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Abstract. In this paper, we study slant Frenet curves, slant curves with
null normal and null slant curves in a 3-dimensional para-Sasakian mani-
fold. A non-geodesic curve γ in a para-Sasakian 3-manifold M3 is a slant
curve if and only if η(N) = 0. Next, we find that for a slant Frenet curve
in a 3-dimensional para-Sasakian manifold, the ratio of κ and τ +1 is con-
stant (cf.[11]). There does not exist non-geodesic slant curves with null
normals in a 3-dimensional para-Sasakian manifold for η(γ′)2 = a2 6= 1.
Moreover, we construct para-Bianchi-Cartan-Vrănceanu model with 3-
dimensional para-Sasakian structure and find the necessary and sufficient
conditions for proper biharmonic Frenet curve. In particular, we prove
that the biharmonic Frenet curves in Hyperbolic Heisenberg group are
slant curves and find the parametric equations of them.
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1 Introduction

The harmonic maps φ : (Mm, g) → (Nn, h) between two pseudo-Riemannian mani-
folds as critical points of the energy E(φ) =

∫
M
|dφ|2dv. The tension field τφ is defined

by

τφ = trace∇φdφ = Σmi=1εi(∇φeidφ(ei)− dφ(∇eiei)),

where ∇φ and {ei} denote the induced connection by φ on the bundle φ∗TNn. A
smooth map φ is called a harmonic map if its tension field vanishes.

Next, the bienergy E2(φ) of a map φ is defined by E2(φ) =
∫
M
|τφ|2dv, and say

that φ is biharmonic if it is a critical point of the bienergy. Harmonic maps are clearly
biharmonic. Non-harmonic biharmonic maps are called proper biharmonic maps. We
define the bitension field τ2(φ) by

τ2(φ) := Σmi=1εi((∇φei∇
φ
ei −∇

φ
∇ei

ei
)τφ −RN (τφ, dφ(ei))dφ(ei)),
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where RN is the curvature tensor of Nn and defined by RN (X,Y ) = ∇[X,Y ] −
[∇X ,∇Y ]. (see [2, 10])

We now restrict our attention to isometric immersions γ : I → (M, g) from an
interval I to a pseudo-Riemannian manifold. The image C = γ(I) is the trace of a
curve in M and γ is a parametrization of C by arc length. In this case the tension
field becomes τγ = ε1∇γ′γ′ and the biharmonic equation reduces to

(1.1) τ2(γ) = ε1(∇2
γ′τγ −R(τγ , γ

′)γ′) = 0.

Note that C = γ(I) is part of a geodesic of M if and only if γ is harmonic.
Moreover, from the biharmonic equation if γ is harmonic, geodesics are a subclass of
biharmonic curves.

A one-dimensional integral submanifold of D in 3-dimensional contact manifold
is called a Legendre curve, especially to avoid confusion with an integral curve of the
vector field ξ. As a generalization of Legendre curve, the notion of slant curves was
introduced in [3] for a contact Riemannian 3-manifold, that is, a curve in a contact
3-manifold is said to be slant if its tangent vector field has constant angle with the
Reeb vector field. Thus, we studied biharmonic curves in 3-dimensional Sasakian
space form and proved it is slant curve in [4]. Also, the author studied biharmonic
curve and slant curves in Lorentzian Sasakian space forms in [7, 8, 9].

As with the contact Riemannian 3-manifold, a curve in a para-contact 3-manifold
is said to be slant if its tangent vector field has constant angle with the Reeb vector
field, that is, g(γ′, ξ) is a constant. In particular, if g(γ′, ξ) = 0 then γ is a Legendre
curve.

J. Welyczko([11]) studied slant curves in 3-dimensional normal almost paracontact
metric manifolds. He found properties of Frenet slant curves, null slant curves and
slant curves with null normals.

In this paper, we consider a 3-dimensional para-Sasakian manifold. In section 3,
we study slant Frenet curves, slant curves with null normals and null slant curves in
a 3-dimensional para-Sasakian manifold. A non-geodesic curve γ in a para-Sasakian
3-manifold M3 is a slant curve if and only if η(N) = 0. Moreover, we find that for a
slant Frenet curve in a 3-dimensional para-Sasakian manifold, the ratio of κ and τ +1
is constant (cf.[11]). There does not exist non-geodesic slant curves with null normals
in a 3-dimensional para-Sasakian manifold for η(γ′)2 = a2 6= 1.

