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Abstract. A Riemannian manifold endowed with k > 2 complemen-
tary orthogonal distributions (called a Riemannian almost multi-product
structure) appears in such topics as multiply twisted or warped products,
the webs or nets composed of several foliations, Ricci curvature and Ein-
stein equations, multi-time geometric dynamics and Dupin hypersurfaces.
In the paper we consider the mixed scalar curvature of such structure,
derive Euler-Lagrange equations for the Einstein-Hilbert type action with
respect to adapted variations of metric, and present them in a nice form
of Einstein equation.

M.S.C. 2010: 53C20, 53C21, 53C24.
Key words: Almost multi-product manifold; mixed scalar curvature; integral for-
mula; Einstein-Hilbert action.

1 Introduction

Many examples of Riemannian metrics come (as critical points) from variational prob-
lems, a particularly famous of which is the Einstein-Hilbert action, e.g., [5]. The
Euler-Lagrange equation for this action (called the Einstein equation) is

(1.1) Ric− (1/2) S · g + Λ g = a · Ξ

where g is a pseudo-Riemannian metric on a smooth manifold M , Ric – the Ricci
curvature, S – the scalar curvature, Λ – a constant (the “cosmological constant”), L
– Lagrangian describing the matter contents, a – the coupling constant involving the
gravitational constant and the speed of light and Ξ – the energy-momentum tensor.
The solution of (1.1) is a metric, satisfying this equation, where the tensor Ξ is given.
The classification of solutions of (1.1) is a deep and largely unsolved problem [5].

Distributions on a manifold (i.e., subbundles of the tangent bundle) appear in var-
ious situations, e.g., [4, 8] and are used to build up notions of integrability, and specif-
ically of a foliated manifold. On a manifold equipped with an additional structure,
e.g., almost product or contact, one can consider an analogue of the Einstein-Hilbert
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action adjusted to that structure. This approach was taken in [2, 3, 11, 14, 15], for
M endowed with a distribution D or a foliation.

In this article, continuing our study [2, 3, 11, 14, 14], a similar change in the
classical action is considered on an almost multi-product structure (M, g;D1, . . . ,Dk),
see [13], i.e., a connected smooth n-dimensional manifold endowed with k > 2 pairwise
orthogonal ni-dimensional distributions with

∑
ni = n. The notion of a multiply

warped product, e.g., [6], is a special case of this structure, which can be also viewed
in the theory of webs and nets composed of different foliations, see [1], in studies of the
curvature and Einstein equations, see [7], multi-time geometric dynamics and Dupin
hypersurfaces. The mixed Einstein-Hilbert action on (M,D1, . . . ,Dk), defined by

(1.2) JD : g 7→
∫
M

{ 1

2a
(SD1,...,Dk

− 2 Λ) + L
}

d volg,

is an analog of the Einstein-Hilbert action, where S is replaced by the mixed scalar cur-
vature SD1,...,Dk

, see (2.1). To deal also with non-compact manifolds (“spacetimes”),
it is assumed that the integral above is taken over M if it converges; otherwise, one
integrates over arbitrarily large, relatively compact domain Ω ⊂ M , which also con-
tains supports of variations of g. The geometrical part of (1.2) is the total mixed
scalar curvature of (M, g;D1, . . . ,Dk)

(1.3) JgD : g 7→
∫
M

SD1,...,Dk
d volg .

The mixed scalar curvature is the simplest curvature invariant of a pseudo-Riemannian
almost product structure, which can be defined as an averaged sum of sectional curva-
tures of planes that non-trivially intersect with both of the distributions. Investigation
of SD1,D⊥1 led to multiple results regarding the existence of foliations and submersions
with interesting geometry, e.g., integral formulas and splitting results, curvature pre-
scribing and variational problems, see [12, 16, 18]. Varying (1.2) as a functional of
adapted metric g, we obtain the Euler-Lagrange equations in the beautiful form of
Einstein equation (1.1), i.e.,

(1.4) RicD − (1/2)SD · g + Λ g = a · Ξ,

where the Ricci tensor and the scalar curvature are replaced by the Ricci type tensor
RicD, see (3.16), and its trace SD, and Ξ is given by Ξµν = −2 ∂L/∂gµν + gµνL.

Using the equality

S = 2 SD1,...,Dk
+
∑

i
S(Di),

where S(Di) is the scalar curvature of the distribution Di, one can combine the
Einstein-Hilbert action on (M,D1, . . . ,Dk) (e.g., [9] for multiply warped products)
with our action (1.2). The result is the perturbed Einstein-Hilbert action, whose
critical points describe the “space-times” in an extended theory of gravity. The geo-
metrical part of this action is JD,ε : g 7→

∫
M

(S + εSD1,...,Dk
) d volg, ε ∈ R.

