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Abstract. Given an almost paracontact structure (φ, ξ, η) on a pseudo-
Riemannian manifold (M2n+1, g) of signature (n+1, n) we define a linear
connection as being adapted if it parallelizes all its structural elements
φ, η, ξ. We find the class of all adapted connections using the tools of
derivations. The particular cases of para-Sasakian and para-Kenmotsu
manifolds are detailed in order to compare with the Levi-Civita connec-
tion of g and with the canonical connection of S. Zamkovoy from [24].
Also, we unify our framework with the almost contact geometry by using
a parameter ε corresponding to ±1 and we find the class of linear connec-
tions which provide the general admissible triples of covariant derivatives
for (φ, η, ξ); in particular the Matzeu-Oproiu linear connection is ana-
lyzed. We search applications of our computations to statistical and weak
Frobenius structures.
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Key words: almost paracontact and contact structure; derivation; adapted
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1 Introduction

The almost paracontact geometry introduced by Kaneyuki and co-workers, for exam-
ple in [16], offers an interesting counterpart to the more known almost contact geom-
etry. Now, the setting is provided by a pseudo-Riemannian manifold (M2n+1, g) of
signature (n+1, n) instead of the Riemannian framework of almost contact geometry.
Also, the prefix ”para” corresponds to an almost paracomplex structure while the al-
most contact version gives an almost complex one. Similar to the almost contact case
there are some particular remarkable geometries: para-cosymplectic, para-Sasakian
and para-Kenmotsu.

In this paper we shall study a special class of linear connections D on an almost
paracontact manifold (M, g, φ, η, ξ) following the studies [3]-[5]. More precisely, we
define D as being adapted if parallelizes the structural tensors (φ, η, ξ). A strong
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motivation for such a study comes from the appearance of paracontact structures
in some physical theory e.g. para-Sasakian geometry in thermodynamic fluctuation
theory of [6]. We find the family of all adapted connections following the technique
from almost contact geometry developed in [18] and based on derivations. More
precisely, we find a process to associate at any linear connection ∇ an adapted one
D∇ and a large part of our article concerns with a study of the corresponding Dg

induced by the Levi-Civita connection ∇g. For example, we compute explicitly the
difference A = Dg−∇g ∈ T 1

2 (M) in para-Sasakian and para-Kenmotsu manifolds and
also, we compare our Dg with the canonical connection introduced by S. Zamkovoy in
[24]. An interesting result holds in para-Sasakian geometry: this canonical connection
is a fixed point of the transformation ∇ → D∇. As usually, a main attention is
devoted to the torsion and curvature of general adapted connections, again with
a special view towards para-Sasakian and para-Kenmotsu structures. We discuss
also the Schouten connection associated to an almost product structure τ , naturally
provided by the underlying paracontact structure, and a generalization to almost
r-paracontact manifolds, with r ≥ 2.

Another direction of study is the unification of almost contact and almost para-
contact geometries. We perform this in section 4 by introducing a parameter ε
with ε = −1 corresponding to the almost contact case respectively ε = +1 to
the almost paracontact situation. In this general framework we consider a triple
J∗ = (φ∗, η∗, ξ∗) ∈ T 1

2 (M)×T 0
2 (M)×T 1

1 (M) and searching D∗ satisfying D∗φ = φ∗,
D∗η = η∗ and D∗ξ = ξ∗ it results the class of admissible triples J∗ and the corres-
ponding D∗ also through a general map ∇ → D∗,∇. Again, the ε-Sasakian case is a
discussed example as well as some generalizations of admissible triples from the al-
most contact geometries. We finish this study searching for applications to statistical
and weak Frobenius structures in almost paracontact setting.

2 Almost paracontact manifolds

Almost paracontact geometry appears in [16] and some important studies are [8], [9],
[24]. Let M be a (2n+1)-dimensional smooth manifold, φ a tensor field of (1, 1)-type
called the structural endomorphism, ξ a vector field called the characteristic vector
field, η a 1-form called the paracontact form and g a pseudo-Riemannian metric on M
of signature (n + 1, n). We say that (φ, ξ, η, g) defines an almost paracontact metric
structure on M if [24, p. 38], [8]:
1. φ(ξ) = 0, η ◦ φ = 0, 2. η(ξ) = 1, φ2 = I − η ⊗ ξ,
3. φ induces on the 2n-dimensional distribution D := ker η an almost paracomplex
structure P i.e. P 2 = 1 and the eigensubbundles T+, T−, corresponding to the
eigenvalues 1, −1 of P respectively, have equal dimension n; hence D = T+ ⊕ T−,
4. g(φ·, φ·) = −g + η ⊗ η.

For a list of examples of almost paracontact metric structures see [10, p. 666],
[12], [13, p. 569], [15, p. 84] and [19]. From the definition it follows that the rank of
φ is 2n and η is the g-dual of ξ i.e. η(X) = g(X, ξ) for any X ∈ Γ(TM) = X(M).
Also, ξ is an unitary vector field:

g(ξ, ξ) = 1 (2.1)
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which means that it is space-like and φ is a g-skew-symmetric operator:

g(φX, Y ) = −g(X,φY ). (2.2)

The tensor field:
ω(X,Y ) := g(X,φY ) (2.3)

is skew-symmetric and:

ω(φX, Y ) = −ω(X,φY ), ω(φX,φY ) = −ω(X,Y ). (2.4)

The 2-form ω is called the fundamental form of the given geometry. Remark that
the canonical distribution D is φ-invariant since D = Imφ: if X ∈ X(M) has the
decomposition X = X+ + X− + η(X)ξ with X∗ ∈ T ∗ (with ∗ ∈ {+,−}) then
φX = X+ −X−. Moreover, ξ is orthogonal to D and therefore the tangent bundle
splits orthogonally:

TM = D ⊕ ⟨ξ⟩. (2.5)

Following [18, p. 267] we consider also the vertical projector V := η ⊗ ξ which
satisfies:

η ◦ V = η, V 2 = V, V ◦ φ = φ ◦ V = 0 (2.6)

and which have ξ as eigenvector corresponding to the eigenvalue +1. The horizontal
projector is as usual H := I − V .

