The Einstein-Hilbert type action on almost multi-product manifolds

V. Rovenski

Abstract

A Riemannian manifold endowed with $k>2$ complementary orthogonal distributions (called a Riemannian almost multi-product structure) appears in such topics as multiply twisted or warped products, the webs or nets composed of several foliations, Ricci curvature and Einstein equations, multi-time geometric dynamics and Dupin hypersurfaces. In the paper we consider the mixed scalar curvature of such structure, derive Euler-Lagrange equations for the Einstein-Hilbert type action with respect to adapted variations of metric, and present them in a nice form of Einstein equation.

M.S.C. 2010: 53C20, 53C21, 53C24.

Key words: Almost multi-product manifold; mixed scalar curvature; integral formula; Einstein-Hilbert action.

1 Introduction

Many examples of Riemannian metrics come (as critical points) from variational problems, a particularly famous of which is the Einstein-Hilbert action, e.g., [5]. The Euler-Lagrange equation for this action (called the Einstein equation) is

$$
\begin{equation*}
\operatorname{Ric}-(1 / 2) \mathrm{S} \cdot g+\Lambda g=\mathfrak{a} \cdot \Xi \tag{1.1}
\end{equation*}
$$

where g is a pseudo-Riemannian metric on a smooth manifold M, Ric - the Ricci curvature, S - the scalar curvature, Λ - a constant (the "cosmological constant"), \mathcal{L} - Lagrangian describing the matter contents, \mathfrak{a} - the coupling constant involving the gravitational constant and the speed of light and Ξ - the energy-momentum tensor. The solution of (1.1) is a metric, satisfying this equation, where the tensor Ξ is given. The classification of solutions of (1.1) is a deep and largely unsolved problem [5].

Distributions on a manifold (i.e., subbundles of the tangent bundle) appear in various situations, e.g., $[4,8]$ and are used to build up notions of integrability, and specifically of a foliated manifold. On a manifold equipped with an additional structure, e.g., almost product or contact, one can consider an analogue of the Einstein-Hilbert

[^0]action adjusted to that structure. This approach was taken in $[2,3,11,14,15]$, for M endowed with a distribution \mathcal{D} or a foliation.

In this article, continuing our study $[2,3,11,14,14]$, a similar change in the classical action is considered on an almost multi-product structure $\left(M, g ; \mathcal{D}_{1}, \ldots, \mathcal{D}_{k}\right)$, see [13], i.e., a connected smooth n-dimensional manifold endowed with $k>2$ pairwise orthogonal n_{i}-dimensional distributions with $\sum n_{i}=n$. The notion of a multiply warped product, e.g., [6], is a special case of this structure, which can be also viewed in the theory of webs and nets composed of different foliations, see [1], in studies of the curvature and Einstein equations, see [7], multi-time geometric dynamics and Dupin hypersurfaces. The mixed Einstein-Hilbert action on $\left(M, \mathcal{D}_{1}, \ldots, \mathcal{D}_{k}\right)$, defined by

$$
\begin{equation*}
J_{\mathcal{D}}: g \mapsto \int_{M}\left\{\frac{1}{2 \mathfrak{a}}\left(\mathrm{~S}_{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}}-2 \Lambda\right)+\mathcal{L}\right\} \mathrm{d}_{\operatorname{vol}}^{g} \text {, } \tag{1.2}
\end{equation*}
$$

is an analog of the Einstein-Hilbert action, where S is replaced by the mixed scalar curvature $\mathrm{S}_{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}}$, see (2.1). To deal also with non-compact manifolds ("spacetimes"), it is assumed that the integral above is taken over M if it converges; otherwise, one integrates over arbitrarily large, relatively compact domain $\Omega \subset M$, which also contains supports of variations of g. The geometrical part of (1.2) is the total mixed scalar curvature of $\left(M, g ; \mathcal{D}_{1}, \ldots, \mathcal{D}_{k}\right)$

$$
\begin{equation*}
J_{\mathcal{D}}^{g}: g \mapsto \int_{M} \mathrm{~S}_{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}} \mathrm{~d} \operatorname{vol}_{g} \tag{1.3}
\end{equation*}
$$

The mixed scalar curvature is the simplest curvature invariant of a pseudo-Riemannian almost product structure, which can be defined as an averaged sum of sectional curvatures of planes that non-trivially intersect with both of the distributions. Investigation of $S_{\mathcal{D}_{1}, \mathcal{D}_{1}^{\perp}}$ led to multiple results regarding the existence of foliations and submersions with interesting geometry, e.g., integral formulas and splitting results, curvature prescribing and variational problems, see $[12,16,18]$. Varying (1.2) as a functional of adapted metric g, we obtain the Euler-Lagrange equations in the beautiful form of Einstein equation (1.1), i.e.,

$$
\begin{equation*}
\mathcal{R} i c_{\mathcal{D}}-(1 / 2) \mathcal{S}_{\mathcal{D}} \cdot g+\Lambda g=\mathfrak{a} \cdot \Xi \tag{1.4}
\end{equation*}
$$

where the Ricci tensor and the scalar curvature are replaced by the Ricci type tensor $\mathcal{R} i c_{\mathcal{D}}$, see (3.16), and its trace $\mathcal{S}_{\mathcal{D}}$, and Ξ is given by $\Xi_{\mu \nu}=-2 \partial \mathcal{L} / \partial g^{\mu \nu}+g_{\mu \nu} \mathcal{L}$.

Using the equality

$$
\mathrm{S}=2 \mathrm{~S}_{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}}+\sum_{i} \mathrm{~S}\left(\mathcal{D}_{i}\right)
$$

where $\mathrm{S}\left(\mathcal{D}_{i}\right)$ is the scalar curvature of the distribution \mathcal{D}_{i}, one can combine the Einstein-Hilbert action on $\left(M, \mathcal{D}_{1}, \ldots, \mathcal{D}_{k}\right)$ (e.g., [9] for multiply warped products) with our action (1.2). The result is the perturbed Einstein-Hilbert action, whose critical points describe the "space-times" in an extended theory of gravity. The geometrical part of this action is $J_{\mathcal{D}, \varepsilon}: g \mapsto \int_{M}\left(\mathrm{~S}+\varepsilon \mathrm{S}_{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}}\right) \mathrm{d} \operatorname{vol}_{g}, \varepsilon \in \mathbb{R}$.

Our action (1.2) can also be useful in studying the interaction of several m-flows (m-dimensional distributions) in multi-time geometric dynamics, e.g., [10, 17].

We delegate the following questions for further study:
a) generalize our results for arbitrary variations of metrics;
b) extend our results for metric-affine manifolds (as in Einstein-Cartan theory);
c) find applications of our results in geometry, dynamics and physics.

2 The mixed scalar curvature

Here, we recall the properties of the mixed scalar curvature of a Riemannian multiproduct manifold $\left(M, g ; \mathcal{D}_{1}, \ldots, \mathcal{D}_{k}\right)$, see [13]. A pseudo-Riemannian metric $g=\langle\cdot, \cdot\rangle$ of index q on a smooth manifold M is an element $g \in \operatorname{Sym}^{2}(M)$ (of the space of symmetric $(0,2)$-tensors) such that each $g_{x}(x \in M)$ is a non-degenerate bilinear form of index q on the tangent space $T_{x} M$. For $q=0$ (i.e., g_{x} is positive definite) g is a Riemannian metric and for $q=1$ it is called a Lorentz metric. A distribution \mathcal{D} on (M, g) is non-degenerate, if g_{x} is non-degenerate on $\mathcal{D}_{x} \subset T_{x} M$ for all $x \in$ M; in this case, the orthogonal complement of \mathcal{D}^{\perp} is also non-degenerate. Denote by $\operatorname{Riem}\left(M ; \mathcal{D}_{1}, \ldots \mathcal{D}_{k}\right)$ the subspace of adapted pseudo-Riemannian metrics, that is making $\left\{\mathcal{D}_{i}\right\}$ pairwise orthogonal and non-degenerate. Let $P_{i}: T M \rightarrow \mathcal{D}_{i}$ be the orthoprojector, then $P_{i}^{\perp}=\operatorname{id}_{T M}-P_{i}$ is the orthoprojector onto \mathcal{D}_{i}^{\perp}. The second fundamental form $h_{i}: \mathcal{D}_{i} \times \mathcal{D}_{i} \rightarrow \mathcal{D}_{i}^{\perp}$ and the skew-symmetric integrability tensor $T_{i}: \mathcal{D}_{i} \times \mathcal{D}_{i} \rightarrow \mathcal{D}_{i}^{\perp}$ of \mathcal{D}_{i} are defined by

$$
\begin{aligned}
h_{i}(X, Y) & =\frac{1}{2} P_{i}^{\perp}\left(\nabla_{X} Y+\nabla_{Y} X\right), \\
T_{i}(X, Y) & =\frac{1}{2} P_{i}^{\perp}\left(\nabla_{X} Y-\nabla_{Y} X\right)=\frac{1}{2} P_{i}^{\perp}[X, Y] .
\end{aligned}
$$