Our action (1.2) can also be useful in studying the interaction of several m-flows
(m-dimensional distributions) in multi-time geometric dynamics, e.g., [10, 17].

We delegate the following questions for further study:
a) generalize our results for arbitrary variations of metrics;
b) extend our results for metric-affine manifolds (as in Einstein-Cartan theory);
c) find applications of our results in geometry, dynamics and physics.
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2 The mixed scalar curvature

Here, we recall the properties of the mixed scalar curvature of a Riemannian multi-
product manifold (M, g;D1, . . . ,Dk), see [13]. A pseudo-Riemannian metric g = 〈·, ·〉
of index q on a smooth manifold M is an element g ∈ Sym2(M) (of the space of
symmetric (0, 2)-tensors) such that each gx (x ∈ M) is a non-degenerate bilinear
form of index q on the tangent space TxM . For q = 0 (i.e., gx is positive definite)
g is a Riemannian metric and for q = 1 it is called a Lorentz metric. A distribution
D on (M, g) is non-degenerate, if gx is non-degenerate on Dx ⊂ TxM for all x ∈
M ; in this case, the orthogonal complement of D⊥ is also non-degenerate. Denote
by Riem(M ;D1, . . .Dk) the subspace of adapted pseudo-Riemannian metrics, that is
making {Di} pairwise orthogonal and non-degenerate. Let Pi : TM → Di be the
orthoprojector, then P⊥i = idTM −Pi is the orthoprojector onto D⊥i . The second
fundamental form hi : Di × Di → D⊥i and the skew-symmetric integrability tensor
Ti : Di ×Di → D⊥i of Di are defined by

hi(X,Y ) =
1

2
P⊥i (∇XY +∇YX),

Ti(X,Y ) =
1

2
P⊥i (∇XY −∇YX) =

1

2
P⊥i [X,Y ].

Similarly, h⊥i , H
⊥
i = Trg h

⊥
i , T

⊥
i are the second fundamental forms, mean curvature

vector fields and the integrability tensors of distributions D⊥i in M . Note that Hi =∑
j 6=i PjHi, etc. Recall that a distribution Di is called integrable if Ti = 0, and Di is

called totally umbilical, harmonic, or totally geodesic, if hi = (Hi/ni) g, Hi = 0, or
hi = 0, respectively.

Given g ∈ Riem(M ;D1, . . .Dk), there is a local orthonormal frame {E1, . . . , En}
on M , where {E1, . . . , En1

} ⊂ D1 and {Eni−1+1, . . . , Eni
} ⊂ Di for 2 ≤ i ≤ k, and

εa = 〈Ea, Ea〉 ∈ {−1, 1}. All quantities defined below using such frame do not depend
on the choice of this frame.

A plane X ∧ Y in TM spanned by two vectors belonging to different distri-
butions Di and Dj will be called mixed, and the sectional curvature K(X,Y ) =
R(X,Y X, Y )〉/(〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2) is said to be mixed. The mixed scalar cur-
vature of (M, g;D1, . . . ,Dk) is defined as an averaged mixed sectional curvature.

Definition 2.1 (see [13]). Given g ∈ Riem(M ;D1, . . . ,Dk) with k ≥ 2, the following
function on M will be called the mixed scalar curvature:

(2.1) SD1,...,Dk
=
∑
i<j

∑
ni−1<a≤ni, nj−1<b≤nj

K(Ea, Eb),

where K(Ea, Eb) = εa εb 〈R(Ea, Eb)Ea, Eb〉 is the mixed sectional curvature of the
plane Ea∧Eb. The following symmetric (0, 2)-tensor r is called the partial Ricci tensor:

r(X,Y ) =
1

2

∑
i
rDi

(X,Y ), X, Y ∈ XM ,

where the partial Ricci tensor related to Di is

(2.2) rDi
(X,Y ) =

∑
ni−1<a≤ni

εa 〈REa, P⊥i X Ea, P
⊥
i Y 〉, X, Y ∈ XM .
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Proposition 2.1. We have

SD1,...,Dk
=

1

2

∑
i
SDi,D⊥i = Trg r.

Proof. This follows from definitions (2.1)–(2.2) and the equality Trg rDi
= SDi,D⊥i . �

Recall that the divergence of a (1, s)-tensor field S on (M, g) is a (0, s)-tensor field

divS = trace(Y → ∇Y S).

For s = 0, we get the divergence divX = Tr(∇X) of a vector field X, e.g., [5].
The squares of norms of tensors are obtained using

〈hi, hi〉 =
∑

ni−1<a,b≤ni

εaεb 〈hi(Ea, Eb), hi(Ea, Eb)〉,

〈Ti, Ti〉 =
∑

ni−1<a,b≤ni

εaεb 〈Ti(Ea, Eb), Ti(Ea, Eb)〉.