The almost paracontact structure of ap(M) := (M,φ, η, ξ) yields an almost para-
complex structure J on the product M × R and ap(M) is called normal if J is inte-
grable, [24, p. 39]. Also ap(M) is called paracontact metric manifold if:

2ω(X,Y ) = 2dη(X,Y ) = X(η(Y ))− Y (η(X))− η([X,Y ]) = (∇g
Xη)Y − (∇g

Y η)X.
(2.7)

where ∇g is the Levi-Civita connection of g. On a paracontact metric manifold we
have:

∇g
Xξ = −φX + φhX. (2.8)

where:

h =
1

2
Lξφ (2.9)

with L the Lie derivative. In a paracontact metric manifold the tensor field h vanishes
if and only if ap(M) is K-paracontact i.e. ξ is a Killing vector field with respect to g.

Another important class of almost para-contact geometries is provided by para-
Kenmotsu manifolds satisfying [25]:

(∇g
Xφ)Y = −η(Y )φX − ω(X,Y )ξ. (2.10)

In [4] there are studied two types of linear connections ∇, namely that which pa-
rallelize simultaneous g and η respectively parallelize the triple (g, η, ξ). We introduce
now another suitable type of linear connections as aim of our study:

Definition 2.1. The linear connection D is adapted to the almost paracontact geo-
metry ap(M) = (M,φ, η, ξ) if all structural fields are covariant constant: Dφ = 0,
Dη = 0, Dξ = 0.

The tool to determine the set of adapted linear connections consists in derivations
to which we devote the next section.
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3 Derivations and initial data

We present the general theory of derivations following [18, p. 288]. Let
T (M) = ⊗r,sT r

s (M) be the tensorial algebra of M .

Definition 3.1. A linear endomorphism ∂ of T (M) is called derivation if the following
properties hold:
i) is type preserving, i.e. ∂ maps T r

s (M) into itself,
ii) satisfies a Leibniz rule: ∂(A⊗B) = ∂A⊗B +A⊗ ∂B,
iii) commutes with any contraction.
The set of all derivations is a C∞(M)-module denoted Der(M).

A technical characterization is:

Proposition 3.1. Fix µ ∈ X(M) and the additive map Φ : T 1
0 (M) → T 1

0 (M) satis-
fying:

Φ(fX) = µ(f)X + fΦ(X). (3.1)

Then there exists a unique ∂ ∈ Der(M) with ∂|C∞(M) = µ and ∂|T 1
0 (M) = Φ.

We introduce then the notations ∂ = {µ,Φ}, µ = res0∂ and Φ = res1∂ and we
remark that µ = 0 means that Φ ∈ T 1

1 (M). Also, we point out that the action of
∂ = {µ,Φ} on F ∈ T 1

1 (M), ω ∈ T 0
1 (M) = Ω1(M) is:

∂(F ) = Φ ◦ F − F ◦ Φ, ∂(ω) = µ ◦ ω − ω ◦ Φ. (3.2)

We return now to an almost paracontact manifold ap(M) and we introduce the
second main notion of this work:

Definition 3.2. A triple J = (φ∗, η∗, ξ∗) ∈ T 1
1 (M)×Ω1(M)×X(M) is called system

of ap(M)-initial data if:

φ∗◦ξ+φ◦ξ∗ = 0, η∗◦φ+η◦φ∗ = 0, η∗(ξ)+η(ξ∗) = 0, φ∗φ+φφ∗ = −V ∗ (3.3)

with the endomorphism V ∗ ∈ T 1
1 (M) given by: V ∗ := η∗ ⊗ ξ + η ⊗ ξ∗.

Direct consequences of this definition are some relations similar to (2.2) of [18, p.
269]:

η∗◦V+η◦V ∗ = η∗, V ∗(ξ)+V (ξ∗) = ξ∗, V ∗V+V V ∗ = V ∗, φ∗V+φV ∗ = V ∗φ+V φ∗ = 0.
(3.4)

The set ID(ap(M)) of all systems of ap(M)-initial data is a C∞(M)-submodule of
the C∞(M)-module T 1

1 (M)× T 0
1 (M)× T 1

0 (M).
A motivation for the introduction of systems of ap(M)-initial data is provided by

the following result:

Proposition 3.2. If ∂ ∈ Der(M) then J∂ := (∂(φ), ∂(η), ∂(ξ) = Φ(ξ)) ∈ ID(ap(M)).

Hence we have a C∞(M)-linear map:

K : Der(M) → ID(ap(M)), K(∂) := J∂ (3.5)

and a natural problem is the surjectivity of it:
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Definition 3.3. Fix J ∈ ID(ap(M)). A derivation ∂ ∈ Der(M) is called J-adapted
if: K(∂) = J .

Remark 3.4. Suppose that ∂ is (0, 0, 0)-adapted. Then:

∂V = ∂(I − φ2) = −∂φ2 = −(∂φ ◦ φ+ φ ◦ ∂φ) = 0, ∂H = ∂(I − V ) = 0. (3.6)

Then the associated almost product structure τ = V − H is also a zero of ∂. The
adapted derivations to almost product structures are studied in [17]. �

In order to obtain the set of all J-adapted derivations we introduce another
C∞(M)-linear map:

L : ID(ap(M)) → Der(M), L(J) = ∂J := {0, 1
2
(−φφ∗−V V ∗+η⊗ξ∗−η∗⊗ξ)}. (3.7)

A main property of L is exactly the answer to the problem raised above:

Proposition 3.3. K ◦ L : ID(ap(M)) → ID(ap(M)) is the identity map and hence
K is a surjection and L is an injection.