Similarly, $h_{i}^{\perp}, H_{i}^{\perp}=\operatorname{Tr}_{g} h_{i}^{\perp}, T_{i}^{\perp}$ are the second fundamental forms, mean curvature vector fields and the integrability tensors of distributions \mathcal{D}_{i}^{\perp} in M. Note that $H_{i}=$ $\sum_{j \neq i} P_{j} H_{i}$, etc. Recall that a distribution \mathcal{D}_{i} is called integrable if $T_{i}=0$, and \mathcal{D}_{i} is called totally umbilical, harmonic, or totally geodesic, if $h_{i}=\left(H_{i} / n_{i}\right) g, H_{i}=0$, or $h_{i}=0$, respectively.

Given $g \in \operatorname{Riem}\left(M ; \mathcal{D}_{1}, \ldots \mathcal{D}_{k}\right)$, there is a local orthonormal frame $\left\{E_{1}, \ldots, E_{n}\right\}$ on M, where $\left\{E_{1}, \ldots, E_{n_{1}}\right\} \subset \mathcal{D}_{1}$ and $\left\{E_{n_{i-1}+1}, \ldots, E_{n_{i}}\right\} \subset \mathcal{D}_{i}$ for $2 \leq i \leq k$, and $\varepsilon_{a}=\left\langle E_{a}, E_{a}\right\rangle \in\{-1,1\}$. All quantities defined below using such frame do not depend on the choice of this frame.

A plane $X \wedge Y$ in $T M$ spanned by two vectors belonging to different distributions \mathcal{D}_{i} and \mathcal{D}_{j} will be called mixed, and the sectional curvature $K(X, Y)=$ $R(X, Y X, Y)\rangle /\left(\langle X, X\rangle\langle Y, Y\rangle-\langle X, Y\rangle^{2}\right)$ is said to be mixed. The mixed scalar curvature of $\left(M, g ; \mathcal{D}_{1}, \ldots, \mathcal{D}_{k}\right)$ is defined as an averaged mixed sectional curvature.

Definition 2.1 (see [13]). Given $g \in \operatorname{Riem}\left(M ; \mathcal{D}_{1}, \ldots, \mathcal{D}_{k}\right)$ with $k \geq 2$, the following function on M will be called the mixed scalar curvature:

$$
\begin{equation*}
\mathrm{S}_{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}}=\sum_{i<j} \sum_{n_{i-1}<a \leq n_{i}, n_{j-1}<b \leq n_{j}} K\left(E_{a}, E_{b}\right) \tag{2.1}
\end{equation*}
$$

where $K\left(E_{a}, E_{b}\right)=\varepsilon_{a} \varepsilon_{b}\left\langle R\left(E_{a}, E_{b}\right) E_{a}, E_{b}\right\rangle$ is the mixed sectional curvature of the plane $E_{a} \wedge E_{b}$. The following symmetric (0,2)-tensor r is called the partial Ricci tensor:

$$
r(X, Y)=\frac{1}{2} \sum_{i} r_{\mathcal{D}_{i}}(X, Y), \quad X, Y \in \mathfrak{X}_{M}
$$

where the partial Ricci tensor related to \mathcal{D}_{i} is

$$
\begin{equation*}
r_{\mathcal{D}_{i}}(X, Y)=\sum_{n_{i-1}<a \leq n_{i}} \varepsilon_{a}\left\langle R_{E_{a}, P_{i}^{\perp} X} E_{a}, P_{i}^{\perp} Y\right\rangle, \quad X, Y \in \mathfrak{X}_{M} \tag{2.2}
\end{equation*}
$$

Proposition 2.1. We have

$$
\mathrm{S}_{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}}=\frac{1}{2} \sum_{i} \mathrm{~S}_{\mathcal{D}_{i}, \mathcal{D}_{i}^{\perp}}=\operatorname{Tr}_{g} r
$$

Proof. This follows from definitions (2.1)-(2.2) and the equality $\operatorname{Tr}_{g} r_{\mathcal{D}_{i}}=\mathrm{S}_{\mathcal{D}_{i}, \mathcal{D}_{i}^{\perp}}$.
Recall that the divergence of a $(1, s)$-tensor field S on (M, g) is a $(0, s)$-tensor field

$$
\operatorname{div} S=\operatorname{trace}\left(Y \rightarrow \nabla_{Y} S\right)
$$

For $s=0$, we get the divergence $\operatorname{div} X=\operatorname{Tr}(\nabla X)$ of a vector field X, e.g., [5].
The squares of norms of tensors are obtained using

$$
\begin{aligned}
\left\langle h_{i}, h_{i}\right\rangle & =\sum_{n_{i-1}<a, b \leq n_{i}} \varepsilon_{a} \varepsilon_{b}\left\langle h_{i}\left(E_{a}, E_{b}\right), h_{i}\left(E_{a}, E_{b}\right)\right\rangle \\
\left\langle T_{i}, T_{i}\right\rangle & =\sum_{n_{i-1}<a, b \leq n_{i}} \varepsilon_{a} \varepsilon_{b}\left\langle T_{i}\left(E_{a}, E_{b}\right), T_{i}\left(E_{a}, E_{b}\right)\right\rangle .
\end{aligned}
$$

The following formula for a Riemannian manifold (M, g) endowed with two complementary orthogonal distributions \mathcal{D} and \mathcal{D}^{\perp}, see [18]:

$$
\begin{align*}
& \operatorname{div}\left(H+H^{\perp}\right)=\mathrm{S}_{\mathcal{D}, \mathcal{D}^{\perp}} \\
& +\langle h, h\rangle+\left\langle h^{\perp}, h^{\perp}\right\rangle-\langle H, H\rangle-\left\langle H^{\perp}, H^{\perp}\right\rangle-\langle T, T\rangle-\left\langle T^{\perp}, T^{\perp}\right\rangle \tag{2.3}
\end{align*}
$$

has many interesting global corollaries (e.g., decomposition criteria using the sign of $\mathrm{S},[16]$). In [13], we generalized (2.3) to (M, g) with $k>2$ distributions and gave applications to splitting and isometric immersions of manifolds, in particular, multiply warped products. Set

$$
\begin{equation*}
Q(\mathcal{D}, g)=\left\langle H^{\perp}, H^{\perp}\right\rangle+\langle H, H\rangle-\langle h, h\rangle-\left\langle h^{\perp}, h^{\perp}\right\rangle+\langle T, T\rangle+\left\langle T^{\perp}, T^{\perp}\right\rangle \tag{2.4}
\end{equation*}
$$

then (2.3) can be written as

$$
\begin{equation*}
\mathrm{S}_{\mathcal{D}, \mathcal{D} \perp}=Q(\mathcal{D}, g)+\operatorname{div}\left(H+H^{\perp}\right) \tag{2.5}
\end{equation*}
$$