The following formula for a Riemannian manifold (M, g) endowed with two comple-
mentary orthogonal distributions D and D⊥, see [18]:

div(H +H⊥) = SD,D⊥

+ 〈h, h〉+ 〈h⊥, h⊥〉 − 〈H,H〉 − 〈H⊥, H⊥〉 − 〈T, T 〉 − 〈T⊥, T⊥〉,(2.3)

has many interesting global corollaries (e.g., decomposition criteria using the sign
of S, [16]). In [13], we generalized (2.3) to (M, g) with k > 2 distributions and gave
applications to splitting and isometric immersions of manifolds, in particular, multiply
warped products. Set

(2.4) Q(D, g) = 〈H⊥, H⊥〉+ 〈H,H〉 − 〈h, h〉 − 〈h⊥, h⊥〉+ 〈T, T 〉+ 〈T⊥, T⊥〉,

then (2.3) can be written as

(2.5) SD,D⊥ = Q(D, g) + div(H +H⊥).

The mixed scalar curvature of a pair of distributions (Di,D⊥i ) on (M, g) is

SDi,D⊥i =
∑

ni−1<a≤ni, b 6=(ni−1,ni]
εaεb 〈REa,Eb

Ea, Eb〉.

If Di is spanned by a unit vector field N , i.e., 〈N,N〉 = εN , then

SDi,D⊥i = εNRicN,N ,

where RicN,N is the Ricci curvature in the N -direction. We have

SDi,D⊥i = Trg rDi = Trg rD⊥i .

If dimDi = 1 then rDi = εN RN , where RN = R(N, ·)N is the Jacobi operator, and
rD⊥i = RicN,N g

⊥
i , where g⊥i (X,Y ) := 〈P⊥i X,P⊥i Y 〉 for all X,Y ∈ XM .
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The Di-deformation tensor of Z ∈ XM is the symmetric part of ∇Z restricted
to Di,

2 DefDi
Z(X,Y ) = 〈∇XZ, Y 〉+ 〈∇Y Z,X〉, X, Y ∈ Di.

The “musical” isomorphisms ] and [ will be used for rank one and symmetric rank 2
tensors. For example, if ω ∈ Λ1(M) is a 1-form and X,Y ∈ XM then ω(Y ) = 〈ω], Y 〉
and X[(Y ) = 〈X,Y 〉. For arbitrary (0,2)-tensors B and C we also have

〈B,C〉 = Trg(B
]C]) = 〈B], C]〉.

The shape operator (Ai)Z of Di with Z ∈ D⊥i , and the operator (Ti)
]
Z are defined by

〈(Ai)Z(X), Y 〉 = hi(X,Y ), Z〉, 〈(Ti)]Z(X), Y 〉 = 〈Ti(X,Y ), Z〉, X, Y ∈ Di.

The Casorati type operators Ai : Di → Di and Ti : Di → Di, and the (0, 2)-tensor
Ψi, see [3, 14], are defined using Ai and Ti by

Ai =
∑

Ea∈D⊥i
εa((Ai)Ea

)2, Ti =
∑

Ea∈D⊥i
εa((Ti)

]
Ea

)2,

Ψi(X,Y ) = Tr((Ai)Y (Ai)X + (Ti)
]
Y (Ti)

]
X), X, Y ∈ D⊥i .

We define a self-adjoint (1, 1)-tensor Ki : Di → Di by the formula with Lie bracket,

Ki =
∑

Ea∈D⊥i
εa [(T ]i )Ea

, (Ai)Ea
].

For any (1, 2)-tensors Q1, Q2 and a (0, 2)-tensor S define the (0, 2)-tensor ΥQ1,Q2 by

〈ΥQ1,Q2
, S〉 =

∑
λ,µ

ελ εµ
[
S(Q1(eλ, eµ), Q2(eλ, eµ)) + S(Q2(eλ, eµ), Q1(eλ, eµ))

]
,

where on the left-hand side we have the inner product of (0, 2)-tensors induced by g,
{eλ} is a local orthonormal basis of TM and ελ = 〈eλ, eλ〉 ∈ {−1, 1}.

Remark 2.2. If g is definite then Υhi,hi
= 0 if and only if hi = 0. Indeed, we have

〈Υhi,hi
, X[ ⊗X[〉 = 2

∑
a,b
〈X,hi(Ea, Eb)〉2, X ∈ D⊥i .