We introduce now another C∞(M)-linear map:

Definition 3.5. The application C : Der(M) → Der(M) given by:

C := Id− 2LK (3.8)

is called ap(M)-conjugation of derivations.

Its main properties are as following:

Proposition 3.4. i) C is an involution i.e. C2 = Id and res0 ◦ C = res0,
KC = −K which means (C∂)(φ, η, ξ) = −(∂φ, ∂η, ∂ξ). ii) (0, 0, 0)-adapted deriva-
tions are exactly the fixed points of C.

Hence, the set of all (0, 0, 0)-adapted derivation is the image Im(χ) where:

χ : Der(M) → Der(M), χ :=
1

2
(Id+ C). (3.9)

A straightforward computation gives the explicit action of C and χ on a fixed
∂ = {µ,Φ}: {

C(∂) = {µ, φΦφ+ V ΦV + ∂η ⊗ ξ − η ⊗ Φ(ξ)},
χ(∂) = {µ, 1

2 (Φ + φΦφ+ V ΦV + ∂η ⊗ ξ − η ⊗ Φ(ξ))}. (3.10)

We obtain now the general set of a J-adapted derivations:

Theorem 3.5. Fix J ∈ ID(ap(M)). Then the class of all J-adapted derivations is
the space ∂J + Im(χ).

Proof. The result is immediately from the remark that ∂ is J-adapted if and only if
∂ − ∂J is (0, 0, 0)-adapted. We point out also that χ is a projector: χ2 = χ. �
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4 Adapted linear connections

In order to use the results of the previous section let us point out that given a vector
field X and a linear connection ∇ if ∇X is (0, 0, 0)-adapted then there exists
∂X ∈ Der(M) such that ∇X = χ(∂X). Since res0(∇X) = X it results res0∂X = X
and the correspondence X → ∂X is actually a linear connection. It follows then the
first main result of this section:

Theorem 4.1. A linear connection D is adapted if and only if there exists a linear
connection ∇ such that:

DX = χ(∇X) (4.1)

for every vector field X. More precisely, denoting D∇ the right hand side of (4.1) we
get:

D∇
XY = ∇XY − η(Y )∇Xξ − 1

2
(∇Xφ)(φY ) +

1

2
[(∇Xη)(Y ) + η(Y )η(∇Xξ)]ξ. (4.2)

Its torsion is:

(TD − T∇)(X,Y ) = η(X)∇Y ξ − η(Y )∇Xξ +
1

2
[(∇Y φ)(φX)− (∇Xφ)(φY )]+

+
1

2
[(∇Xη)(Y )− (∇Y η)(X) + η(Y )η(∇Xξ)− η(X)η(∇Y ξ)]ξ. (4.3)

If ∇ is symmetric then:

TD(X,Y ) = η(X)∇Y ξ − η(Y )∇Xξ +
1

2
[(∇Y φ)(φX)− (∇Xφ)(φY )]+

+
1

2
[2dη(X,Y ) + η(Y )η(∇Xξ)− η(X)η(∇Y ξ)]ξ. (4.4)

If ∇ is metrical then:

(TD − T∇)(X,Y ) = η(X)∇Y ξ − η(Y )∇Xξ +
1

2
[(∇Y φ)(φX)− (∇Xφ)(φY )]+

+
1

2
[(∇Xη)(Y )− (∇Y η)(X)]ξ. (4.5)

The covariant derivative of the metric g with respect to D∇ is:

2(D∇
Xg−∇Xg)(Y, Z) = g((∇Xφ)(φY ), Z)+ g(Y, (∇Xφ)(φZ))− 2η(Y )η(Z)η(∇Xξ)+

+η(Y )[g(∇Xξ, Z)− (∇Xg)(Z, ξ)] + η(Z)[g(∇Xξ, Y )− (∇Xg)(Y, ξ)]. (4.6)

and hence if ∇ is a metrical connection then D∇ is also a metrical connection. The
covariant derivative of the fundamental form and dη are given by, respectively:

2(D∇
Xω −∇Xω)(Y, Z) = ω((∇Xφ)(φY ), Z) + ω(Y, (∇Xφ)(φZ))+

+2η(Y )ω(∇Xξ, Z) + 2η(Z)ω(Y,∇Xξ), (4.71)

(D∇
Xdη −∇Xdη)(Y, Z) = η(Y )dη(∇Xξ, Z) + η(Z)dη(Y,∇Xξ)+

+
1

2
[dη((∇Xφ)φY,Z) + dη(Y, (∇Xφ)φZ)]−

−1

2
[(∇Xη)Y + η(Y )η(∇Xξ)]dη(ξ, Z)− 1

2
[(∇Xη)Z + η(Z)η(∇Xξ)]dη(Y, ξ). (4.72)
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Proof. The formula (4.1) means:

2D∇
XY = ∇XY + φ(∇XφY ) + V (∇XV Y )− η(Y )∇Xξ + (∇Xη)(Y )ξ. (4.8)

but we have:

∇XV Y = X(η(Y ))ξ + η(Y )∇Xξ, V (∇XV Y ) = [X(η(Y )) + η(Y )η(∇Xξ)]ξ (4.9)

and we obtain:

2D∇
XY = ∇XY + φ(∇XφY )− η(Y )∇Xξ + [2X(η(Y )) + η(Y )η(∇Xξ)− η(∇XY )]ξ.