In section 4, we construct para-Bianchi-Cartan-Vrănceanu model with 3-dimensional
para-Sasakian structure and find the necessary and sufficient conditions for proper bi-
harmonic Frenet curve. In section 5, we prove that the biharmonic Frenet curves in
Hyperbolic Heisenberg group are slant curves and find the parametric equations of
them.

2 Preliminaries

Let M be a (2n+1)-dimensional differentiable manifold. M has an almost paracontact
structure (ϕ, ξ, η) if it admits a (1, 1)-tensor field ϕ, a vector field ξ and a 1-form η
satisfying

(2.1) ϕ2 = I − η ⊗ ξ, η(ξ) = 1.
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Suppose M has an almost paracontact structure (ϕ, ξ, η). Then ϕξ = 0 and
η ◦ ϕ = 0. Moreover, the endomorphism ϕ has rank 2n.

If a (2n + 1)-dimensional smooth manifold M with almost paracontact structure
(ϕ, ξ, η) admits a compatible pseudo-Riemannian metric such that

(2.2) g(ϕX,ϕY ) = −g(X,Y ) + η(X)η(Y ),

then we say M has an almost paracontact structure (η, ξ, ϕ, g). Setting Y = ξ we
have

(2.3) η(X) = g(X, ξ).

Next, if the compatible pseudo-Riemannian metric g satisfies

(2.4) dη(X,Y ) = g(X,ϕY ),

then η is a contact form on M , ξ the associated Reeb vector field, g an associated
metric and (M,ϕ, ξ, η, g) is called a paracontact metric manifold.

For a paracontact metric manifold M , one may define naturally an almost para-
complex structure J on M × R by

J(X, f
d

dt
) = (ϕX + fξ, η(X)

d

dt
),

where X is a vector field tangent to M , t the coordinate of R and f a function on M×
R. If the almost paracomplex structure J is integrable, then the paracontact metric
manifold M is said to be normal or para-Sasakian. It is known that a paracontact
metric manifold M is normal if and only if M satisfies

[ϕ,ϕ]− 2dη ⊗ ξ = 0,

where [ϕ,ϕ] is the Nijenhuis torsion of ϕ.

Proposition 2.1 ([1], [11]). An almost paracontact metric manifold (M2n+1, η, ξ, ϕ, g)
is para-Sasakian if and only if

(2.5) (∇Xϕ)Y = −g(X,Y )ξ + η(Y )X.

Proposition 2.2 ([1], [11]). Let (M2n+1, η, ξ, ϕ, g) be a paracontact metric manifold.
Then

(2.6) ∇Xξ = −ϕX + ϕhX, for h =
1

2
Lξϕ.

If ξ is a Killing vector field with respect to the pseudo-Riemannian metric g, then
we have

(2.7) ∇Xξ = −ϕX.

Proposition 2.3. Let {T,N,B} are orthonormal frame field in a Lorentzian 3-
manifold. Then

T ∧L N = ε3B, N ∧L B = ε1T, B ∧L T = ε2N.
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3 Slant curves

A one-dimensional integral submanifold of D in 3-dimensional contact manifold is
called a Legendre curve, especially to avoid confusion with an integral curve of the
vector field ξ. As a generalization of Legendre curve, the notion of slant curves was
introduced in [3] for a contact Riemannian 3-manifold, that is, a curve in a contact
3-manifold is said to be slant if its tangent vector field has constant angle with the
Reeb vector field.

Like in contact Riemannian 3-manifolds, a curve in a para-contact 3-manifold is
said to be slant if its tangent vector field has constant angle with the Reeb vector
field, that is, g(γ′, ξ) is constant. In particular, if g(γ′, ξ) = 0 then γ is a Legendre
curve.