The above sum is equal to zero if and only if every summand vanishes. This yields
hi = 0. Thus, Υhi,hi is a “measure of non-total geodesy” of the distribution Di.
Similarly, ΥTi,Ti

can be viewed as a “measure of non-integrability” of Di.

The following presentation of the partial Ricci tensor in (2.2) is valid, see [3, 14]:

(2.6) rDi
= div hi + 〈hi, Hi〉 − A[i − T [i −Ψ⊥i + DefD⊥i H

⊥
i .

Tracing (2.6) over Di and applying the equalities

Trg (div hi) = divHi, Tr〈hi, Hi〉 = 〈Hi, Hi〉, Trg Ψ⊥i = 〈h⊥i , h⊥i 〉 − 〈T⊥i , T⊥i 〉,
TrAi = 〈hi, hi〉, Tr Ti = −〈Ti, Ti〉, Trg (DefD⊥i H

⊥
i ) = divH⊥i + g(H⊥i , H

⊥
i ),

we get (2.3) with D = Di.
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Remark 2.3. For an almost multi-product manifold (M, g;D1, . . . ,Dk) we have

div
∑

i
(Hi +H⊥i ) = 2 SD1,...,Dk

−
∑

i
Q(Di, g),(2.7)

see [13]. To illustrate the proof of (2.7) for k > 2, consider the case of k = 3. Using
(2.3) for two distributions, D1 and D⊥1 = D2 ⊕D3, according to (2.4) and (2.5) with
D = D1, we get

div(H1 +H⊥1 ) = 2 SD1,D⊥1 −Q(D1, g),

and similarly for (D2, D⊥2 ) and (D3, D⊥3 ). Summing 3 copies of (2.8), we obtain (2.7)
for k = 3. Applying Stokes’ Theorem for (2.7) on a closed manifold M yields the
integral formulas for all k ∈ {2, . . . , n}, which for k = 2 directly follows from (2.3).

3 Adapted variations of metric

We consider smooth 1-parameter variations {gt ∈ Riem(M) : |t| < ε} of the metric
g0 = g. Let the infinitesimal variations, represented by a symmetric (0, 2)-tensor

B(t) ≡ ∂gt/∂t,

be supported in a relatively compact domain Ω in M , i.e., gt = g and Bt = 0 outside
Ω for |t| < ε. We adopt the notations ∂t ≡ ∂/∂t, B ≡ ∂tgt | t=0 = ġ, but we shall also
write B instead of Bt to make formulas easier to read, wherever it does not lead to
confusion. Since B is symmetric, then 〈C, B〉 = 〈Sym(C), B〉 for any (0, 2)-tensor C.
Denote by ⊗ the product of tensors.

Definition 3.1. A family of adapted pseudo-Riemannian metrics

{g(t) ∈ Riem(M ;D1, . . .Dk) : |t| < ε}

will be called an adapted variation. In other words, Di and Dj are gt-orthogonal for
all i 6= j and t. An adapted variation gt is called a Dj-variation (for some j ∈ [1, k]) if

gt(X,Y ) = g0(X,Y ), X, Y ∈ D⊥j , |t| < ε.

For an adapted variation we have gt = g1(t) ⊕ . . . ⊕ gk(t), where gj(t) = gt|Dj .
Thus, the tensor Bt = ∂t gt of an adapted variation of metric on (M ;D1, . . . ,Dk) is

decomposed into the sum of derivatives of Dj-variations; namely, Bt =
∑k

j=1Bj(t),
where Bj(t) = ∂t gj(t) = Bt|Dj

.

Lemma 3.1. Let a local adapted frame {Ea} evolve by gt ∈ Riem(M ;D1, . . .Dk)
according to

∂tEa = −(1/2)B]t (Ea).

Then, {Ea(t)} is a gt-orthonormal adapted frame for all t.

Proof. For {Ea(t)} we have

∂t(gt(Ea, Eb)) = gt(∂tEa(t), Eb(t)) + gt(Ea(t), ∂tEb(t)) + (∂tgt)(Ea(t), Eb(t))

= Bt(Ea(t), Eb(t))−
1

2
gt(B

]
t (Ea(t)), Eb(t))−

1

2
gt(Ea(t), B]t (Eb(t))) = 0.