Also from:
(∇Xφ)(φY ) = ∇X(φ2Y )− φ(∇XφY )

we get the final (4.2). The computations of the torsion and covariant derivative of g
are straightforward. A direct remark from (4.2) is in accord with ii) of proposition
3.4: if the initial ∇ is adapted then D∇ = ∇. �

A first natural choice for ∇ in Theorem 4.1 is the Levi-Civita connection ∇g of g.
It follows then the metrical and adapted connection Dg given by:

Dg
XY = ∇g

XY − η(Y )∇g
Xξ − 1

2
(∇g

Xφ)(φY ) +
1

2
(∇g

Xη)Y · ξ (4.10)

since (2.1) gives that ∇g
Xξ ∈ D. S. Zamkovoy [24, p. 49] defined on an almost

paracontact metric manifold a connection ∇̃ using the Levi-Civita connection ∇g of
the structure:

∇̃XY := ∇g
XY + η(X)φY − η(Y )∇g

Xξ + (∇g
Xη)Y · ξ (4.11)

and called it canonical paracontact connection. It is a metrical linear connection
making parallel only the 1-form η and its dual vector field ξ. According to Proposition
4.2 of [24, p. 49] in a paracontact metric manifold this linear connection is adapted
if and only if:

(∇g
Xφ)Y = η(Y )(X − hX)− g(X − hX, Y )ξ. (4.12)

We derive now the second main result of this section:

Proposition 4.2. i) Suppose that ap(M) is K-paracontact. Then ∇̃ is adapted if
and only if:

(∇g
Xφ)Y = η(Y )X − g(X,Y )ξ (4.13)

which means that ap(M) is a para-Sasakian manifold. Hence on a para-Sasakian
manifold we have:

DgY = ∇gY + η(Y )φ+ ω(·, Y )ξ, DgY = ∇̃Y − η ⊗ φ(Y ). (4.14)

ii) Suppose that ap(M) is paracontact metric manifold. Then:

Dg
XY = ∇g

XY + η(Y )(φX − φhX)− 1

2
(∇g

Xφ)(φY ) +
1

2
ω(X − hX, Y )ξ. (4.15)

iii) Suppose that ap(M) is a para-Kenmotsu manifold. Then:

Dg
XY = ∇g

XY − η(Y )X + g(X,Y )ξ, DgY = ∇̃Y − η ⊗ φ(Y ). (4.16)
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Proof. i) The para-Sasakian condition (4.13) yields in (4.10):

Dg
XY = ∇g

XY − η(Y )∇g
Xξ +

1

2
ω(X,Y )ξ +

1

2
(∇g

Xη)(Y )ξ. (4.17)

With Y = ξ in (4.13) we get:

−φ(∇g
Xξ) = X − η(X)ξ (4.18)

and we apply φ to obtain that in a para-Sasakian geometry:

∇g
Xξ = −φ(X). (4.19)

Also:

(∇g
Xη)Y = X(g(Y, ξ))− g(ξ,∇g

XY ) = g(∇g
Xξ, Y ) = g(−φX, Y ) = ω(X,Y ) (4.20)

and we get the first part of (4.14). Plugging the above computations in (4.11) gives:

∇̃XY = ∇g
XY + η(X)φ(Y ) + η(Y )φ(X) + ω(X,Y )ξ (4.21)

and hence we derive the second part of (4.14).
ii) The paracontact metric condition (2.7) gives in (4.10):

Dg
XY = ∇g

XY + η(Y )(φX − φhX)− 1

2
(∇g

Xφ)(φY ) +
1

2
(∇g

Xη)(Y )ξ (4.22)

and a similar computation to (4.20) yields:

(∇g
Xη)Y = ω(X − hX, Y ). (4.23)

The formula (4.15) follows directly.
iii) The para-Kenmotsu condition (2.10) gives:

(∇g
Xφ)(φY ) = [η(X)η(Y )− g(X,Y )]ξ, ∇g

Xξ = X − η(X)ξ

(∇g
Xη)Y = g(X,Y )− η(X)η(Y ) = (∇g

Y η)X → dη = 0. (4.24)

and the claimed (4.16) follows. We remark that η being closed it results that the
distribution D is integrable and (4.24) can be expressed in a simpler form, ∇gη =
g − η ⊙ η, with ⊙ the symmetric product on 1-forms:

α⊙ β(X,Y ) :=
1

2
(α(X)β(Y ) + α(Y )β(X)).

�

Remark 4.1. i) The second natural choice for ∇ in Theorem 4.1 is exactly the
canonical paracontact connection ∇̃. The resulting metrical and adapted connection
D̃ = χ(∇̃) will be called canonical-adapted connection and its expression is:

D̃XY = ∇̃XY − 1

2
(∇̃Xφ)(φY ) = ∇̃XY − 1

2
(∇g

Xφ)(φY )− 1

2
ω(X − hX, Y )ξ (4.25)
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with the torsion:

2(T D̃ − T ∇̃)(X,Y ) = (∇g
Y φ)(φX)− (∇g

Xφ)(φY ) + [ω(Y − hY,X)− ω(X − hX, Y )]ξ.
(4.26)

A remarkable result holds in the para-Sasakian geometry: D̃ = ∇̃, which means
that for this geometry the derivations ∇̃X are fixed points of the map χ. In the
para-Kenmotsu case:

D̃XY = ∇̃XY − 1

2
[η(X)η(Y )− g(X,Y ) + ω(X,Y )]ξ (4.27)

since again h = 0.
ii) The second part of (4.14) and (4.16) means that the canonical paracontact con-
nection on a para-Sasakian or para-Kenmotsu manifold is given by:

∇̃X = χ(∇g
X) + η(X)φ. (4.28)

In the para-Sasakian setting:
∇̃X = χ(∇̃X) (4.29)

and hence:
φ = χ(∇̃ξ −∇g

ξ). (4.30)

Indeed, a direct computation from the para-Sasakian and para-Kenmotsu properties
gives:

∇̃ξY = ∇g
ξY + φ(Y ). (4.31)

iii) In the para-Sasakian case the torsion of Dg is:{
TDg

(X,Y ) = η(Y )φ(X)− η(X)φ(Y ) + 2ω(X,Y )ξ = η(Y )φ(X)− η(X)φ(Y ) +Nφ(X,Y ),
TDg

(X, ξ) = φ(X), η ◦ TDg

= 2ω
(4.32)

where Nφ is the Nijenhuis tensor field of φ; in a para-Sasakian manifold Nφ = 2ω⊗ ξ
while the general expression is (5.20) from the following section. The para-Kenmotsu
linear connection (4.16) is a semi-symmetric one since its torsion is:

TDg

(X,Y ) = η(X)Y − η(Y )X ∈ D, TDg

(X, ξ) = η(X)ξ −X. (4.33)

With the Definition 2.1 and notation of [1, p. 287] we remark that in the para-
Kenmotsu case the connection D∇g

has a vectorial torsion given by the vector field
V = ξ. The (0, 3)-variant of TDg

obtained by the contraction with g is:

TDg

(X,Y, Z) = η(X)g(Y,Z)− η(Y )g(X,Z). (4.34)

Modulo a different convention for the exterior derivative in [1] we get for the para-
Sasakian case the totally skew-symmetric torsion of (0, 3)-type TDg

= η ∧ dη, similar
to the Sasakian geometry as presented in [1, p. 295].
We can express the above torsions in a more compact form using the exterior covariant
derivative d∇ induced by a linear connection ∇:

(d∇φ)(X,Y ) := (∇Xφ)Y − (∇Y φ)X. (4.35)
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Then a straightforward computation gives:

para− Sasakian : TDg

= φ ◦ d∇
g

φ+ 2ω ⊗ ξ, para−Kenmotsu : TDg

= φ ◦ d∇
g

φ.
(4.36)

The curvature in para-Sasakian case is:

(RDg

−Rg)(X,Y )Z = ω(Z, Y )φ(X)− ω(Z,X)φ(Y ) + η(Z)[η(Y )X − η(X)Y ] ∈ D
(4.37)

while for para-Kenmotsu geometry is:

(RDg

−Rg)(X,Y )Z = g(Y,Z)X − g(X,Z)Y. (4.38)

iv) Recall the almost product structure τ = V − H of Remark 3.4. Similar to the
process∇ → D∇ of Theorem 4.1 any linear connection∇ yields a linear connection∇S

making P as parallel endomorphism. ∇S is called the Schouten connection associated
to ∇ and its expression is ([17], [22, p. 32]):

∇S
XY = V (∇XV Y ) +H(∇XHY ). (4.39)

Using (4.8) we derive:

∇S
XY = ∇XY − η(Y )∇Xξ + [(∇Xη)(Y ) + 2η(Y )η(∇Xξ)]ξ (4.40)

and then ∇S
Xξ = η(∇Xξ)ξ = V (∇Xξ). A straightforward computation gives that in

both para-Sasakian and para-Kenmotsu cases we have Dg = (∇g)S .
v) In the para-Sasakian case the covariant derivative of the fundamental form is:

(Dg
Xω)(Y,Z) = (∇g

Xω)(Y, Z) + η(Y )g(X,Z)− η(Z)g(X,Y ) (4.41)

while for the para-Kenmotsu case:

(Dg
X)ω(Y, Z) = (∇g

Xω)(Y,Z) + η(Y )ω(X,Z)− η(Z)ω(X,Y ). (4.42)

Also the exterior covariant derivative of V with respect to ∇g is:

(d∇
g

V )(X,Y ) = η(Y )∇g
Xξ − η(X)∇g

Y ξ + 2dη(X,Y )ξ (4.43)

and then in para-Sasakian geometry:

(d∇
g

V )(X,Y ) = η(X)φ(Y )− η(Y )φ(X) + 2ω(X,Y )ξ (4.44)

while for the para-Kenmotsu case:

(d∇
g

V )(X,Y ) = η(Y )X − η(X)Y = −TDg

(X,Y ). (4.45)

vi) An adapted connection D preserves the bundle decomposition (2.5) and hence D
restricts to linear connections in both vector bundles D and ⟨ξ⟩. For D∇ of (4.2) we
have: {

2D∇
XY = ∇XY + φ(∇XφY )− η(∇XY )ξ, Y ∈ D,

D∇
X(fξ) = X(f)ξ, f ∈ C∞(M).

(4.46)
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In particular, if the initial connection ∇ restricts to D then the restriction of D∇ to
D is:

2(D∇|D)XY = ∇XY + φ(∇XφY ). (4.47)

For a para-Sasakian geometry the relation (4.461) becomes:

2Dg
XY = 2∇g

XY + [ω(X,Y )− η(∇g
XY )]ξ, (4.48)

while for a para-Kenmotsu manifold the same formula is:

2Dg
XY = 2∇g

XY + [g(X,Y )− η(∇g
XY )]ξ. (4.49)

�
Example 4.2. Now we restrict to the dimension 2n+ 1 = 3 for which the metric is
a Lorentz one and the normality is equivalent with, [2, p. 119]:{

∇g
Xξ = α(X − η(X)ξ) + βφ(X),

(∇g
Xφ)Y = α(g(φX, Y )ξ − η(Y )φX) + β(g(X,Y )ξ − η(Y )X).