3.1 Slant Frenet curves

Let γ : I → M3 be a unit speed curve in Lorentzian 3-manifolds M3 such that γ′

satisfies g(γ′, γ′) = ε1 = ±1. The constant ε1 is called the causal character of γ. A
unit speed curve γ is said to be a spacelike or timelike if its causal character is 1 or
−1, respectively. A unit speed curve γ is said to be a Frenet curve if g(γ′′, γ′′) 6= 0.
A Frenet curve γ admits a orthonormal frame field {T = γ′, N,B} along γ. Then the
Frenet-Serret equations are following ([6], [10]):

(3.1)


∇γ′T = ε2κN,

∇γ′N = −ε1κT − ε3τB,
∇γ′B = ε2τN,

where κ = |∇γ′γ′| is the geodesic curvature of γ and τ its geodesic torsion. The vector
fields T , N and B are called tangent vector field, principal normal vector field, and
binormal vector field of γ, respectively.

The constants ε2 and ε3 defined by g(N,N) = ε2 and g(B,B) = ε3, and called
second causal character and third causal character of γ, respectively. Thus it satisfied
ε1ε2 = −ε3.

A Frenet curve γ is a geodesic if and only if κ = 0. A Frenet curve γ with constant
geodesic curvature and zero geodesic torsion is called a pseudo-circle. A pseudo-helix
is a Frenet curve γ whose geodesic curvature and torsion are constant.

By differentiating g(T, ξ) = a along γ in a para-Sasakian manifold, we get

a′ = g(ε2κN, ξ) + g(γ′,−ϕγ′) = −ε2κη(N).

This equation implies the following

Proposition 3.1. A non-geodesic Frenet curve γ in a para-Sasakian 3-manifold M3

is a slant curve if and only if η(N) = 0.

Moreover, we have

Lemma 3.2 ([11]). Let γ be a slant Frenet curve in 3-dimensional almost paracontact
manifold M . Then we find an orthonormal frame field in M as follows:

T = γ′, N =
ϕT√

| − ε1 + a2|
, B =

ξ − ε1aT√
| − ε1 + a2|

,
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also ξ = ε1aT +
√
| − ε1 + a2|B.

By using (2.2), (2.5), (2.7) and (3.1), we have the following

Theorem 3.3 (cf.[11]). Let γ be a slant Frenet curve in a 3-dimensional para-
Sasakian manifold M3. Then we have the curvature and torsion as follows:

κ =
√
| − ε1 + a2||δ|,(3.2)

τ = −1− ε1aδ,(3.3)

where δ = 1
|−ε1+a2|g(∇γ′γ′, ϕγ′).

From this we find

Corollary 3.4. Let γ be a slant Frenet curve in 3-dimensional para-Sasakian mani-
fold M3. Then the ratio of κ and τ + 1 is constant.

Moreover, we have

Corollary 3.5. Let γ be a Legendre Frenet curve in 3-dimensional para-Sasakian
manifold M3. Then its torsion is τ = −1.

3.2 Slant curves with null normals

We further consider a curve with null normals; γ is called a curve with null normal if

g(γ′, γ′) = 1, ∇γ′γ′ 6= 0, g(∇γ′γ′,∇γ′γ′) = 0.

Proposition 3.6 ([11]). Let γ be a curve with null normal in a 3-dimensional para-
Sasakian manifold.Then there exist the frame T,N, V and the curvature function κ
along γ, which satisfy the following Cartan equations:

∇γ′T = N, ∇γ′N = κN, ∇γ′V = −T − κV.

Welyczko ([11]) studied slant curves in 3-dimensional normal almost paracontact
metric manifolds in detail. In particular, we have for a 3-dimensional para-Sasakian
manifold the following

Theorem 3.7. There does not exist non-geodesic slant curves with null normals in
a 3-dimensional para-Sasakian manifold for η(γ′)2 = a2 6= 1.

3.3 Null slant curves

Now, we consider the case when γ is a null curve, i.e. it has a null tangent vector
field g(γ′, γ′) = 0 and γ is not a geodesic, that is, g(∇γ′γ′,∇γ′γ′) 6= 0. We take a
parametrization of γ such that g(∇γ′γ′,∇γ′γ′) = 1. Then it is in [5] proved that
there exists only one Cartan frame {T,N,W} and the function τ along γ whose
Cartan equations are

∇TT = N, ∇TW = τN, ∇TN = −τT −W,
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where

(3.4) T = γ′, N = ∇TT, τ =
1

2
g(∇TN,∇TN), W = −∇TN − τT.

Hence

g(T,W ) = g(N,N) = 1, g(T, T ) = g(T,N) = g(W,W ) = g(W,N) = 0.