The mixed scalar curvature of a pair of distributions $\left(\mathcal{D}_{i}, \mathcal{D}_{i}^{\perp}\right)$ on (M, g) is

$$
\mathrm{S}_{\mathcal{D}_{i}, \mathcal{D}_{i}^{\perp}}=\sum_{n_{i-1}<a \leq n_{i}, b \neq\left(n_{i-1}, n_{i}\right]} \varepsilon_{a} \varepsilon_{b}\left\langle R_{E_{a}, E_{b}} E_{a}, E_{b}\right\rangle
$$

If \mathcal{D}_{i} is spanned by a unit vector field N, i.e., $\langle N, N\rangle=\varepsilon_{N}$, then

$$
\mathrm{S}_{\mathcal{D}_{i}, \mathcal{D}_{i}^{\perp}}=\varepsilon_{N} \operatorname{Ric}_{N, N}
$$

where $\operatorname{Ric}_{N, N}$ is the Ricci curvature in the N-direction. We have

$$
\mathrm{S}_{\mathcal{D}_{i}, \mathcal{D}_{i}^{\perp}}=\operatorname{Tr}_{g} r_{\mathcal{D}_{i}}=\operatorname{Tr}_{g} r_{\mathcal{D}_{i}^{\perp}}
$$

If $\operatorname{dim} \mathcal{D}_{i}=1$ then $r_{\mathcal{D}_{i}}=\varepsilon_{N} R_{N}$, where $R_{N}=R(N, \cdot) N$ is the Jacobi operator, and $r_{\mathcal{D}_{i}^{\perp}}=\operatorname{Ric}_{N, N} g_{i}^{\perp}$, where $g_{i}^{\perp}(X, Y):=\left\langle P_{i}^{\perp} X, P_{i}^{\perp} Y\right\rangle$ for all $X, Y \in \mathfrak{X}_{M}$.

The \mathcal{D}_{i}-deformation tensor of $Z \in \mathfrak{X}_{M}$ is the symmetric part of ∇Z restricted to \mathcal{D}_{i},

$$
2 \operatorname{Def}_{\mathcal{D}_{i}} Z(X, Y)=\left\langle\nabla_{X} Z, Y\right\rangle+\left\langle\nabla_{Y} Z, X\right\rangle, \quad X, Y \in \mathcal{D}_{i}
$$

The "musical" isomorphisms \sharp and b will be used for rank one and symmetric rank 2 tensors. For example, if $\omega \in \Lambda^{1}(M)$ is a 1-form and $X, Y \in \mathfrak{X}_{M}$ then $\omega(Y)=\left\langle\omega^{\sharp}, Y\right\rangle$ and $X^{b}(Y)=\langle X, Y\rangle$. For arbitrary (0,2)-tensors B and C we also have

$$
\langle B, C\rangle=\operatorname{Tr}_{g}\left(B^{\sharp} C^{\sharp}\right)=\left\langle B^{\sharp}, C^{\sharp}\right\rangle .
$$

The shape operator $\left(A_{i}\right)_{Z}$ of \mathcal{D}_{i} with $Z \in \mathcal{D}_{i}^{\perp}$, and the operator $\left(T_{i}\right)_{Z}^{\sharp}$ are defined by

$$
\left.\left\langle\left(A_{i}\right)_{Z}(X), Y\right\rangle=h_{i}(X, Y), Z\right\rangle, \quad\left\langle\left(T_{i}\right)_{Z}^{\sharp}(X), Y\right\rangle=\left\langle T_{i}(X, Y), Z\right\rangle, \quad X, Y \in \mathcal{D}_{i} .
$$

The Casorati type operators $\mathcal{A}_{i}: \mathcal{D}_{i} \rightarrow \mathcal{D}_{i}$ and $\mathcal{T}_{i}: \mathcal{D}_{i} \rightarrow \mathcal{D}_{i}$, and the (0,2)-tensor Ψ_{i}, see $[3,14]$, are defined using A_{i} and T_{i} by

$$
\begin{aligned}
& \mathcal{A}_{i}=\sum_{E_{a} \in \mathcal{D}_{i}^{\perp}} \varepsilon_{a}\left(\left(A_{i}\right)_{E_{a}}\right)^{2}, \quad \mathcal{T}_{i}=\sum_{E_{a} \in \mathcal{D}_{i}^{\perp}} \varepsilon_{a}\left(\left(T_{i}\right)_{E_{a}}^{\sharp}\right)^{2}, \\
& \Psi_{i}(X, Y)=\operatorname{Tr}\left(\left(A_{i}\right)_{Y}\left(A_{i}\right)_{X}+\left(T_{i}\right)_{Y}^{\sharp}\left(T_{i}\right)_{X}^{\sharp}\right), \quad X, Y \in \mathcal{D}_{i}^{\perp} .
\end{aligned}
$$

We define a self-adjoint $(1,1)$-tensor $\mathcal{K}_{i}: \mathcal{D}_{i} \rightarrow \mathcal{D}_{i}$ by the formula with Lie bracket,

$$
\mathcal{K}_{i}=\sum_{E_{a} \in \mathcal{D}_{i}^{\perp}} \varepsilon_{a}\left[\left(T_{i}^{\sharp}\right)_{E_{a}},\left(A_{i}\right)_{E_{a}}\right] .
$$

For any (1,2)-tensors Q_{1}, Q_{2} and a (0,2)-tensor S define the (0,2)-tensor $\Upsilon_{Q_{1}, Q_{2}}$ by

$$
\left\langle\Upsilon_{Q_{1}, Q_{2}}, S\right\rangle=\sum_{\lambda, \mu} \varepsilon_{\lambda} \varepsilon_{\mu}\left[S\left(Q_{1}\left(e_{\lambda}, e_{\mu}\right), Q_{2}\left(e_{\lambda}, e_{\mu}\right)\right)+S\left(Q_{2}\left(e_{\lambda}, e_{\mu}\right), Q_{1}\left(e_{\lambda}, e_{\mu}\right)\right)\right]
$$

where on the left-hand side we have the inner product of $(0,2)$-tensors induced by g, $\left\{e_{\lambda}\right\}$ is a local orthonormal basis of $T M$ and $\varepsilon_{\lambda}=\left\langle e_{\lambda}, e_{\lambda}\right\rangle \in\{-1,1\}$.
Remark 2.2. If g is definite then $\Upsilon_{h_{i}, h_{i}}=0$ if and only if $h_{i}=0$. Indeed, we have

$$
\left\langle\Upsilon_{h_{i}, h_{i}}, X^{b} \otimes X^{b}\right\rangle=2 \sum_{a, b}\left\langle X, h_{i}\left(E_{a}, E_{b}\right)\right\rangle^{2}, \quad X \in \mathcal{D}_{i}^{\perp}
$$

The above sum is equal to zero if and only if every summand vanishes. This yields $h_{i}=0$. Thus, $\Upsilon_{h_{i}, h_{i}}$ is a "measure of non-total geodesy" of the distribution \mathcal{D}_{i}. Similarly, $\Upsilon_{T_{i}, T_{i}}$ can be viewed as a "measure of non-integrability" of \mathcal{D}_{i}.

The following presentation of the partial Ricci tensor in (2.2) is valid, see $[3,14]$:

$$
\begin{equation*}
r_{\mathcal{D}_{i}}=\operatorname{div} h_{i}+\left\langle h_{i}, H_{i}\right\rangle-\mathcal{A}_{i}^{b}-\mathcal{T}_{i}^{b}-\Psi_{i}^{\perp}+\operatorname{Def}_{\mathcal{D}_{i}^{\perp}} H_{i}^{\perp} \tag{2.6}
\end{equation*}
$$

Tracing (2.6) over \mathcal{D}_{i} and applying the equalities

$$
\begin{aligned}
& \operatorname{Tr}_{g}\left(\operatorname{div} h_{i}\right)=\operatorname{div} H_{i}, \quad \operatorname{Tr}\left\langle h_{i}, H_{i}\right\rangle=\left\langle H_{i}, H_{i}\right\rangle, \quad \operatorname{Tr}_{g} \Psi_{i}^{\perp}=\left\langle h_{i}^{\perp}, h_{i}^{\perp}\right\rangle-\left\langle T_{i}^{\perp}, T_{i}^{\perp}\right\rangle \\
& \operatorname{Tr} \mathcal{A}_{i}=\left\langle h_{i}, h_{i}\right\rangle, \quad \operatorname{Tr} \mathcal{T}_{i}=-\left\langle T_{i}, T_{i}\right\rangle, \quad \operatorname{Tr}_{g}\left(\operatorname{Def}_{\mathcal{D}_{i}^{\perp}}^{\perp} H_{i}^{\perp}\right)=\operatorname{div} H_{i}^{\perp}+g\left(H_{i}^{\perp}, H_{i}^{\perp}\right)
\end{aligned}
$$

we get (2.3) with $\mathcal{D}=\mathcal{D}_{i}$.

