesics with respect to V> exist.

In the next step, we will consider a Riemannian manifold (M, g) with
its Levi-Civita connection V. Under suitable conditions this procedure
gives a sequence of Riemannian manifolds {(T°M, g;)}ien equipped with
a sequence of Riemannian connections {V¢ };cy. Then we show that V¢
produces the curves which are the (local) length minimizer of T°°M.
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1 Introduction

In the first section we remind the bijective correspondence between linear connections
and homogeneous sprays. Then using the results of [6] for complete lift of sprays, we
propose a formula to lift a connection on M to its higher order tangent bundles 7" M,
r € N. More precisely, for a given connection V on T"M, r € NU {0}, we construct
its associated spray S and then we lift it to a homogeneous spray S¢ on T"t'M
[6]. Then, using the bijective correspondence between connections and sprays, we
derive the connection V¢ on T"H'M from S¢. Setting V& = V¢-1°, we show that
Ve =1im V% exists and it is a connection on the Fréchet manifold T M = I.&HTiM
and the geodesics with respect to V> exist.

In the next step, we will consider a Riemannian manifold (M, g) with its Levi-
Civita connection V. Using the results of the previous section, we construct the
connection V' := V¢ and the Sasaki Metric g; on T'M = TM. It is known that
if Ve := V is a flat connection then, V! is a flat connection too and V¢ is the
Levi-Civita connection of the Riemannian metric g; on T M.
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Repeating this procedure gives a sequence of Riemannian manifolds {(T*M, g;) }ien
equipped with a sequence of Riemannian connections {V© };cn. Note that the limit
connection Ve = lim V¢ is a generalized linear connection on the non-Banach man-
ifold T°° M. The aéﬁntage of using this procedure lies in the fact that V= produces
the curves which are the (local) length of T°°M and hence we call it a geodesic
connection.

In this paper we assume that all the maps and manifolds are smooth and when
the partition of unity is necessary we suppose that our manifolds admit partition of
unity.

2 Preliminaries

Let M be a smooth manifold modeled on the Banach space E and wy : TM — M
be its tangent bundle. We remind that TM = UweM T, M such that T, M consists of
all equivalence classes of the form [c, z] where

ce€Cp={c:(e,¢) — M; € >0, cissmooth and ¢(0) = z},
under the equivalence relation
c1 ~g ey = ¢ (0) = c4(0)

for ¢1, co € C,. The projection map mg : TM — M maps [f,z] onto x. If Ay =
{(bay = Pa,Uay :=Uy); o € I} is an atlas for M, then we have the canonical atlas
Ay = {(¢a, = Doy, Us, =15 (Us)); o € I} for TM where

bay 1Ty (Uag) — — Uay xE
[e;a] — ((dag ©¢)(0), (da, © ) (0)).
Inductively one can define an atlas for 7" M := T(T"~'M), r € N, by

A :={(fa, := Do, ,,Ua, =m,1(Ua,_,)); a €1}

for which 7,_, : T"M — T"'M is the natural projection. The model spaces
for TM and T"M are E; := E? and E, := E?" respectively. We add here to the
convention that TO°M = M.

Set k1 := idpps and for r > 2 consider the canonical involution x, : T"M —
T"M which satisfies 0;0,f(t, s) = k.050:f(t, s), for any smooth map f : (—¢,€)? —
T™2M. If we consider T""2M as a smooth manifold modeled on E,_,, then the
charts of T""'M, T"M and T"T'M take their values in E,_; = E2_,, E, = E*_,
and E, 1 = E_, respectively. It is easy to check that the local representation of &,
is given by

Fro = 0o, 0kr 00" 1 Us , xE2_ 5 — U, , xE2_,
(z,9,X,Y) +— (z,X,y,Y).

For » > 1 a semispray on T™=1M is a vector field S : T"M — T™ 1M with
the additional property x,41 0S5 = S (or equivalently Dm,._1 o S = idprpr) ([1])-
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Considering the atlas A,_;, we observe that locally on the chart (¢aT717Uar71) the
local representation of the vector field S is Sq := ¢q,,, 0 So© ho, ! and

So :Us  XBp gy —Us , xE3 |5 (z,y) — (:U,y;y, —2Ga(x7y)).
where G, : Un, _, X E.—_1 — E,._; locally represents S (see e.g. [1, 6]).

Definition 2.1. A semispray S on 7" M is called a (2-homogeneous) spray if for any
acl, eRand (z,y) € Us, X Ep, Go(z, \y) = N2Go(2,y).

Definition 2.2. The complete lift of the semispray (spray) S is defined by
(2.1) S€ = Dkyi0kri30DS 0K 0.