From this the claim follows. �
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Lemma 3.2. If gt is a Dj-variation of g ∈ Riem(M ;D1, . . . ,Dk), then

∂t〈h⊥
j , h

⊥
j 〉 = −〈(1/2)Υh⊥j ,h⊥j

, Bj〉,

∂t〈hj , hj〉 = 〈 div hj +K[
j , Bj〉 − div〈hj , Bj〉,

∂tg(H⊥
j , H⊥

j ) = −〈 (H⊥
j )[ ⊗ (H⊥

j )[, Bj〉,
∂tg(Hj , Hj) = 〈 (divHj) gj , Bj〉 − div((TrB]

j)Hj),

∂t〈T⊥
j , T⊥

j 〉 = 〈 (1/2)ΥT⊥j ,T⊥j
, Bj〉,

∂t〈Tj , Tj〉 = 〈2 T [
j , Bj〉,(3.1)

and for i 6= j (when k > 2) we have dual equations

∂t〈hi, hi〉 = 〈−(1/2)Υhi,hi , Bj〉,
∂t〈h⊥

i , h
⊥
i 〉 = 〈div h⊥

i + (K⊥
i )[, Bj〉 − div〈h⊥

i , Bj〉,
∂tg(Hi, Hi) = −〈H[

i ⊗H[
i , Bj〉,

∂tg(H⊥
i , H⊥

i ) = 〈 (divH⊥
i ) gj , Bj〉 − div((TrB]

j)H⊥
i ),

∂t〈Ti, Ti〉 = 〈 (1/2)ΥTi,Ti , Bj〉,
∂t〈T⊥

i , T⊥
i 〉 = 〈2 (T ⊥

i )[, Bj〉,(3.2)

Proof. The equations (3.1) coincide with equations from [15, Proposition 2] for a pair
(Dj ,D⊥j ), and equations (3.2) are dual to (3.1). �

For any variation gt of metric g on M with B = ∂tg we have, e.g., [14],

(3.3) ∂t
(
d volg

)
=

1

2
(Trg B) d volg =

1

2
〈B, g〉d volg .

By (3.3), using the Divergence Theorem, for any variation gt with supp (∂tg) ⊂ Ω,
and t-dependent X ∈ XM with supp (∂tX) ⊂ Ω we have

(3.4)
d

dt

∫
M

(divX) d volg =

∫
M

div
(
∂tX +

1

2
(Trg B)X

)
d volg = 0.

From Lemmas 3.1 and 3.2 and the equality, see (2.4),

Q(Di, g) = 〈H⊥i , H⊥i 〉+ 〈Hi, Hi〉 − 〈hi, hi〉 − 〈h⊥i , h⊥i 〉+ 〈Ti, Ti〉+ 〈T⊥i , T⊥i 〉,

we obtain the following.

Proposition 3.3. For a Dj-variation of metric g ∈ Riem(M ;D1, . . . ,Dk) we have

(3.5) ∂t
∑

i
Q(Di, g) = 〈Qj , Bj〉 − divXj ,

where Bj = ∂tgt | t=0, and (0,2)-tensors Qj on Dj × Dj and vector fields Xj are
given by

2Xj = 〈hj , Bj〉 − (TrB]
j)Hj +

∑
i 6=j

(〈h⊥
i , Bj〉 − (TrB]

j)H⊥
i ),

Qj = − div hj −K[
j +

1

2
Υh⊥j ,h⊥j

+
1

2
ΥT⊥j ,T⊥j

+ 2 T [
j − (H⊥

j )[ ⊗ (H⊥
j )[ + (divHj) gj

+
∑

i6=j

(
− div h⊥

i |Dj − (PjK⊥
i )[ +

1

2
ΥPjhi,Pjhi +

1

2
ΥPjTi,PjTi + 2 (PjT ⊥

i )[

− (PjHi)
[ ⊗ (PjHi)

[ + (divH⊥
i ) gj

)
.

The summation part related to D⊥j (in Xj and Qj) is dual to the part related to Dj .
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The next theorem allows us to restore the partial Ricci curvature, see (1.4). It
is based on calculating the variations with respect to g of components in (2.3) and
using (3.4) for divergence terms. By this theorem and Definition 3.5 in what follows
we conclude that an adapted metric g is critical for the action (1.2) with respect to
adapted variations of metric preserving the volume of Ω, i.e., Vol(Ω, gt) = Vol(Ω, g)
for all t, if and only if (1.4) holds.

Theorem 3.4 (see [15]). An adapted metric g ∈ Riem(M ;D1, . . . ,Dk) is critical for
the geometrical part of (1.2) (i.e., Λ = 0 = L) with respect to adapted variations
preserving the volume of Ω if and only if the following Euler-Lagrange equations hold:

div hj +K[j −
1

2
Υh⊥j ,h

⊥
j
− 1

2
ΥT⊥j ,T

⊥
j
− 2 T [j + (H⊥j )[ ⊗ (H⊥j )[

+
∑

i 6=j

(
div h⊥i |Dj

+ (PjK⊥i )[ − 1

2
ΥPjhi,Pjhi

− 1

2
ΥPjTi,PjTi

− 2 (PjT ⊥i )[

+ (PjHi)
[ ⊗ (PjHi)

[
)

=
(

SD1,...,Dk
− div(Hj +

∑
i 6=j

H⊥i ) + λ
)
gj(3.6)

for some λ ∈ R and 1 ≤ j ≤ k, or, in a short form,

(3.7) Qj = −
(

SD1,...,Dk
− 1

2
div
∑

i
(Hi +H⊥i ) + λ

)
gj , 1 ≤ j ≤ k.