Remark 2.3. For an almost multi-product manifold $\left(M, g ; \mathcal{D}_{1}, \ldots, \mathcal{D}_{k}\right)$ we have

$$
\begin{equation*}
\operatorname{div} \sum_{i}\left(H_{i}+H_{i}^{\perp}\right)=2 \mathrm{~S}_{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}}-\sum_{i} Q\left(\mathcal{D}_{i}, g\right) \tag{2.7}
\end{equation*}
$$

see [13]. To illustrate the proof of (2.7) for $k>2$, consider the case of $k=3$. Using (2.3) for two distributions, \mathcal{D}_{1} and $\mathcal{D}_{1}^{\perp}=\mathcal{D}_{2} \oplus \mathcal{D}_{3}$, according to (2.4) and (2.5) with $\mathcal{D}=\mathcal{D}_{1}$, we get

$$
\operatorname{div}\left(H_{1}+H_{1}^{\perp}\right)=2 \mathrm{~S}_{\mathcal{D}_{1}, \mathcal{D}_{1}^{\perp}}-Q\left(\mathcal{D}_{1}, g\right)
$$

and similarly for $\left(\mathcal{D}_{2}, \mathcal{D}_{2}^{\perp}\right)$ and $\left(\mathcal{D}_{3}, \mathcal{D}_{3}^{\perp}\right)$. Summing 3 copies of (2.8), we obtain (2.7) for $k=3$. Applying Stokes' Theorem for (2.7) on a closed manifold M yields the integral formulas for all $k \in\{2, \ldots, n\}$, which for $k=2$ directly follows from (2.3).

3 Adapted variations of metric

We consider smooth 1-parameter variations $\left\{g_{t} \in \operatorname{Riem}(M):|t|<\varepsilon\right\}$ of the metric $g_{0}=g$. Let the infinitesimal variations, represented by a symmetric (0,2)-tensor

$$
B(t) \equiv \partial g_{t} / \partial t
$$

be supported in a relatively compact domain Ω in M, i.e., $g_{t}=g$ and $B_{t}=0$ outside Ω for $|t|<\varepsilon$. We adopt the notations $\partial_{t} \equiv \partial / \partial t, B \equiv \partial_{t} g_{t \mid t=0}=\dot{g}$, but we shall also write B instead of B_{t} to make formulas easier to read, wherever it does not lead to confusion. Since B is symmetric, then $\langle C, B\rangle=\langle\operatorname{Sym}(C), B\rangle$ for any (0,2)-tensor C. Denote by \otimes the product of tensors.
Definition 3.1. A family of adapted pseudo-Riemannian metrics

$$
\left\{g(t) \in \operatorname{Riem}\left(M ; \mathcal{D}_{1}, \ldots \mathcal{D}_{k}\right):|t|<\varepsilon\right\}
$$

will be called an adapted variation. In other words, \mathcal{D}_{i} and \mathcal{D}_{j} are g_{t}-orthogonal for all $i \neq j$ and t. An adapted variation g_{t} is called a \mathcal{D}_{j}-variation (for some $j \in[1, k]$) if

$$
g_{t}(X, Y)=g_{0}(X, Y), \quad X, Y \in \mathcal{D}_{j}^{\perp}, \quad|t|<\varepsilon
$$

For an adapted variation we have $g_{t}=g_{1}(t) \oplus \ldots \oplus g_{k}(t)$, where $g_{j}(t)=g_{t} \mid \mathcal{D}_{j}$. Thus, the tensor $B_{t}=\partial_{t} g_{t}$ of an adapted variation of metric on $\left(M ; \mathcal{D}_{1}, \ldots, \mathcal{D}_{k}\right)$ is decomposed into the sum of derivatives of \mathcal{D}_{j}-variations; namely, $B_{t}=\sum_{j=1}^{k} B_{j}(t)$, where $B_{j}(t)=\partial_{t} g_{j}(t)=B_{t} \mid \mathcal{D}_{j}$.
Lemma 3.1. Let a local adapted frame $\left\{E_{a}\right\}$ evolve by $g_{t} \in \operatorname{Riem}\left(M ; \mathcal{D}_{1}, \ldots \mathcal{D}_{k}\right)$ according to

$$
\partial_{t} E_{a}=-(1 / 2) B_{t}^{\sharp}\left(E_{a}\right) .
$$

Then, $\left\{E_{a}(t)\right\}$ is a g_{t}-orthonormal adapted frame for all t.
Proof. For $\left\{E_{a}(t)\right\}$ we have

$$
\begin{aligned}
& \partial_{t}\left(g_{t}\left(E_{a}, E_{b}\right)\right)=g_{t}\left(\partial_{t} E_{a}(t), E_{b}(t)\right)+g_{t}\left(E_{a}(t), \partial_{t} E_{b}(t)\right)+\left(\partial_{t} g_{t}\right)\left(E_{a}(t), E_{b}(t)\right) \\
& =B_{t}\left(E_{a}(t), E_{b}(t)\right)-\frac{1}{2} g_{t}\left(B_{t}^{\sharp}\left(E_{a}(t)\right), E_{b}(t)\right)-\frac{1}{2} g_{t}\left(E_{a}(t), B_{t}^{\sharp}\left(E_{b}(t)\right)\right)=0 .
\end{aligned}
$$

From this the claim follows.

Lemma 3.2. If g_{t} is a \mathcal{D}_{j}-variation of $g \in \operatorname{Riem}\left(M ; \mathcal{D}_{1}, \ldots, \mathcal{D}_{k}\right)$, then

$$
\begin{align*}
& \partial_{t}\left\langle h_{j}^{\perp}, h_{j}^{\perp}\right\rangle=-\left\langle(1 / 2) \Upsilon_{h_{j}^{\perp}, h_{j}^{\perp}}, B_{j}\right\rangle, \\
& \partial_{t}\left\langle h_{j}, h_{j}\right\rangle=\left\langle\operatorname{div} h_{j}+\mathcal{K}_{j}^{b}, B_{j}\right\rangle-\operatorname{div}\left\langle h_{j}, B_{j}\right\rangle, \\
& \partial_{t} g\left(H_{j}^{\perp}, H_{j}^{\perp}\right)=-\left\langle\left(H_{j}^{\perp}\right)^{b} \otimes\left(H_{j}^{\perp}\right)^{b}, B_{j}\right\rangle, \\
& \partial_{t} g\left(H_{j}, H_{j}\right)=\left\langle\left(\operatorname{div} H_{j}\right) g_{j}, B_{j}\right\rangle-\operatorname{div}\left(\left(\operatorname{Tr} B_{j}^{\sharp}\right) H_{j}\right), \\
& \partial_{t}\left\langle T_{j}^{\perp}, T_{j}^{\perp}\right\rangle=\left\langle(1 / 2) \Upsilon_{T_{j}^{\perp}, T_{j}^{\perp}}, B_{j}\right\rangle, \\
& \partial_{t}\left\langle T_{j}, T_{j}\right\rangle=\left\langle 2 \mathcal{T}_{j}^{b}, B_{j}\right\rangle, \tag{3.1}
\end{align*}
$$