According to propositions 3.5 and 4.13 of [6], the complete lift of a semispray
(spray) is a semispray (respectively spray).

3 Complete lift of connections

In this section we compute the iterated complete lifts of a linear connection V on M
to a linear connection V% on T°M for i € NU {co}. To this end, first we establish
a bijective correspondence between sprays and linear connections. Then, using the
results of [6] we will lift a connection to its higher order tangent bundles. The first
result is known due to Lang [4]. However, in order to make our exposition as much as
possible self contained, we state a proof adopted to our terminology. First, we recall
the definition of a connection from [7].

Definition 3.1. A connection on M is a vector bundle morphism
V:TTM — TM
with the family of local components (Christoffel symbols) {I'},; where;
Ty : 6(Us) xE = L(E,E); ael,
and the local expression of V, i.e. V, = ¢y, 0V o (j)az_l is
Va:ta(Us) xE —  ¢,(U,) xE
(2,y; X,Y) — (2,Y +T(z,9)X).

If the local components {T' }nes are linear with respect to their second variable (and
symmetric i.e. T (2)(y, X) = T (2)(X,y) for all (y, X) € E?), then the connection is
called a linear (and symmetric) connection.

Let v : (—€,¢) —» TM be a curve. Then v is a called a geodesic of V if
V@)Y (t) ==V oy"(t) = 0. The local representation of V./4)¥'(t) = 0 is

(3.1) Ya(t) + Ta(1a(t) (76(1), 76 (t)) = 0; t € (—e;¢), @ € 1.

Proposition 3.1. i. Any spray S on M gives rise to a linear and symmetric con-
nection V on M and vice versa.

ii. The curve v : (—e,e) — M is a geodesic of the spray S if and only if v is a
geodesic of V.
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Proof. Suppose that S be a spray on M with the local expression

Se i= o, 0S0pe, 1 :TM — TTM
(9073/) — (957972% _QGa(xayD

where G,,a € I, is a 2-homogeneous function with respect to its second variable.
1
Set By (x) = §8§Ga(x,0). Clearly B(x) € £2,,.(E,E). According to [4] (chapter I,

sym
section 3) Gy (z,y) = %8§Ga(m,0)(y,y) for any (z,y) € U, x E.

Define the local components of the connection V on M by ', (2)(y, y) = 2Ba(2)(y,y) =
2Gqo(z,y). Then for (y,z) € E x E we have

Pa(@)(y,2) = 5 Ta()y + 2,y +2) ~ Lal)w.) ~ Tala)(z,2)}.

Clearly I'y : Uy C M — ﬁgym(IE,I[“E)7 a € I, is smooth. Then the connection map,

again denoted by V, is define by

VQ:TTM\UQ — TM‘UQ
(2, X.Y) +— (2, +Ta(2)(y, X)).

We will show that I'y, and I'g satisfy the known compatibility condition

(3:2) dpas{Ts(z)(y,2)} = d*¢as(@)(y,2)
+Te ((baﬂ (CL‘)) [d(baﬁ (.Z')y, das (x)z]

(see e.g. [5]). Since S is a spray on M then for o, 8 € I with Uyg := U, NUs # &
we have ¢, o qbﬂZ*l 058 =5400q, 0 (b,@l*l or equivalently

(3-3) 2ddap(2)(Gp(z,y)) = d*Pap(2)(y,y) + 2Ga(bap(z), ddas(2)y).

where ¢np5 := Pqo, © (blgll.
As a consequence, for any (x,y) € Uy x E we have

dpap{ls(z)(y,y)} = doaps(®){2Gs(,y)}
dz(baﬁ (.’1?) (ya y) + 2Ga(¢a5 (.’E), d(baﬁ (l‘)y)
P bap(@)(Y,y) + Talbas(@)) (ddas(2)y, dpas(2)y).

Moreover for any (x,y,z) € Uyg NE x E we have

A6ap{Ts@)(y )} = 5dbas(@){Ta@)y+ 2y +2) = Ts(a)y.v)
T(0)(z 2)}



A geodesic connection in Fréchet Geometry 71

Using the compatibility condition for I', and I'g on the diagonal elements we get

BupTo@):2)} = 36as(@)y+2y+2)
r, (¢aﬂ($)) (d‘ba[ﬁ(z)(y + Z)7 d¢aﬁ(x)(y + Z))

3P0 (@)(0.9) — 3T (G05(2)) (dbes (@), b (2)0)

1 1
f§d2¢aﬁ(x)(z, z) — ira (Qsaﬁ(x)) (d¢a5($)z, d¢aﬁ($)z)
= ¢ap(x)(,2) + Ta(Gas(2)) (dbas(2)y, dbas(z)2).
Now, using partition of unity we can build a global map V which is a linear and
symmetric connection ([7, 5]).