Proof. Let gt be a Dj-variation of g compactly supported in Ω ⊂M . Using Divergence
theorem to (3.5) and removing integrals of divergences of vector fields supported in
Ω ⊂M , we get

(3.8)

∫
Ω

∑
i
∂tQ(Di, gt) | t=0 d volg =

∫
Ω

〈Qj , Bj〉d volg .

By (3.4) with X =
∑

i(Hi +H⊥i ) we get

d

dt

∫
Ω

div
∑

i
(Hi +H⊥i ) d volg = 0.

Thus, for the action (1.3), using (2.7), (3.3), (3.5) and (3.8), we get

2
d

dt
JgD(gt) | t=0 =

d

dt

∫
Ω

∑
i
Q(Di, gt) d volgt | t=0

=

∫
Ω

∑
i
∂tQ(Di, gt)| t=0 d volg +

∫
Ω

∑
i
Q(Di, g) ∂t(d volgt)| t=0

=

∫
Ω

〈Qj +
1

2

∑
i
Q(Di, g) g, Bj 〉d volg .(3.9)

If g is critical for the action JgD with respect to Dj-variations of g, then the integral
in (3.9) is zero for any symmetric (0, 2)-tensor Bj . This yields the Dj-component of
Euler-Lagrange equation

Qj +
1

2

∑
i
Q(Di, g) gj = 0, 1 ≤ j ≤ k.(3.10)
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For adapted variations preserving the volume of Ω, using (3.3), we have

0 = ∂t

∫
M

d volg =

∫
M

∂t d volg =

∫
M

1

2
(TrB) d volg =

1

2

∫
Ω

〈g, B〉d volg .

Thus, the Euler-Lagrange equation of (1.3) with respect to Dj-variations preserving
the volume of Ω are

Qj + (
1

2

∑
i
Q(Di, g) + λ) gj = 0

instead of (3.10). Replacing here
∑

iQ(Di, g) according to (2.7), we get (3.6). �

Remark 3.2. Using the partial Ricci tensor (2.2) and replacing div hj and div h⊥i
for i 6= j in (3.6) according to (2.6), we can rewrite (3.6) as

rDj
− 〈hj , Hj〉+A[j − T [j + Ψ⊥j −DefD⊥j H

⊥
j +K[j + (H⊥j )[ ⊗ (H⊥j )[

−1

2
Υh⊥j ,h

⊥
j
−1

2
ΥT⊥j ,T

⊥
j

+
∑

i 6=j

(
rD⊥i |Dj

−〈h⊥i |Dj
, H⊥i 〉+ (PjA⊥i )[−(PjT ⊥i )[

+ Ψi|Dj
−DefDj

Hi+(PjK⊥i )[+(PjHi)
[ ⊗ (PjHi)

[−1

2
ΥPjhi,Pjhi

−1

2
ΥPjTi,PjTi

)
=
(

SD1,...,Dk
− div(Hj +

∑
i 6=j

H⊥i ) + λ
)
gj , j = 1, . . . , k.(3.11)

Example 3.3. A pair (Di,Dj) with i 6= j of distributions on a Riemannian almost
multi-product manifold (M, g;D1, . . . ,Dk) is called mixed integrable, see [13], if

Ti,j(X,Y ) = 0 (X ∈ Di, Y ∈ Dj).

Let (M, g;D1, . . . ,Dk) with k > 2 has integrable distributions D1, . . . ,Dk and each
pair (Di,Dj) is mixed integrable. Then T⊥l (X,Y ) = 0 for all l ≤ k and X ∈ Di, Y ∈
Dj with i 6= j, see [13, Lemma 2]. In this case, (3.11) reads as

rDj − 〈hj , Hj〉+A[j + Ψ⊥j −DefD⊥j H
⊥
j −

1

2
Υh⊥j ,h

⊥
j

+ (H⊥j )[ ⊗ (H⊥j )[

+
∑

i6=j

(
rD⊥i |Dj − 〈h⊥i |Dj , H

⊥
i 〉+ (PjA⊥i )[ + Ψi|Dj −DefDjHi −

1

2
ΥPjhi,Pjhi

+ (PjHi)
[ ⊗ (PjHi)

[
)

=
(
SD1,...,Dk

−div(Hj +
∑

i 6=j
H⊥i ) + λ

)
gj , j = 1, . . . , k.