(4.50)

where α = 1
2divξ and β = 1

2 trace(φ∇ξ). The almost paracontact metric manifold
(M3, φ, ξ, η, g) is:
1) quasi-para-Sasakian if α = 0 and β ̸= 0; in particular, for β = −1 the manifold is
para-Sasakian;
2) α-para-Kenmotsu if β = 0 and α ̸= 0; in particular, for α = 1 the manifold is
para-Kenmotsu.
It results:

(∇g
Xη)(Y ) = α[g(X,Y )− η(X)η(Y )]− βω(X,Y ) (4.51)

and hence from (4.10) we have:

Dg
XY = ∇g

XY − αη(Y )X − βη(Y )φ(X) + [αg(X,Y )− βω(X,Y )]ξ (4.52)

with:

TDg

(X,Y ) = α[η(X)Y − η(Y )X] + β[η(X)φ(Y )− η(Y )φ(X)]− 2βω(X,Y )ξ. (4.53)

�
Due to the interest in totally skew-symmetric connections ([1], [23, p. 42]) we

present the following characterization:

Proposition 4.3. Suppose the dimension is 3 and β ̸= 0. Then the adapted con-
nection Dg has a totally skew-symmetric torsion if and only if the manifold is quasi-
para-Sasakian.

Proof. From (4.53) we must have totally skew-symmetry of the expression:

A(X,Y, Z) := αη(X)g(Y,Z)− αη(Y )g(X,Z).

The equality A(X,Y, Z) = −A(X,Z, Y ) means:

2αη(X)g(Y, Z) = αη(Y )g(X,Z) + αη(Z)g(X,Y )

and replacing Z = ξ gives:

α[g(X,Y )− η(X)η(Y )] = 0

with the unique possibility α = 0. � �
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A natural generalization of our setting is provided by almost r-paracontact struc-
tures, where r is a positive integer. We give now the pair (φ, g) as well as r pairs
(ξi, ηi)1≤i≤r with [8]:
1. φ(ξi) = 0, ηi ◦ φ = 0, ηi(X) = g(X, ξi)
2. ηi(ξj) = δij , φ

2 = I − V where V =
∑r

i=1 η
i ⊗ ξi,

3. g(φ·, φ·) = −g +
∑r

i=1 η
i ⊗ ηi.

Again an adapted connection makes parallel the endomorphism φ and all pairs (ηi, ξi).
The generalization of Theorem 4.1 is that any linear connection ∇ gives an adapted
linear connection D∇ with:

2D∇
XY = ∇XY + φ(∇XφY )−

−
r∑

i=1

ηi(Y )∇Xξi +
r∑

i=1

[2X(ηi(Y )) + ηi(
r∑

j=1

ηj(Y )∇Xξj −∇XY )]ξi. (4.54)

The r-paracontact version with Riemannian metric instead of a pseudo-Riemannian
one is treated in [7] and the r-contact version is discussed in [14].

5 A generalization of adapted linear connections

Firstly we unify the settings of almost contact and almost paracontact by using a
parameter ε ∈ {−1,+1} and adapting the method of [22]. More precisely, we put:

φ2 = ε(I − V ), g(φ·, φ·) = −ε(g − η ⊗ η) (5.1)

and ε = −1 corresponds to the almost contact case while ε = +1 to the almost
paracontact case. The relations (3.10) become:{

Cε(∂) = {µ, εφΦφ+ V ΦV + ∂η ⊗ ξ − η ⊗ Φ(ξ)},
χε(∂) = {µ, 1

2 (Φ + εφΦφ+ V ΦV + ∂η ⊗ ξ − η ⊗ Φ(ξ))} (5.2)

The canonical ε-connection is:

∇̃ε
XY := ∇g

XY + εη(X)φY − η(Y )∇g
Xξ + (∇g

Xη)Y · ξ (5.3)

The ε-Sasakian case is given by ([22, p. 38]):

∇g
Xξ = −φX, (∇g

Xη)Y = ω(X,Y ), (∇g
Xφ)Y = ε[η(Y )X − g(X,Y )ξ]. (5.4)

Remark that the first two relations do not depend on ε while the first equation implies
that ξ is a Killing vector field. Its linear connection Dg and canonical ε-connection
are:

Dg
XY = ∇g

XY + η(Y )φX + ω(X,Y )ξ, (5.5)

∇̃ε
XY = ∇g

XY + η(Y )φX + εη(X)φY + ω(X,Y )ξ. (5.6)

Remark that Dg does not depends on ε and their difference is:

(∇̃ε −Dg)XY = εη(X)φY. (5.7)

Secondly, we generalize the class of linear connections studied in the previous
section. Following [18, p. 272] let us fix a triple J∗ = (φ∗, η∗, ξ∗) ∈ T 1

2 (M) ×
T 0
2 (M)× T 1

1 (M). We generalize the notion of adapted connection to:
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Definition 5.1. The linear connection ∇ on ap(M) is called J∗-adapted if:

∇φ = φ∗, ∇η = η∗, ∇ξ = ξ∗. (5.8)

A direct remark is that if there exists a J∗-adapted connection then for a fixed
vector field X we have that J∗(X) = (φ∗(X, ·), η∗(X, ·), ξ∗(X)) ∈ ID(ap(M)) and
hence from (3.3)− (3.4) we get:

η∗(X, ξ) + η(ξ∗(X)) = 0, φ∗(X, ξ) + φ(ξ∗X) = 0, η∗(X,φY ) + η(φ∗(X,Y )) = 0,

φ∗(X,φY ) + φ(φ∗(X,Y )) = −ε[η∗(X,Y )ξ + η(Y )ξ∗(X)]. (5.9)

A triple J∗ satisfying these conditions will be called admissible. Conversely, from
Proposition 3.2 it follows that if these equations are satisfied then there exist J∗-
adapted linear connections. More precisely, following (3.7) we define:{

V ∗(X,Y ) = η∗(X,Y )ξ + η(Y )ξ∗(X),
2AJ∗(X,Y ) := −εφ(φ∗(X,Y ))− V (V ∗(X,Y )) + η(Y )ξ∗(X)− η∗(X,Y )ξ.