For a null Legendre curve γ, we easily prove that γ is geodesic. Hence we suppose
that γ is non-geodesic, then we have

Theorem 3.8 (cf.[11]). Let γ be a non-geodesic null slant curve in a para-Sasakian
3-manifold. Then we have

N = ±1

a
ϕγ′, τ = − 1

2a2
± 1, W = − 1

2a2
γ′ +

1

a
ξ,(3.5)

where a = η(γ′) is non-zero constant.

Proof. Let ϕγ′ = pγ′+qN+rW for some functions p, q, r. From r = g(ϕγ′, γ′) = 0 we
have ϕγ′ = pγ′+ qN. Moreover, we get a2 = g(ϕγ′, ϕγ′) = q2 and pa = g(ϕγ′, ξ) = 0.
Since a 6= 0 we have q = ±a and p = 0. Hence we have N = ± 1

aϕγ
′. Next, using

(2.5) differentiating the normal vector field N then

∇γ′N = ∇γ′(±1

a
ϕγ′)

= ±1

a
{(∇γ′ϕ)γ′ + ϕ∇γ′γ′}(3.6)

= (∓1 +
1

a2
)γ′ − 1

a
ξ.

Thus we have

τ =
1

2
g(∇γ′N,∇γ′N) = − 1

2a2
± 1,(3.7)

and

W = −∇TN − τT = − 1

2a2
γ′ +

1

a
ξ.(3.8)

�

From Proposition 3.1 and Theorem 3.8, for all the slant curves γ in a para-Sasakian
3-manifold we have the following

Corollary 3.9. A non-geodesic curve γ in a para-Sasakian 3-manifold M3 is a slant
curve if and only if η(N) = 0.
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4 Biharmonic curves

Now, we construct para-Bianchi-Cartan-Vrănceanu model with 3-dimensional para-
Sasakian structure.

Let c be a real number and set

D =
{

(x, y, z) ∈ R3(x, y, z) | 1 +
c

2
(x2 + y2) > 0

}
.

Note that D is the whole R3(x, y, z) for c ≥ 0. On the region D, we take the contact
form

η = dz +
ydx− xdy

1 + c
2 (x2 + y2)

.

Then the characteristic vector field of η is ξ = ∂
∂z .

Consider the following Lorentzian metric:

gc =
−dx2 + dy2

{1 + c
2 (x2 + y2)}2

+

(
dz +

ydx− xdy
1 + c

2 (x2 + y2)

)2

.

We take the following orthonormal frame field on (D, gc):

u1 = {1 +
c

2
(x2 + y2)} ∂

∂x
− y ∂

∂z
, u2 = {1 +

c

2
(x2 + y2)} ∂

∂y
+ x

∂

∂z
, u3 =

∂

∂z
.

Then the endomorphism field ϕ is defined by

ϕu1 = u2, ϕu2 = u1, ϕu3 = 0.

The Levi-Civita connection ∇ of this Lorentzian 3-manifold is described as

∇u1
u1 = −c yu2, ∇u1

u2 = −c yu1 + u3, ∇u1
u3 = −u2,

(4.1) ∇u2
u1 = −c xu2 − u3, ∇u2

u2 = −c xu1, ∇u2
u3 = −u1,

∇u3u1 = −u2, ∇u3u2 = −u1, ∇u3u3 = 0.

[u1, u2] = −c yu1 + c xu2 + 2u3, [u2, u3] = [u3, u1] = 0.

The contact form η on D satisfies

dη(X,Y ) = g(X,ϕY ), X, Y ∈ X(D).

Moreover the structure (ϕ, ξ, η, gc) is para-Sasakian. The curvature tensor R(X,Y ) =
∇[X,Y ] − [∇X ,∇Y ] on (M3, η, ξ, ϕ, gc) is given by

R(u1, u2)u2 = −{3 + c2(x2 − y2)}u1, R(u1, u3)u3 = u1,

(4.2) R(u2, u1)u1 = {3 + c2(x2 − y2)}u2, R(u2, u3)u3 = u2,

R(u3, u1)u1 = −u3, R(u3, u2)u2 = u3.
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The sectional curvature is given by

K(u2, u3) = −1 = −K(u3, u1),

and
K(u1, u2) = R(u1, u2, u1, u2) = −{3 + c2(x2 − y2)}.