and for $i \neq j$ (when $k>2$) we have dual equations

$$
\begin{align*}
& \partial_{t}\left\langle h_{i}, h_{i}\right\rangle=\left\langle-(1 / 2) \Upsilon_{h_{i}, h_{i}}, B_{j}\right\rangle, \\
& \partial_{t}\left\langle h_{i}^{\perp}, h_{i}^{\perp}\right\rangle=\left\langle\operatorname{div} h_{i}^{\perp}+\left(\mathcal{K}_{i}^{\perp}\right)^{b}, B_{j}\right\rangle-\operatorname{div}\left\langle h_{i}^{\perp}, B_{j}\right\rangle, \\
& \partial_{t} g\left(H_{i}, H_{i}\right)=-\left\langle H_{i}^{\mathrm{b}} \otimes H_{i}^{\mathrm{b}}, B_{j}\right\rangle, \\
& \partial_{t} g\left(H_{i}^{\perp}, H_{i}^{\perp}\right)=\left\langle\left(\operatorname{div} H_{i}^{\perp}\right) g_{j}, B_{j}\right\rangle-\operatorname{div}\left(\left(\operatorname{Tr} B_{j}^{\sharp}\right) H_{i}^{\perp}\right), \\
& \partial_{t}\left\langle T_{i}, T_{i}\right\rangle=\left\langle(1 / 2) \Upsilon_{T_{i}, T_{i}}, B_{j}\right\rangle, \\
& \partial_{t}\left\langle T_{i}^{\perp}, T_{i}^{\perp}\right\rangle=\left\langle 2\left(\mathcal{T}_{i}^{\perp}\right)^{b}, B_{j}\right\rangle, \tag{3.2}
\end{align*}
$$

Proof. The equations (3.1) coincide with equations from [15, Proposition 2] for a pair $\left(\mathcal{D}_{j}, \mathcal{D}_{j}^{\perp}\right)$, and equations (3.2) are dual to (3.1).

For any variation g_{t} of metric g on M with $B=\partial_{t} g$ we have, e.g., [14],

$$
\begin{equation*}
\partial_{t}\left(\mathrm{~d} \operatorname{vol}_{g}\right)=\frac{1}{2}\left(\operatorname{Tr}_{g} B\right) \mathrm{d} \operatorname{vol}_{g}=\frac{1}{2}\langle B, g\rangle \mathrm{d} \operatorname{vol}_{g} . \tag{3.3}
\end{equation*}
$$

By (3.3), using the Divergence Theorem, for any variation g_{t} with $\operatorname{supp}\left(\partial_{t} g\right) \subset \Omega$, and t-dependent $X \in \mathfrak{X}_{M}$ with $\operatorname{supp}\left(\partial_{t} X\right) \subset \Omega$ we have

$$
\begin{equation*}
\frac{d}{d t} \int_{M}(\operatorname{div} X){\mathrm{d} v \operatorname{vol}_{g}}=\int_{M} \operatorname{div}\left(\partial_{t} X+\frac{1}{2}\left(\operatorname{Tr}_{g} B\right) X\right) \mathrm{dvol}_{g}=0 \tag{3.4}
\end{equation*}
$$

From Lemmas 3.1 and 3.2 and the equality, see (2.4),

$$
Q\left(\mathcal{D}_{i}, g\right)=\left\langle H_{i}^{\perp}, H_{i}^{\perp}\right\rangle+\left\langle H_{i}, H_{i}\right\rangle-\left\langle h_{i}, h_{i}\right\rangle-\left\langle h_{i}^{\perp}, h_{i}^{\perp}\right\rangle+\left\langle T_{i}, T_{i}\right\rangle+\left\langle T_{i}^{\perp}, T_{i}^{\perp}\right\rangle
$$

we obtain the following.
Proposition 3.3. For a \mathcal{D}_{j}-variation of metric $g \in \operatorname{Riem}\left(M ; \mathcal{D}_{1}, \ldots, \mathcal{D}_{k}\right)$ we have

$$
\begin{equation*}
\partial_{t} \sum_{i} Q\left(\mathcal{D}_{i}, g\right)=\left\langle\mathcal{Q}_{j}, B_{j}\right\rangle-\operatorname{div} X_{j} \tag{3.5}
\end{equation*}
$$

where $B_{j}=\partial_{t} g_{t \mid t=0}$, and (0,2)-tensors \mathcal{Q}_{j} on $\mathcal{D}_{j} \times \mathcal{D}_{j}$ and vector fields X_{j} are given by

$$
\begin{aligned}
& 2 X_{j}=\left\langle h_{j}, B_{j}\right\rangle-\left(\operatorname{Tr} B_{j}^{\sharp}\right) H_{j}+\sum_{i \neq j}\left(\left\langle h_{i}^{\perp}, B_{j}\right\rangle-\left(\operatorname{Tr} B_{j}^{\sharp}\right) H_{i}^{\perp}\right), \\
& \mathcal{Q}_{j}=-\operatorname{div} h_{j}-\mathcal{K}_{j}^{b}+\frac{1}{2} \Upsilon_{h_{j}^{\perp}, h_{j}^{\perp}}+\frac{1}{2} \Upsilon_{T_{j}^{\perp}, T_{j}^{\perp}}+2 \mathcal{T}_{j}^{b}-\left(H_{j}^{\perp}\right)^{b} \otimes\left(H_{j}^{\perp}\right)^{b}+\left(\operatorname{div} H_{j}\right) g_{j} \\
& +\sum_{i \neq j}\left(-\left.\operatorname{div} h_{i}^{\perp}\right|_{\mathcal{D}_{j}}-\left(P_{j} \mathcal{K}_{i}^{\perp}\right)^{b}+\frac{1}{2} \Upsilon_{P_{j} h_{i}, P_{j} h_{i}}+\frac{1}{2} \Upsilon_{P_{j} T_{i}, P_{j} T_{i}}+2\left(P_{j} \mathcal{T}_{i}^{\perp}\right)^{b}\right. \\
& \left.\quad-\left(P_{j} H_{i}\right)^{b} \otimes\left(P_{j} H_{i}\right)^{b}+\left(\operatorname{div} H_{i}^{\perp}\right) g_{j}\right) .
\end{aligned}
$$

The summation part related to \mathcal{D}_{j}^{\perp} (in X_{j} and \mathcal{Q}_{j}) is dual to the part related to \mathcal{D}_{j}.

The next theorem allows us to restore the partial Ricci curvature, see (1.4). It is based on calculating the variations with respect to g of components in (2.3) and using (3.4) for divergence terms. By this theorem and Definition 3.5 in what follows we conclude that an adapted metric g is critical for the action (1.2) with respect to adapted variations of metric preserving the volume of Ω, i.e., $\operatorname{Vol}\left(\Omega, g_{t}\right)=\operatorname{Vol}(\Omega, g)$ for all t, if and only if (1.4) holds.