For the converse suppose that V be a linear and symmetric connection on M
with the local components {T'y, }aer. Since V is a global map then, the compatibility
condition (3.2) is satisfied. For a € I, define Go(2,y) = 3Ta(2)(y,y) and set

S@ :TM‘UQ — TTM‘UQ
(l‘, y) — (J?, Y. Y, _2GO¢('T7 y))

However,
2o (1) (Co(r,y) = 2as(x) (5T5(x) ()
= doas(z)(Ts(x)(y,))
= ¢as(®)(y,y) + Ta(dap(@)) (ddas(2)y, das(z)y)
= d ¢aﬁ($)(y, )+2G ((rbaﬁ( )7d¢a5(x)y)

that is, the spray S can be defined.
ii. Now, suppose that v : (—¢,¢) — M is a geodesic of the spray S. Then,
according to [6], definition 3.6, we have

FIE) + 2G0(Ya (), Y () =0 ;a e L.

Setting 'y (z)(y, y) = 2G4 (z,y) we observe that

Vo) + Ta(7a () (V6 (t), 74 () =0; a € 1.

as desired (See also equation (3.1)). The converse can be proved similarly.
O

Motivation for writing proposition 3.1 was twofold. First we will use this corre-
spondence to lift a connection form 7"M, r € NU {0}, to T""* M and consequently
to T°° M. Then, using theorem 4.11 of [6], we will show that the geodesics on T M
exist.

Now, suppose that V be a connection on 7"M. Then, according to proposition
3.1, V induces the spray S on T"M. We compute S° as proposed in [6] and then by
using proposition 3.1, we derive its associated connection V.
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Proposition 3.2. V¢ is a connection on Tt M with the local components
LS :grt (Ua) CTHM — L2, (Bry X Eg1,Er) 5 a €1,

(8 Q41

which maps ((z,y), (X,Y), (u,0)) € 651, (Ua) x E2,, to

(o (@) (X, u), 01 Ta(x) (X, u)y + Ta(z)(Y,u) + Talz)(X,0)).

Proof. Let V be a connection on T" M. According to proposition 3.1 we can construct
its associated spray S. Using definition 2.2 (and also definition 3.4 of [6]) we have a
lifted spray which is locally given by

So(x,y, X,Y) = (17,,%X7 Y, XY, -2G4(z, X), —2dGa(x,X)(y,Y)).
Set

G ot (Uy) — By =E2

et [

((:c,y), (X, Y)) — (Ga(z,X),dGa(x,X)(y,Y)).
Using proposition 3.1 we define
F(Cx(x’ y) ((X’ Y)’ (X’ Y)) = 2GZ ((Z‘, y)’ (X’ Y))

that is

T4 (@,9) (XY, (X)) = (Tal@)(X, X),0Ta(@)(X, X)y
0 (@) (X,Y) + T a)(V. X))

Then I'S, on non-diagonal elements ((X,Y), (u,v)) € E2,, is
T o) (V). (1.0) = 3 {T vy

—I5 (w,y)((X Y) (X V) —Ti(ay
= (Pa(2)(X,u), 01T (2)(X, w)y + Ta(2) (Y, U) Lo (2)(X,0))

as we promised. O

((X,Y) + (u,), (X,Y) + (u,v))

Remark 3.2. For r = 0, the complete lift of connections in the above proposition
coincides with theorem 2 of [7], that is

V¢ = kg oDV okzo Dkos.

Definition 3.3. Let V be the connection map of a linear and symmetric connection
on T"M, r € NU{0}. The complete lift of V denoted by V¢, is a linear and symmetric
connection on T"T1M with the connection map

(3.4) V¢ :=Kpy20DVoK,130Dipyg

and its local components (Christoffel symbols) are given by proposition 3.2
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Corollary 3.3. The geodesics of V¢ are Jacobi fields of V.

Proof. Since the concept of lift in our framework coincides with that of [7], according
to [7], the geodesics of V¢ are Jacobi fields of V. O

Theorem 3.4. i. Let V be a connection on M. If Vér = (Ver—1)¢, r € N, then the
projective limit, V>~ = lim V% exists and is a connection on T M.
ii. For the given initial conditions, there exists a unique geodesic of V= on T°M.