Definition 3.4. The Ricci type symmetric (0, 2)-tensor RicD in (1.4) is defined by
its restrictions RicD |Dj×Dj

on k subbundles Dj of TM ,

(3.12) RicD |Dj×Dj
= −Qj + µj gj , j = 1, . . . , k

(in a short form, using Qj in the LHS of (3.7)), where (µj) are uniquely determined
(see (3.15) and Theorem 3.5 below) so that critical metrics satisfy Einstein type
equation (1.4). Using (2.6), this can be written in more detail as

RicD |Dj×Dj
= rDj

− 〈hj , Hj〉+A[j + T [j +Ψ⊥j −DefD⊥j H
⊥
j +K[j + (H⊥j )[ ⊗ (H⊥j )[

− 1

2
Υh⊥j ,h

⊥
j
−2 T [j −

1

2
ΥT⊥j ,T

⊥
j

+
∑

i6=j

(
rD⊥i |Dj − 〈h⊥i |Dj , H

⊥
i 〉+ (PjA⊥i )[

+ (PjT ⊥i )[ + Ψi|Dj
− DefDj

Hi + (PjK⊥i )[ + (PjHi)
[ ⊗ (PjHi)

[

− 1

2
ΥPjhi,Pjhi −

1

2
ΥPjTi,PjTi − 2 (PjT ⊥i )[

)
+ µj gj .(3.13)
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Theorem 3.5. A metric g ∈ Riem(M ;D1, . . .Dk) is critical for the geometrical part
of (1.2), i.e., Λ = 0 = L, with respect to adapted variations if and only if g satisfies
Einstein type equation (1.4), where the tensor RicD is defined in (3.12).

Proof. The Euler-Lagrange equations (3.6) consist of Dj ×Dj-components. Thus, for
(1.3) we obtain (3.13). If n = 2 (and k = 2), then we take µ1 = µ2 = 0, see [11].
Assume that n > 2. Substituting (3.13) with arbitrary (µj) into (1.4) along Dj , we
conclude that if the Euler Lagrange equations

Qj = −bj gj (1 ≤ j ≤ k)

hold, where bj gj is the RHS of (3.6), then RicD − (1/2)SD · g = 0, see (1.4) with
Λ = 0 = Ξ, if and only if (µj) satisfy the linear system

(3.14)
∑

i
ni µi − 2µj = aj , j = 1, . . . , k,

with coefficients aj = Trg(
∑

iQi) − 2Qj . The matrix of (3.14) is invertible. Its
determinant 2k−1(2 − n) is negative when n > 2. Hence, the system (3.14) has a
unique solution (µ1, . . . , µk) given by

(3.15) µ i = − 1

2n− 4

(∑
j

(a i − aj)nj − 2 a i
)
,

and RicD |Dj×Dj
satisfies (3.13). �

Example 3.5 (see [11]). The symmetric Ricci type tensor RicD in (1.4) with k = 2,
is defined by its restrictions on two complementary subbundles D and D⊥ of TM ,

RicD |D⊥×D⊥ = r − 〈h⊥, H⊥〉+ (A⊥) [ − (T ⊥) [ + Ψ−DefDH + (K⊥) [

+H[ ⊗H[ − 1

2
Υh,h −

1

2
ΥT,T + µ1 g

⊥,

RicD|D×D = r⊥ − 〈h, H〉+A[ − T [ + Ψ⊥ −DefD⊥ H
⊥ +K[

+ (H⊥)[ ⊗ (H⊥)[ − 1

2
Υh⊥,h⊥ −

1

2
ΥT⊥,T⊥ + µ2 g

>,(3.16)

where µ1 = −n1−1
n−2 div(H⊥ −H) and µ2 = n2−1

n−2 div(H⊥ −H). Here (3.16)2 is dual

to (3.16)1 with respect to interchanging distributions D and D⊥, and their last terms
vanish if n1 = n2 = 1. Also, we have

SD := TrgRicD = SD,D⊥ +
n2 − n1

n− 2
div(H⊥ −H).