Theorem 3.4 (see [15]). An adapted metric $g \in \operatorname{Riem}\left(M ; \mathcal{D}_{1}, \ldots, \mathcal{D}_{k}\right)$ is critical for the geometrical part of (1.2) (i.e., $\Lambda=0=\mathcal{L}$) with respect to adapted variations preserving the volume of Ω if and only if the following Euler-Lagrange equations hold:

$$
\begin{align*}
& \operatorname{div} h_{j}+\mathcal{K}_{j}^{b}-\frac{1}{2} \Upsilon_{h_{j}^{\perp}, h_{j}^{\perp}}-\frac{1}{2} \Upsilon_{T_{j}^{\perp}, T_{j}^{\perp}}-2 \mathcal{T}_{j}^{b}+\left(H_{j}^{\perp}\right)^{b} \otimes\left(H_{j}^{\perp}\right)^{b} \\
& +\sum_{i \neq j}\left(\left.\operatorname{div} h_{i}^{\perp}\right|_{\mathcal{D}_{j}}+\left(P_{j} \mathcal{K}_{i}^{\perp}\right)^{b}-\frac{1}{2} \Upsilon_{P_{j} h_{i}, P_{j} h_{i}}-\frac{1}{2} \Upsilon_{P_{j} T_{i}, P_{j} T_{i}}-2\left(P_{j} \mathcal{T}_{i}^{\perp}\right)^{b}\right. \\
& \left.+\left(P_{j} H_{i}\right)^{b} \otimes\left(P_{j} H_{i}\right)^{b}\right)=\left(\mathrm{S}_{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}}-\operatorname{div}\left(H_{j}+\sum_{i \neq j} H_{i}^{\perp}\right)+\lambda\right) g_{j} \tag{3.6}
\end{align*}
$$

for some $\lambda \in \mathbb{R}$ and $1 \leq j \leq k$, or, in a short form,

$$
\begin{equation*}
\mathcal{Q}_{j}=-\left(\mathrm{S}_{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}}-\frac{1}{2} \operatorname{div} \sum_{i}\left(H_{i}+H_{i}^{\perp}\right)+\lambda\right) g_{j}, \quad 1 \leq j \leq k \tag{3.7}
\end{equation*}
$$

Proof. Let g_{t} be a \mathcal{D}_{j}-variation of g compactly supported in $\Omega \subset M$. Using Divergence theorem to (3.5) and removing integrals of divergences of vector fields supported in $\Omega \subset M$, we get

$$
\begin{equation*}
\int_{\Omega} \sum_{i} \partial_{t} Q\left(\mathcal{D}_{i}, g_{t}\right)_{\mid t=0} \mathrm{~d} \operatorname{vol}_{g}=\int_{\Omega}\left\langle\mathcal{Q}_{j}, B_{j}\right\rangle{\mathrm{d} \operatorname{vol}_{g}} \tag{3.8}
\end{equation*}
$$

By (3.4) with $X=\sum_{i}\left(H_{i}+H_{i}^{\perp}\right)$ we get

$$
\frac{\mathrm{d}}{\mathrm{dt}} \int_{\Omega} \operatorname{div} \sum_{i}\left(H_{i}+H_{i}^{\perp}\right) \mathrm{d}_{\operatorname{vol}}^{g} \text { }=0
$$

Thus, for the action (1.3), using (2.7), (3.3), (3.5) and (3.8), we get

$$
\begin{aligned}
& 2 \frac{\mathrm{~d}}{\mathrm{dt}} J_{\mathcal{D}}^{g}\left(g_{t}\right)_{\mid t=0}=\frac{\mathrm{d}}{\mathrm{dt}} \int_{\Omega} \sum_{i} Q\left(\mathcal{D}_{i}, g_{t}\right) \mathrm{d}_{\operatorname{vol}}^{g_{t} \mid t=0}{ } \\
& \left.=\int_{\Omega} \sum_{i} \partial_{t} Q\left(\mathcal{D}_{i}, g_{t}\right)_{\mid t=0}{\mathrm{~d} \operatorname{vol}_{g}+\int_{\Omega} \sum_{i} Q\left(\mathcal{D}_{i}, g\right) \partial_{t}\left(\mathrm{~d}_{\operatorname{vol}}^{g_{t}}\right.}\right)_{\mid t=0} \\
& =\int_{\Omega}\left\langle\mathcal{Q}_{j}+\frac{1}{2} \sum_{i} Q\left(\mathcal{D}_{i}, g\right) g, B_{j}\right\rangle \mathrm{d}_{\operatorname{vol}_{g}} .
\end{aligned}
$$

If g is critical for the action $J_{\mathcal{D}}^{g}$ with respect to \mathcal{D}_{j}-variations of g, then the integral in (3.9) is zero for any symmetric $(0,2)$-tensor B_{j}. This yields the \mathcal{D}_{j}-component of Euler-Lagrange equation

$$
\begin{equation*}
\mathcal{Q}_{j}+\frac{1}{2} \sum_{i} Q\left(\mathcal{D}_{i}, g\right) g_{j}=0, \quad 1 \leq j \leq k \tag{3.10}
\end{equation*}
$$

For adapted variations preserving the volume of Ω, using (3.3), we have

$$
0=\partial_{t} \int_{M} \mathrm{~d} \operatorname{vol}_{g}=\int_{M} \partial_{t}{\mathrm{~d} \operatorname{vol}_{g}=\int_{M} \frac{1}{2}(\operatorname{Tr} B) \mathrm{d}_{\operatorname{vol}}^{g}}=\frac{1}{2} \int_{\Omega}\langle g, B\rangle \mathrm{d} \operatorname{vol}_{g}
$$

Thus, the Euler-Lagrange equation of (1.3) with respect to \mathcal{D}_{j}-variations preserving the volume of Ω are

$$
\mathcal{Q}_{j}+\left(\frac{1}{2} \sum_{i} Q\left(\mathcal{D}_{i}, g\right)+\lambda\right) g_{j}=0
$$

instead of (3.10). Replacing here $\sum_{i} Q\left(\mathcal{D}_{i}, g\right)$ according to (2.7), we get (3.6).
Remark 3.2. Using the partial Ricci tensor (2.2) and replacing $\operatorname{div} h_{j}$ and $\operatorname{div} h_{i}^{\perp}$ for $i \neq j$ in (3.6) according to (2.6), we can rewrite (3.6) as

$$
\begin{align*}
& r_{\mathcal{D}_{j}}-\left\langle h_{j}, H_{j}\right\rangle+\mathcal{A}_{j}^{b}-\mathcal{T}_{j}^{b}+\Psi_{j}^{\perp}-\operatorname{Def}_{\mathcal{D}_{j}^{\perp}} H_{j}^{\perp}+\mathcal{K}_{j}^{b}+\left(H_{j}^{\perp}\right)^{b} \otimes\left(H_{j}^{\perp}\right)^{b} \\
& -\frac{1}{2} \Upsilon_{h_{j}^{\perp}, h_{j}^{\perp}}-\frac{1}{2} \Upsilon_{T_{j}^{\perp}, T_{j}^{\perp}}+\sum_{i \neq j}\left(\left.r_{\mathcal{D}_{i}^{\perp}}\right|_{\mathcal{D}_{j}}-\left\langle\left. h_{i}^{\perp}\right|_{\mathcal{D}_{j}}, H_{i}^{\perp}\right\rangle+\left(P_{j} \mathcal{A}_{i}^{\perp}\right)^{b}-\left(P_{j} \mathcal{T}_{i}^{\perp}\right)^{b}\right. \\
& \left.+\left.\Psi_{i}\right|_{\mathcal{D}_{j}}-\operatorname{Def}_{\mathcal{D}_{j}} H_{i}+\left(P_{j} \mathcal{K}_{i}^{\perp}\right)^{b}+\left(P_{j} H_{i}\right)^{b} \otimes\left(P_{j} H_{i}\right)^{b}-\frac{1}{2} \Upsilon_{P_{j} h_{i}, P_{j} h_{i}}-\frac{1}{2} \Upsilon_{P_{j} T_{i}, P_{j} T_{i}}\right) \\
& \quad=\left(\mathrm{S}_{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}}-\operatorname{div}\left(H_{j}+\sum_{i \neq j} H_{i}^{\perp}\right)+\lambda\right) g_{j}, \quad j=1, \ldots, k . \tag{3.11}
\end{align*}
$$

Example 3.3. A pair $\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right)$ with $i \neq j$ of distributions on a Riemannian almost multi-product manifold $\left(M, g ; \mathcal{D}_{1}, \ldots, \mathcal{D}_{k}\right)$ is called mixed integrable, see [13], if

$$
T_{i, j}(X, Y)=0 \quad\left(X \in \mathcal{D}_{i}, Y \in \mathcal{D}_{j}\right)
$$