(5.10)
Using (5.9) we deduce:

2AJ∗(X,Y ) = 2η(Y )ξ∗(X) + εφ∗(X,φY )− [η∗(X,Y ) + η(Y )η(ξ∗(X))]ξ. (5.11)

Hence, the generalization of Theorem 4.1 is:

Theorem 5.1. A linear connection D is J∗-adapted if and only if there exists a linear
connection ∇ such that:

DX = AJ∗(X, ·) + χ(∇X) (5.12)

More precisely, denoting D∗,∇ the right hand side of (5.12) we get:

D∗,∇
X Y = D∇

XY + η(Y )ξ∗(X) +
ε

2
φ∗(X,φY )− 1

2
[η∗(X,Y ) + η(Y )η(ξ∗(X))]ξ. (5.13)

Its torsion is:

(T ∗,∇ − TD∇
)(X,Y ) = η(Y )ξ∗(X)− η(X)ξ∗(Y )+

+
ε

2
[φ∗(X,φY )−φ∗(Y, φX)]+

1

2
[η∗(Y,X)−η∗(X,Y )+η(X)η(ξ∗(Y ))−η(Y )η(ξ∗(X))]ξ.

(5.14)
The covariant derivative of the metric is:

(D∗,∇
X g −D∇

Xg)(Y, Z) = η(Y )η(Z)η(ξ∗X)− η(Y )g(ξ∗X,Z)− η(Z)g(Y, ξ∗X)−

−ε

2
[g(φ∗(X,Y ), Z) + g(Y, φ∗(X,Z))] +

1

2
[η(Z)η∗(X,Y ) + η(Y )η∗(X,Z)]. (5.15)

Example 5.2. i) A triple (φ∗, η∗ = αg, ξ∗ = βφ) with non-zero scalars α, β can not
be admissible.
ii) Let us search for (5.9) applied to a triple J∗ = (φ∗, η∗, ξ∗) = (αω⊗ξ, βg, γV = γη⊗
ξ) with non-zero scalars α, β and γ. We obtain the unique solution α = −β = γ = 1
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independent of ε and then the triple J∗ = (φ∗, η∗, ξ∗) = (ω ⊗ ξ,−g, V = η ⊗ ξ) is
admissible. Its J∗-adapted connection induced by ∇ is:

D∗,∇
X Y = D∇

XY + g(X,Y )ξ, T ∗,∇ = TD∇
. (5.16)

Hence, the parameter ε occurs only in the expression of D∇.
iii) In the ε-Sasakian case let ∇ = ∇g. The associated J∗-adapted connection for an
arbitrary admissible J∗ is:

D∗,g
X Y = ∇g

XY +η(Y )(ξ∗+φ)(X)+
ε

2
φ∗(X,φY )+[(ω− η∗

2
)(X,Y )− 1

2
η(Y )η(ξ∗X)]ξ.

(5.17)
iv) Following the almost contact case of [20] we consider the ε-triple J∗:{

ξ∗(X) = −φX − 1
2dη(X, ξ)ξ, η∗(X,Y ) = 1

2dη(X,Y )− ε
2dη(φX,φY ),

φ∗(X,Y ) = εη(Y )HX + 1
2dη(φX,HY )ξ − 1

2dη(X,φY )ξ.
(5.18)

which is admissible. We call it the normality triple of the given ε-geometry since
the almost contact structure is normal if and only if there exists a torsion-free J∗-
adapted connection. In the ε-Sasakian case exactly the Levi-Civita connection is such
a normality-adapted connection since (4.18) reduces to J∗ = (φ∗ = εI⊗η−εg⊗ξ, η∗ =
ω, ξ∗ = −φ) and we compare it with (5.4).
v) Inspired by [23, p. 84] a triple J∗ is called conical if ξ∗ = I. Then the equations
(5.9) are solved by η∗ = −η ⊗ η and φ∗(X,Y ) = −η(Y )φX and then (5.13) reduces
to:

D∗,∇
X Y = D∇

XY + η(Y )X. (5.19)

Comparing with (4.33) it results that for a symmetric connection D∇ the linear
connection D∗,∇ has a vectorial torsion given by the vector field V = −ξ.
vi) Also, a J∗ can be called Nijenhuis if φ∗ = Nφ which is expressed through any
symmetric connection, particularly ∇g, as:

(Nφ − 2εdη ⊗ ξ)(X,Y ) = (∇g
φXφ)Y − (∇g

φY φ)X + (∇g
Xφ)φY − (∇g

Y φ)φX+

+ε[η(Y )∇g
Xξ − η(X)∇g

Y ξ]. (5.20)

Hence the general expression of torsion for the linear connection Dg of (4.10) is:

(2TDg

+Nφ+4dη⊗ξ)(X,Y ) = η(X)∇g
Y ξ−η(Y )∇g

Xξ+(∇g
φXφ)Y −(∇g

φY φ)X. (5.21)

�

We finish this section by discussing the admissibility of a triple appearing in the
geometry of pseudo-convex CR-structures, following the terminology and notations
of [21], adapted to our setting. Fix a pseudo-convex CR-structure (M,H(M)) and
an associated almost contact structure (φ, η, ξ). The Theorem 3.1 of the cited paper
proves the existence and uniqueness of a symmetric linear connection D, called the
canonical torsion-free connection, and satisfying:

D(φ, η, ξ) = J∗, Ddη = 0 (5.22)
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for:
φ∗(X,Y ) = 2η(X)hY − dη(X,φY )ξ, η∗ = dη, ξ∗ = 0 (5.23)

and using the following assumptions:

h(ξ) = 0, η ◦ h = 0, φ ◦ h+ h ◦ φ = 0, dη(hX, Y ) + dη(X,hY ) = 0. (5.24)