Hence (D, gc) is of holomorphic sectional curvature H = −{3 + c2(x2 − y2)}.
If c = 0 then it has constant holomorphic sectional curvature H = −3 and becomes

para-Sasakian space forms. The tension field is τγ = ε1∇γ′γ′ and from the Frenet-
Serret equation (3.1), ∇γ′γ′ = 0 if and only if κ = 0, whence we have

Proposition 4.1. Let γ : I → M3 be a Frenet curve in 3-dimensional para-B-C-V
space M3. Then γ is harmonic if and only if γ is a geodesic.

Next, using (3.1) we get

∇3
TT = 3ε3κκ

′T + ε2(κ′′ − ε2κ(ε1κ
2 + ε3τ

2))N + ε1(2κ′τ + κτ ′)B.

Using the curvature tensor (4.2) we have

R(κN, T )T

=κR(N1e1 +N2e2 +N3e3, T1e1 + T2e2 + T3e3)(T1e1 + T2e2 + T3e3)

=− ε2κ
[
{ε3 − (4 + c2(x2 − y2))B2

3}N + (4 + c2(x2 − y2))N3B3B
]
.

From the biharmonic equation (1.1) we have

τ2(γ) = ∇3
TT − ε2R(κN, T )T

= 3ε3κκ
′T +

[
ε2{κ′′ − ε2κ(ε1κ

2 + ε3τ
2)}+ κ{ε3 − (4 + c2(x2 − y2))B2

3}
]
N

+
[
ε1(2κ′τ + κτ ′) + κ(4 + c2(x2 − y2))N3B3]B

= 0

Hence we have

Theorem 4.2. Let γ : I →M3 be a Frenet curve parametrized by arc-length in the
para-B-C-V space M3. Then γ is a proper biharmonic curve if and only if

κ = constant 6= 0,

ε1κ
2 + ε3τ

2 = ε3 − {4 + c2(x2 − y2)}η(B)2,(4.3)

τ ′ = −ε1{4 + c2(x2 − y2)}η(N)η(B).

5 The hyperbolic Heisenberg group

In this section, we construct the biharmonic slant Frenet curve in the Heisenberg
group (H3, g) with para-Sasakian structure, that is c = 0, especially. It has constant
holomorphic sectional curvature H = −3 and becomes a para-Sasakian space form.
From now on, we shall call the Heisenberg group (H3, g) with para-Sasakian structure
as the hyperbolic Heisenberg group (see [1]).
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Corollary 5.1. Let γ : I → (H3, g) be a Frenet curve parametrized by arc-length in
the hyperbolic Heisenberg group (H3, g). Then γ is a proper biharmonic curve if and
only if

κ = constant 6= 0,

ε1κ
2 + ε3τ

2 = ε3 − 4η(B)2,(5.1)

τ ′ = −4ε1η(N)η(B).

Proposition 5.2. Let γ : I → (H3, g) be a Frenet curve parametrized by arc-length
in the hyperbolic Heisenberg group (H3, g). Then γ is a proper biharmonic curve if
and only if γ is a pseudo-helix with

κ 6= 0,

ε1κ
2 + ε3τ

2 = ε3 − 4η(B)2,(5.2)

η(N)η(B) = 0.

Proof. By using the Levi-Civita connection (4.1) and the Frenet-Serret equation (3.1),
we have

ε2τN3 = −g(∇TB, u3) = B′3 + ε2N3.

Therefore we have

(5.3) τ = ε2
B′3
N3

+ 1.

Now, we assume that γ is biharmonic and suppose that τ ′ = −4ε1N3B3 6= 0. Then

ττ ′ = (ε2
B′3
N3

+ 1)(−4ε1N3B3) = 4ε3B3B
′
3 + τ ′.

Hence we have
(τ − 1)2 = 4ε3B

2
3 + b,

where b is a constant. Applying the second equation of (5.2) to the above equation,
we see that τ is a constant, which yields a contradiction. �

Therefore we have

Theorem 5.3. Let γ : I → (H3, g) be a Frenet curve in the hyperbolic Heisenberg
group (H3, g). Then γ is proper biharmonic if and only if γ is a pseudo-helix with

(5.4) ε1κ
2 + ε3τ

2 = ε3 − 4η(B)2, η(N) = 0, η(B) = constant, κ 6= 0.