Let $\left(M, g ; \mathcal{D}_{1}, \ldots, \mathcal{D}_{k}\right)$ with $k>2$ has integrable distributions $\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}$ and each pair $\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right)$ is mixed integrable. Then $T_{l}^{\perp}(X, Y)=0$ for all $l \leq k$ and $X \in \mathcal{D}_{i}, Y \in$ \mathcal{D}_{j} with $i \neq j$, see [13, Lemma 2]. In this case, (3.11) reads as

$$
\begin{aligned}
& r_{\mathcal{D}_{j}}-\left\langle h_{j}, H_{j}\right\rangle+\mathcal{A}_{j}^{b}+\Psi_{j}^{\perp}-\operatorname{Def}_{\mathcal{D}_{j}^{\perp}} H_{j}^{\perp}-\frac{1}{2} \Upsilon_{h_{j}^{\perp}, h_{j}^{\perp}}+\left(H_{j}^{\perp}\right)^{b} \otimes\left(H_{j}^{\perp}\right)^{b} \\
+ & \sum_{i \neq j}\left(r_{\mathcal{D}_{i}^{\perp}}{\mid \mathcal{D}_{j}}-\left\langle\left. h_{i}^{\perp}\right|_{\mathcal{D}_{j}}, H_{i}^{\perp}\right\rangle+\left(P_{j} \mathcal{A}_{i}^{\perp}\right)^{b}+\left.\Psi_{i}\right|_{\mathcal{D}_{j}}-\operatorname{Def}_{\mathcal{D}_{j}} H_{i}-\frac{1}{2} \Upsilon_{P_{j} h_{i}, P_{j} h_{i}}\right. \\
+ & \left.\left(P_{j} H_{i}\right)^{b} \otimes\left(P_{j} H_{i}\right)^{b}\right)=\left(\mathrm{S}_{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}}-\operatorname{div}\left(H_{j}+\sum_{i \neq j} H_{i}^{\perp}\right)+\lambda\right) g_{j}, \quad j=1, \ldots, k .
\end{aligned}
$$

Definition 3.4. The Ricci type symmetric (0,2)-tensor $\mathcal{R} i_{c_{\mathcal{D}}}$ in (1.4) is defined by its restrictions $\mathcal{R} i c_{\mathcal{D} \mid \mathcal{D}_{j} \times \mathcal{D}_{j}}$ on k subbundles \mathcal{D}_{j} of $T M$,

$$
\begin{equation*}
\mathcal{R i c}_{\mathcal{D} \mid \mathcal{D}_{j} \times \mathcal{D}_{j}}=-\mathcal{Q}_{j}+\mu_{j} g_{j}, \quad j=1, \ldots, k \tag{3.12}
\end{equation*}
$$

(in a short form, using \mathcal{Q}_{j} in the LHS of (3.7)), where $\left(\mu_{j}\right)$ are uniquely determined (see (3.15) and Theorem 3.5 below) so that critical metrics satisfy Einstein type equation (1.4). Using (2.6), this can be written in more detail as

$$
\begin{aligned}
\mathcal{R i c}_{\mathcal{D} \mid} \mathcal{D}_{j} \times \mathcal{D}_{j} & =r_{\mathcal{D}_{j}}-\left\langle h_{j}, H_{j}\right\rangle+\mathcal{A}_{j}^{b}+\mathcal{T}_{j}^{b}+\Psi_{j}^{\perp}-\operatorname{Def}_{\mathcal{D}_{j}^{\perp}} H_{j}^{\perp}+\mathcal{K}_{j}^{b}+\left(H_{j}^{\perp}\right)^{b} \otimes\left(H_{j}^{\perp}\right)^{b} \\
& -\frac{1}{2} \Upsilon_{h_{j}^{\perp}, h_{j}^{\perp}}-2 \mathcal{T}_{j}^{b}-\frac{1}{2} \Upsilon_{T_{j}^{\perp}, T_{j}^{\perp}}+\sum_{i \neq j}\left(\left.r_{\mathcal{D}_{i}^{\perp}}\right|_{\mathcal{D}_{j}}-\left\langle\left. h_{i}^{\perp}\right|_{\mathcal{D}_{j}}, H_{i}^{\perp}\right\rangle+\left(P_{j} \mathcal{A}_{i}^{\perp}\right)^{b}\right. \\
& +\left(P_{j} \mathcal{T}_{i}^{\perp}\right)^{b}+\left.\Psi_{i}\right|_{\mathcal{D}_{j}}-\operatorname{Def}_{\mathcal{D}_{j}} H_{i}+\left(P_{j} \mathcal{K}_{i}^{\perp}\right)^{b}+\left(P_{j} H_{i}\right)^{b} \otimes\left(P_{j} H_{i}\right)^{b} \\
3.13) \quad & \left.-\frac{1}{2} \Upsilon_{P_{j} h_{i}, P_{j} h_{i}}-\frac{1}{2} \Upsilon_{P_{j} T_{i}, P_{j} T_{i}}-2\left(P_{j} \mathcal{T}_{i}^{\perp}\right)^{b}\right)+\mu_{j} g_{j} .
\end{aligned}
$$

Theorem 3.5. A metric $g \in \operatorname{Riem}\left(M ; \mathcal{D}_{1}, \ldots \mathcal{D}_{k}\right)$ is critical for the geometrical part of (1.2), i.e., $\Lambda=0=\mathcal{L}$, with respect to adapted variations if and only if g satisfies Einstein type equation (1.4), where the tensor $\mathcal{R}^{\mathcal{C}_{\mathcal{D}}}$ is defined in (3.12).

Proof. The Euler-Lagrange equations (3.6) consist of $\mathcal{D}_{j} \times \mathcal{D}_{j}$-components. Thus, for (1.3) we obtain (3.13). If $n=2$ (and $k=2$), then we take $\mu_{1}=\mu_{2}=0$, see [11]. Assume that $n>2$. Substituting (3.13) with arbitrary $\left(\mu_{j}\right)$ into (1.4) along \mathcal{D}_{j}, we conclude that if the Euler Lagrange equations

$$
\mathcal{Q}_{j}=-b_{j} g_{j} \quad(1 \leq j \leq k)
$$

hold, where $b_{j} g_{j}$ is the RHS of (3.6), then $\mathcal{R} i_{\mathcal{D}}-(1 / 2) \mathcal{S}_{\mathcal{D}} \cdot g=0$, see (1.4) with $\Lambda=0=\Xi$, if and only if $\left(\mu_{j}\right)$ satisfy the linear system

$$
\begin{equation*}
\sum_{i} n_{i} \mu_{i}-2 \mu_{j}=a_{j}, \quad j=1, \ldots, k \tag{3.14}
\end{equation*}
$$

with coefficients $a_{j}=\operatorname{Tr}_{g}\left(\sum_{i} \mathcal{Q}_{i}\right)-2 \mathcal{Q}_{j}$. The matrix of (3.14) is invertible. Its determinant $2^{k-1}(2-n)$ is negative when $n>2$. Hence, the system (3.14) has a unique solution $\left(\mu_{1}, \ldots, \mu_{k}\right)$ given by

$$
\begin{equation*}
\mu_{i}=-\frac{1}{2 n-4}\left(\sum_{j}\left(a_{i}-a_{j}\right) n_{j}-2 a_{i}\right) \tag{3.15}
\end{equation*}
$$

and $\mathcal{R} i c_{\mathcal{D} \mid \mathcal{D}_{j} \times \mathcal{D}_{j}}$ satisfies (3.13).
Example 3.5 (see [11]). The symmetric Ricci type tensor $\mathcal{R i c}_{\mathcal{D}}$ in (1.4) with $k=2$, is defined by its restrictions on two complementary subbundles \mathcal{D} and \mathcal{D}^{\perp} of $T M$,