We analyze these conditions by comparing with (5.9) for J∗ given by (5.23). Namely,
(5.91) means dη(X, ξ) = 0 which together with η(ξ) = 1 are the defining equations for
the Reeb vector field ξ. The conditions (5.92), (5.93) and (5.94) correspond exactly to
(5.241), (5.242) and (5.243) in this order. Remark that (5.242) means that h is H(M)-
valued and that the conditions (5.222) and (5.244) are used to obtain the uniqueness
of D. For X,Y ∈ H(M) = Ker(η) the expression of φ∗ is in relationship with the
Levi form Lη of H(M):

φ∗(X,Y ) = −dη(X,φY )ξ = −Lη(X,Y )ξ =
1

2
η([X,φY ])ξ. (5.25)

Another important remark is that from (5.222) the contact form η is covariant
constant under the iterated covariant derivative D: D(Dη) = 0. With the discussion
above it results that (5.23) is an admissible triple and a direct computation gives this
fact even for the almost paracontact case. Replacing this J∗ in (5.13) we get D is a
linear connection D∗,∇ with:

D∗,∇
X Y = D∇

XY − η(X)hφY − dη(X,Y )ξ (5.26)

and a straightforward computation reveals that D∇ is exactly the Tanaka-Webster
connection DTW . By the way, the Tanaka-Webster connection DTW is exactly the
adapted connection Dg following the approach of section 4 for the almost contact
case.

6 Applications to statistical and weak Frobenius
structures

Recall after [5] that the triple (M, g,∇) is a statistical manifold if ∇g is totally sym-
metric:

(∇Xg)(Y,Z) = (∇Y g)(Z,X)(= (∇Zg)(X,Y )). (6.1)

From (4.5) it follows that (M, g,D∇) is a statistical manifold if and only if ∇ satisfies:

2(∇Xg)(Y,Z) + g((∇Xφ)(φY ), Z) + g(Y, (∇Xφ)(φZ))− 2η(Y )η(Z)η(∇Xξ)+

+η(Y )[g(∇Xξ, Z)− (∇Xg)(Z, ξ)] + η(Z)[g(∇Xξ, Y )− (∇Xg)(Y, ξ)] =

= 2(∇Y g)(Z,X) + g((∇Y φ)(φZ), X) + g(Z, (∇Y φ)(φX))− 2η(Z)η(X)η(∇Y ξ)+

+η(Z)[g(∇Y ξ,X)− (∇Y g)(X, ξ)] + η(X)[g(∇Y ξ, Z)− (∇Y g)(Z, ξ)] (6.2)

for all X, Y , Z. In particular, if ∇ is metrical this condition reduces to:

g((∇Xφ)(φY ), Z) + g(Y, (∇Xφ)(φZ)) + η(Y )g(∇Xξ, Z) + η(Z)g(∇Xξ, Y ) =
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g((∇Y φ)(φZ), X) + g(Z, (∇Y φ)(φX)) + η(Z)g(∇Y ξ,X) + η(X)g(∇Y ξ, Z). (6.3)

For Z = ξ this relation is satisfied and is an open problem to solve the resulting
equation for Z⊥ξ.

The second application concerns with weak Frobenius structures introduced in
[11, p. 7]. A triple (M, g,A ∈ T 1

2 (M)) is called weak Frobenius structure if g♯ ◦ A is
totally symmetric i.e. for all vector fields X, Y , Z:

g(A(X,Y ), Z) = g(A(Y, Z), X)(= g(A(Z,X), Y )). (6.4)

With Z = ξ it follows:
η(A(X,Y )) = g(A(Y, ξ), X). (6.5)

We search for Ag = Dg −∇g and using (4.10) we get:

η(Dg
XY −∇g

XY ) = −g(∇g
Y ξ,X) (6.6)

which means:
η[∇g

X(Y − η(Y )ξ)]− (∇g
Xη)Y = 2g(∇g

Y ξ,X) (6.7)

or equivalently:
−(∇g

Xη)Y = g(∇g
Y ξ,X) (6.8)

We remark that the same relation (6.8) corresponds to a second choice: Ãg = D̃−∇g

and this relation is satisfied in para-Sasakian geometry, both sides being ω(X,Y ).
In para-Kenmotsu geometry the relation (6.8) reduces to g = η ⊗ η which is the
impossible relation ∇gη = 0 = ∇gξ.

Returning with (6.8) in the general condition (6.4) we arrive at:

g((∇g
Y φ)φZ,X)− g((∇g

Xφ)φY,Z) = η(X)(∇g
Y η)Z − 2η(Y )(∇g

Zη)X + η(Z)(∇g
Xη)Y
(6.9)

which yields:

Proposition 6.1. In para-Sasakian geometry the triples (M, g,Ag) and (M, g, Ãg)
are not weak Frobenius structures.

Proof. With (4.17) and (4.24) the condition (6.9) means:

η(X)ω(Y, Z) + η(Y )ω(X,Z) = 0 (6.10)

and for Y = ξ this relation is ω = 0. � �

The same negative answer holds for a third choice, namely Ac = ∇̃ −Dg, in the
para-Sasakian and para-Kenmotsu settings since (6.4) reads for Ac(X,Y ) = η(X)φY
as follows:

η(X)ω(Z, Y ) = η(Y )ω(X,Z) (6.11)

and we apply the same argument as in the above proof.

A linear connection which gives both structures of this section was introduced in
[5]. Let λ be a 1-form and the linear connection:

∇λ = ∇g + λ⊗ I + I ⊗ λ+ g ◦ λ♯g . (6.12)
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Then ∇λ is a statistical structure and Aλ = ∇λ − ∇g provides a weak Frobenius
structure with:

g(Aλ(X,Y )) = 2
∑
cyclic

[λ(X)g(Y, Z)]. (6.13)

Hence, for our study a natural problem is if ∇λ is adapted. For λ = η we have:

∇η
XY = ∇g

XY + η(X)Y + η(Y )X + g(X,Y )ξ (6.14)

and then ∇ηξ = 0 means:
∇g

Xξ = −X − 2η(X)ξ. (6.15)
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