Proof. We suppose that B3 = 0. Then, from (5.3), we infer τ = 1. Now, we assume
that γ is biharmonic. Then, from the second equation of (5.2), we obtain that γ is a
geodesic, which yields a contradiction. �

From Proposition 3.1 and Theorem 5.3 we have

Corollary 5.4. Let γ : I → (H3, g) be a Frenet curve in the hyperbolic Heisenberg
group (H3, g). Then γ is proper biharmonic if and only if γ is a slant pseudo-helix
with

(5.5) ε1κ
2 + ε3τ

2 = ε3 − 4η(B)2, η(B) = constant, κ 6= 0.

We further consider a slant Frenet curve γ in the hyperbolic Heisenberg group
(H3, g), parametrized by arc-length.
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5.1 Slant curves with spacelike normal vector field

First, we suppose that ε2 = 1, that is −ε1 + a2 > 0. Then the tangent vector field
has the form

(5.6) T = γ′ =
√
−ε1 + a2 coshβu1 +

√
−ε1 + a2 sinhβu2 + au3,

where a = constant, β = β(s). Using (4.1), since γ is a non-geodesic, we may assume
that κ =

√
−ε1 + a2(β′ − 2a) > 0 without loss of generality. Then the normal vector

field has the explicit form

(5.7) N = sinhβu1 + coshβu2,

and the binormal vector field is ε3B = T∧LN = a coshβu1+a sinhβu2+
√
−ε1 + a2u3.

By assumption, since ε2 = 1, we have ε3 = −ε1. Hence

(5.8) B = −ε1(a coshβu1 + a sinhβu2 +
√
−ε1 + a2u3).

Using the Frenet-Serret equation (3.1), we have

Lemma 5.5. Let γ be a slant Frenet curve in the hyperbolic Heisenberg group (H3, g)
with spacelike normal vector field parametrized by arc-length. Then γ has

κ =
√
−ε1 + a2|β′ − 2a|,(5.9)

τ = −1− ε1a(β′ − 2a).

Moreover, the ratio of κ and τ + 1 is a constant.

Remark 5.1. From the Proposition 3.1, we see that η(N) = 0 for a slant Frenet
curve with spacelike normal vector field in the hyperbolic Heisenberg group (H3, g).
By differentiating η(N) = 0 and by using (5.6), (5.7), (5.8) and ε2 = 1, we infer

0 = g(∇TN, ξ) + g(N,∇T ξ)
= g(−ε1κT − ε3τB, ξ) + g(N,−ϕT )

= −ε1κa−
√
−ε1 + a2(τ + 1).

Therefore, for a non-geodesic slant Frenet curve with spacelike normal vector field
we have

τ + 1

κ
= − ε1a√

−ε1 + a2
,

which is constant.

Let γ(s) = (x(s), y(s), z(s)) be a curve in (H3, g). Then the tangent vector field
T of γ is

T =

(
dx

ds
,
dy

ds
,
dz

ds

)
=
dx

ds

∂

∂x
+
dy

ds

∂

∂y
+
dz

ds

∂

∂z
.

Using these relations, we get:

∂

∂x
= u1 + yu3,

∂

∂y
= u2 − xu3,

∂

∂z
= u3,



Slant curves and biharmonic Frenet curves 31

If γ is a slant curve with spacelike normal vector field in (H3, g), then from (5.6)
the system of differential equations for γ is given by

dx

ds
(s) =

√
−ε1 + a2 coshβ(s),(5.10)

dy

ds
(s) =

√
−ε1 + a2 sinhβ(s),(5.11)

dz

ds
(s) = a+

√
−ε1 + a2(x(s) sinhβ(s)− y(s) coshβ(s)).(5.12)

Now, we construct a proper biharmonic Frenet curve γ. From (5.4) and (5.9) we
have

Corollary 5.6. Let γ : I → (H3, g) be a proper biharmonic Frenet curve parametrized
by arc-length in the hyperbolic Heisenberg group (H3, g). Then

(5.13) β′ = a±
√

5a2 − 4ε1.