Example 3.6. Totally umbilical and totally geodesic integrable distributions appear
on multiply twisted products. A multiply twisted product F1 ×u2

F2 × . . . ×uk
Fk of

Riemannian manifolds (Fi, gFi
), 1 ≤ i ≤ k, is the product M =

∏
i Fi with the metric

g = gF1
⊕ u2

2 gF2
⊕ . . . ⊕ u2

k gFk
, where ui : F1 × Fi → (0,∞) for i ≥ 2 are smooth

functions, see [19]. Twisted products (i.e., k = 2) and multiply warped products (i.e.,
ui : F1 → (0,∞), see [6]) are special cases of multiply twisted products. Let Di be the
distribution on M obtained from vectors tangent to horizontal lifts of Fi. The leaves
tangent to Di (i ≥ 2), are totally umbilical, with the mean curvature vector fields

Hi = −niP1∇(log ui),



The Einstein-Hilbert type action on almost multi-product manifolds 91

and the fibers (tangent to D1) are totally geodesic (h1 = 0). For k > 2 each pair of
distributions is mixed totally geodesic (since M is the product and the Lie bracket
does not depend on metric). Using

div Hi = −ni (∆1 ui)/ui − (n2
i − ni) ‖P1∇ui‖2/u2

i ,

where ∆1 is the Laplacian on (F1, gF1
), we find

(3.17) SD1,...,Dk
=
∑

i≥2
ni (∆1 ui)/ui .

Let a multiply twisted product F1 ×u2
F2 × . . .×uk

Fk with k > 2, see Example 3.6,
be critical for (1.3) with respect to adapted variations of g. Then the system (3.6)
takes the form

div hj −
1

2
Υh⊥j ,h

⊥
j

+ (H⊥j )[ ⊗ (H⊥j )[ +
∑

i6=j

(
div h⊥i |Dj

− 1

2
Υhi,hi

+H[
i ⊗H[

i

)
=
(
SD1,...,Dk

− div(Hj +
∑

i 6=j
H⊥i ) + λ

)
gj .(3.18)

(a) Let dimF1 = n1 > 2 and dimFi = ni > 1 for i 6= 1. In addition, assume that

〈Hi, Hj〉 = 0, i 6= j.

From (3.18) with j = 1, using H⊥1 =
∑

i 6=1Hi and equalities

1

2
Υh⊥1 ,h

⊥
1

=
∑

i 6=1

1

ni
H[
i ⊗H[

i =
1

2

∑
i 6=1

Υhi,hi ,∑
i 6=1

div h⊥i |D1
= (k − 2)

∑
i 6=1

1

ni
divHi,

div(
∑

i 6=1
H⊥i ) = (k − 2)

∑
i6=1

divHi,

(H⊥1 )[ ⊗ (H⊥1 )[ =
∑

i 6=1
H[
i ⊗H[

i ,

we obtain

(3.19) 2
∑

i 6=1

(
1− 1

ni

)
H[
i ⊗H[

i =
(
SD1,...,Dk

−(k−2)
∑

i 6=1

(
1+

1

ni

)
divHi+λ

)
g1.

Comparing ranks (2 and n1 > 2) of matrices H[
i ⊗ H[

i and g1 in (3.19), we get
Hi = 0 (i > 1). Hence, each distribution Di is totally geodesic, and our multiply
twisted product is the product of (F1, gF1

) and (Fi, u
2
i gFi

) for i > 1.

(b) Let dimFi = 1 for i 6= 1. Then the system (3.6) takes the form

(3.20) SD1,...,Dk
− div(2Hj +

∑
i 6=j

H⊥i ) + λ = 0, 1 ≤ j ≤ k.

Using (3.17) and equality div Hi = −(∆1 ui)/ui, we get the linear system

(3.21) (k − 2)yj + (k − 1)
∑

i6=j
yi + λ = 0, 1 ≤ j ≤ k,

where yi = (∆1 ui)/ui. The unique solution of (3.21) is yi = λ̃, where λ̃ = λ/( 1
k−1−k).

Thus, λ̃ is the eigenvalue of the laplacian ∆1 on (F1, gF1), and ui are the eigenfunc-
tions: ∆1 ui = λ̃ ui. The mixed scalar curvature in this case is constant:

SD1,...,Dk
=
∑

i 6=1
(∆1 ui)/ui = (k − 1)λ̃.

Similarly, we can find critical multiply twisted products for the action (1.2).
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l’Institut Mathématique, Issue: (N.S.) 103 (117) (2018), 199–210.

[12] V. Rovenski, Prescribing the mixed scalar curvature of a foliation. Balkan J. of
Geometry and Its Applications, 24 : 1, (2019), 73–92.

[13] V. Rovenski, Integral formulas for a Riemannian manifold with several orthogonal
complementary distributions, Global J. of Advanced Research on Classical and
Modern Geometries, 10, 1 (2021), 32–42.

[14] V. Rovenski and T. Zawadzki, The Einstein-Hilbert type action on pseudo-
Riemannian almost product manifolds, J. Math. Physics, Analysis and Geometry,
15, 1 (2019), 86–121.

[15] V. Rovenski and T. Zawadzki, Variations of the total mixed scalar curvature of
a distribution, Ann. Glob. Anal. Geom. 54 (2018), 87–122.
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