Proof. i. Keeping the formalism of [6], first we show that the following diagram is

commutative.
Vortl
—

T2(T™+1 M) (T M)
DZTFT J, ~l/ D7Tr
M) LS T(TTM)
Using equation (7), D&, = Tp41 © Kry2 We see that

D7, oVt = Dm0 (Kpy20 DV 0Kpp30 DEypga)
= (7410 Kry2) 0 (Krp2 0 DV 0 Kpy3 0 Dhypya)
= Tr410 DV o Ry43 © DK/T+2
= VCT O Tp42 O Kpt3©O Dlir+2
= V% oDm.y10DkKryo
Ve o D?x,.
ie. {V} enugoy form a projective system of connections on {T"M},cnuoy- Set
Ve =1im V. Theorem 3.1 of [2] guarantees that V°>= is a connection on the PLB
manifolﬁooM =limT"M.
ii. For any r € NU {0}, let S be the corresponding spray induced by proposition
3.1 and the connection V¢ . Then, according to [6], theorem 4.11, for any £ =
(&)ien € T,T>°M, there exists a unique geodesic v = @1% i (—€,6) — T°M of
S = lim S such that v(0) = z and 7/(0) = £. Moreover for any » € NU {0}, 7, is
a geodesic of S° and consequently V¢ with 7, (0) = z, and +/(0) = &,. But
VY () =Ve=oy'(t) = (im V) o (limv,)(?)
= lim(V oy/)(t) = 0.
as desired. (]

4 A geodesic connection on T>M

Let (M, g) be a Riemannian manifold. Moreover suppose that V¢ := V be the Levi-

civita connection of the metric g. Then the Sasaki metric gy on T'M := TM is
defined by
(4.1) g1(z,y)(X,Y) = g(x)(dmo X, dmoY) + g(x) (VO X, VoY)

for any (z,y) € TM and X,Y € T, ,\TM. It is known that the Levi-Civita connec-
tion of the metric g; and V¢ coincide if and only if curvature of V¢ vanishes (see
e.g. p. 238, [7]).

Moreover we have the following theorem from [3].
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Theorem 4.1. Let R; be the curvature tensor of the connection V¢, 1= 0,1. Then
Ry =0 if and only if R =0.

Now, suppose that (M,g) be a flat Riemannian manifold. Then (T'M,g;) is
a flat Riemannian manifold with the Levi-Civita connection V. Repeating the
above procedure gives a sequence of Riemannian manifolds with the associated metric
connections {V¢ };cn respectively. Then, theorem 3.4 guarantees that Ve~ = I&H Ve
exists and it is a generalized connection on T°M = limT" M.

Moreover for any € T°M and X € T,T>° M, there exists a unique geodesic (of
Vee) v(—¢€,€) — T°°M such that v(0) = z and 7/(0) = X.

Now, suppose that 3 < ¢; be two points in (—e,€), v(tgp) = = and v(t1) = y.
Then, for any i € N, ~;(tp) = z; and ;(t1) = y; where z; = p;(x), y; = pi(y) and
p; : T®M — T*M is projection to the i’th factor. However, for any i € N, ~; is the
shortest path which connects z; to y; in T*M that is

(4.2) () = / g (0) (Ga(0), 3 (1)) dt = di(s, 1)

where 4
d;(z;,y;) = inf{l(c); cis a curve joinig z; to y; on T'M}.

As a consequence, 7y is the curve which

(4.3) L(v) = d(z,y)

where

xzayz)
(4.4) Z 20(1+ d;(wi, yi))

i=

and

(45) Z 31 +z o))

Consider the family M = {M;, ¢j;}; jen where M;, i € N, is a manifold modeled
on the Hilbert space E; and ¢;; : M; — M;, j > i, is a differentiable map. Moreover
we need to
i) the model spaces {E;, pji }i jen form a projective system of vector spaces,

ii) for any x = (x;) € M = lim M; there exists a projective family of charts {(¢;,U;)}
such that x; € U; € M; and for j >4, pj; 0 ¢j = ¢4 0 @js.

Moreover suppose that g; be a Riemannian metric on M;, i« € N. Then for any
x; € M;, we have the canonical linear isomorphism

gi(x:) Ty, M — Tp M
vi — gi(@)" (vi) = gi(wi) (vi, )

with the inverse g;(z;)*.
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For j > i, consider the induced bounded linear morphisms v;;(z;) : Ty M; —
Ty M; given by
Vji(wy) = gi(ws) o Ty p5i(x5) 0 g5 (x5)F.
It is easily seen that {T;j M;,v;i(z;)} forms a projective system of Hilbert spaces.
For any x € M set Ty M = I.&HT . M; which is endowed with the projective topology.

Definition 4.1. The 2-tensor g on M = lim M; is called compatible with the family
of Riemannain metrics {g; }ien if for any z = (x;)ien, g9(x) : TuM — T M is equal
to lim g; (z;).

The above definition is compatible with our construction and section 4 proposes
an example for this structure.
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