Namely, β′ is a constant, say A, hence β(s) = As + b, b ∈ R. Thus, from (5.10)
and (5.11) we have the following result:

Theorem 5.7. Let γ : I → (H3, g) be a slant Frenet curve with spacelike normal
vector field parametrized by arc-length s in hyperbolic Heisenberg group (H3, g). If it
satisfies proper biharmonic equation, then the parametric equations are given by

x(s) = 1
A

√
−ε1 + a2 sinh(As+ b) + x0,

y(s) = 1
A

√
−ε1 + a2 cosh(As+ b) + y0,

z(s) = {a+ ε1−a2
A }s+

√
−ε1+a2
A {x0 cosh(As+ b)− y0 sinh(As+ b)}+ z0.

5.2 Slant curves with timelike normal vector field

Further, for ε2 = −1, that is −ε1 + a2 < 0, the tangent vector field has the form

(5.14) T = γ′ =
√
ε1 − a2 sinhβu1 +

√
ε1 − a2 coshβu2 + au3,

where a = constant, β = β(s). Using (4.1), since γ is a non-geodesic, we may assume
that κ =

√
ε1 − a2(β′ − 2a) > 0 without loss of generality. Then the normal vector

field is

(5.15) N = coshβu1 + sinhβu2.

The binormal vector field is ε3B = T ∧L N = a sinhβu1 + a coshβu2 −
√
ε1 − a2u3.

By assumption, since ε2 = −1, we have ε3 = ε1. Hence

(5.16) B = ε1(a sinhβu1 + a coshβu2 −
√
ε1 − a2u3).

Using the Frenet-Serret equation (3.1), we have

Lemma 5.8. Let γ be a slant Frenet curve in the hyperbolic Heisenberg group (H3, g)
with timelike normal vector field parametrized by arc-length. Then γ has

κ =
√
ε1 − a2|β′ − 2a|,(5.17)

τ = −1− ε1a(β′ − 2a).

Moreover, the ratio of κ and τ + 1 is a constant.
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Remark 5.2. From Proposition 3.1, we see that η(N) = 0 for a slant Frenet curve
in the hyperbolic Heisenberg group (H3, g). By differentiating η(N) = 0 and by using
(5.14), (5.15), (5.16) and ε2 = −1, we have

0 = g(∇TN, ξ) + g(N,∇T ξ)
= g(−ε1κT − ε3τB, ξ) + g(N,−ϕT )

= −ε1κa+
√
ε1 − a2(τ + 1).

Therefore for a non-geodesic slant Frenet curve with timelike normal vector field,
we have

τ + 1

κ
=

ε1a√
ε1 − a2

which proves to be constant.

Let γ(s) = (x(s), y(s), z(s)) be a curve in (H3, g). Then the tangent vector field
T of γ is

T =

(
dx

ds
,
dy

ds
,
dz

ds

)
=
dx

ds

∂

∂x
+
dy

ds

∂

∂y
+
dz

ds

∂

∂z
.

Using the relations:

∂

∂x
= u1 + yu3,

∂

∂y
= u2 − xu3,

∂

∂z
= u3,

If γ is a slant Frenet curve in (H3, g), then from (5.14) the system of differential
equations for γ is given by

dx

ds
(s) =

√
ε1 − a2 sinhβ(s),(5.18)

dy

ds
(s) =

√
ε1 − a2 coshβ(s),(5.19)

dz

ds
(s) = a+

√
ε1 − a2(x(s) coshβ(s)− y(s) sinhβ(s)).(5.20)

Now, we construct a proper biharmonic Frenet curve γ. From (5.4) and (5.17),
we have

Corollary 5.9. Let γ : I → (H3, g) be a proper biharmonic Frenet curve parametrized
by arc-length in the hyperbolic Heisenberg group (H3, g). Then

(5.21) β′ = a±
√

5a2 − 4ε1.

Namely, β′ is a constant, say A, hence β(s) = As + b, b ∈ R. Thus, from (5.18)
and (5.19) we have the following result:

Theorem 5.10. Let γ : I → (H3, g) be a slant Frenet curve with timelike normal
vector field parametrized by arc-length s in hyperbolic Heisenberg group (H3, g). If it
satisfies proper biharmonic equation, then the parametric equations are given by

x(s) = 1
A

√
ε1 − a2 cosh(As+ b) + x0,

y(s) = 1
A

√
ε1 − a2 sinh(As+ b) + y0,

z(s) = {a+ ε1−a2
A }s+

√
ε1−a2
A {x0 sinh(As+ b)− y0 cosh(As+ b)}+ z0.
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