$$
\begin{align*}
& \mathcal{R i c}_{\mathcal{D} \mid \mathcal{D}^{\perp} \times \mathcal{D}^{\perp}}=r-\left\langle h^{\perp}, H^{\perp}\right\rangle+\left(\mathcal{A}^{\perp}\right)^{b}-\left(\mathcal{T}^{\perp}\right)^{b}+\Psi-\operatorname{Def}_{\mathcal{D}} H+\left(\mathcal{K}^{\perp}\right)^{b} \\
& \quad+H^{b} \otimes H^{b}-\frac{1}{2} \Upsilon_{h, h}-\frac{1}{2} \Upsilon_{T, T}+\mu_{1} g^{\perp}, \\
& {\mathcal{R} i c_{\mathcal{D} \mid \mathcal{D} \times \mathcal{D}}=r^{\perp}-\langle h, H\rangle+\mathcal{A}^{b}-\mathcal{T}^{b}+\Psi^{\perp}-\operatorname{Def}_{\mathcal{D}^{\perp}} H^{\perp}+\mathcal{K}^{b}}_{\quad+\left(H^{\perp}\right)^{b} \otimes\left(H^{\perp}\right)^{b}-\frac{1}{2} \Upsilon_{h^{\perp}, h^{\perp}}-\frac{1}{2} \Upsilon_{T^{\perp}, T^{\perp}}+\mu_{2} g^{\top}} .
\end{align*}
$$

where $\mu_{1}=-\frac{n_{1}-1}{n-2} \operatorname{div}\left(H^{\perp}-H\right)$ and $\mu_{2}=\frac{n_{2}-1}{n-2} \operatorname{div}\left(H^{\perp}-H\right)$. Here $(3.16)_{2}$ is dual to $(3.16)_{1}$ with respect to interchanging distributions \mathcal{D} and \mathcal{D}^{\perp}, and their last terms vanish if $n_{1}=n_{2}=1$. Also, we have

$$
\mathcal{S}_{\mathcal{D}}:=\operatorname{Tr}_{g} \mathcal{R} i c_{\mathcal{D}}=\mathrm{S}_{\mathcal{D}, \mathcal{D} \perp}+\frac{n_{2}-n_{1}}{n-2} \operatorname{div}\left(H^{\perp}-H\right)
$$

Example 3.6. Totally umbilical and totally geodesic integrable distributions appear on multiply twisted products. A multiply twisted product $F_{1} \times_{u_{2}} F_{2} \times \ldots \times_{u_{k}} F_{k}$ of Riemannian manifolds $\left(F_{i}, g_{F_{i}}\right), 1 \leq i \leq k$, is the product $M=\prod_{i} F_{i}$ with the metric $g=g_{F_{1}} \oplus u_{2}^{2} g_{F_{2}} \oplus \ldots \oplus u_{k}^{2} g_{F_{k}}$, where $u_{i}: F_{1} \times F_{i} \rightarrow(0, \infty)$ for $i \geq 2$ are smooth functions, see [19]. Twisted products (i.e., $k=2$) and multiply warped products (i.e., $u_{i}: F_{1} \rightarrow(0, \infty)$, see [6]) are special cases of multiply twisted products. Let \mathcal{D}_{i} be the distribution on M obtained from vectors tangent to horizontal lifts of F_{i}. The leaves tangent to $\mathcal{D}_{i}(i \geq 2)$, are totally umbilical, with the mean curvature vector fields

$$
H_{i}=-n_{i} P_{1} \nabla\left(\log u_{i}\right)
$$

and the fibers (tangent to \mathcal{D}_{1}) are totally geodesic $\left(h_{1}=0\right)$. For $k>2$ each pair of distributions is mixed totally geodesic (since M is the product and the Lie bracket does not depend on metric). Using

$$
\operatorname{div} H_{i}=-n_{i}\left(\Delta_{1} u_{i}\right) / u_{i}-\left(n_{i}^{2}-n_{i}\right)\left\|P_{1} \nabla u_{i}\right\|^{2} / u_{i}^{2}
$$

where Δ_{1} is the Laplacian on $\left(F_{1}, g_{F_{1}}\right)$, we find

$$
\begin{equation*}
\mathrm{S}_{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}}=\sum_{i \geq 2} n_{i}\left(\Delta_{1} u_{i}\right) / u_{i} \tag{3.17}
\end{equation*}
$$

Let a multiply twisted product $F_{1} \times_{u_{2}} F_{2} \times \ldots \times_{u_{k}} F_{k}$ with $k>2$, see Example 3.6, be critical for (1.3) with respect to adapted variations of g. Then the system (3.6) takes the form

$$
\begin{align*}
& \operatorname{div} h_{j}-\frac{1}{2} \Upsilon_{h_{j}^{\perp}, h_{j}^{\perp}}+\left(H_{j}^{\perp}\right)^{b} \otimes\left(H_{j}^{\perp}\right)^{b}+\sum_{i \neq j}\left(\left.\operatorname{div} h_{i}^{\perp}\right|_{\mathcal{D}_{j}}-\frac{1}{2} \Upsilon_{h_{i}, h_{i}}+H_{i}^{\mathrm{b}} \otimes H_{i}^{b}\right) \\
& \quad=\left(\mathrm{S}_{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}}-\operatorname{div}\left(H_{j}+\sum_{i \neq j} H_{i}^{\perp}\right)+\lambda\right) g_{j} \tag{3.18}
\end{align*}
$$

(a) Let $\operatorname{dim} F_{1}=n_{1}>2$ and $\operatorname{dim} F_{i}=n_{i}>1$ for $i \neq 1$. In addition, assume that

$$
\left\langle H_{i}, H_{j}\right\rangle=0, \quad i \neq j
$$

From (3.18) with $j=1$, using $H_{1}^{\perp}=\sum_{i \neq 1} H_{i}$ and equalities

$$
\begin{aligned}
& \frac{1}{2} \Upsilon_{h_{1}^{\perp}, h_{1}^{\perp}}=\sum_{i \neq 1} \frac{1}{n_{i}} H_{i}^{b} \otimes H_{i}^{b}=\frac{1}{2} \sum_{i \neq 1} \Upsilon_{h_{i}, h_{i}}, \\
& \left.\sum_{i \neq 1} \operatorname{div} h_{i}^{\perp}\right|_{\mathcal{D}_{1}}=(k-2) \sum_{i \neq 1} \frac{1}{n_{i}} \operatorname{div} H_{i}, \\
& \operatorname{div}\left(\sum_{i \neq 1} H_{i}^{\perp}\right)=(k-2) \sum_{i \neq 1} \operatorname{div} H_{i}, \\
& \left(H_{1}^{\perp}\right)^{b} \otimes\left(H_{1}^{\perp}\right)^{b}=\sum_{i \neq 1} H_{i}^{b} \otimes H_{i}^{b},
\end{aligned}
$$

we obtain

$$
\begin{equation*}
2 \sum_{i \neq 1}\left(1-\frac{1}{n_{i}}\right) H_{i}^{b} \otimes H_{i}^{b}=\left(\mathrm{S}_{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}}-(k-2) \sum_{i \neq 1}\left(1+\frac{1}{n_{i}}\right) \operatorname{div} H_{i}+\lambda\right) g_{1} . \tag{3.19}
\end{equation*}
$$

Comparing ranks (2 and $n_{1}>2$) of matrices $H_{i}^{b} \otimes H_{i}^{b}$ and g_{1} in (3.19), we get $H_{i}=0(i>1)$. Hence, each distribution \mathcal{D}_{i} is totally geodesic, and our multiply twisted product is the product of $\left(F_{1}, g_{F_{1}}\right)$ and $\left(F_{i}, u_{i}^{2} g_{F_{i}}\right)$ for $i>1$.
(b) Let $\operatorname{dim} F_{i}=1$ for $i \neq 1$. Then the system (3.6) takes the form

$$
\begin{equation*}
\mathrm{S}_{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}}-\operatorname{div}\left(2 H_{j}+\sum_{i \neq j} H_{i}^{\perp}\right)+\lambda=0, \quad 1 \leq j \leq k \tag{3.20}
\end{equation*}
$$

Using (3.17) and equality div $H_{i}=-\left(\Delta_{1} u_{i}\right) / u_{i}$, we get the linear system

$$
\begin{equation*}
(k-2) y_{j}+(k-1) \sum_{i \neq j} y_{i}+\lambda=0, \quad 1 \leq j \leq k \tag{3.21}
\end{equation*}
$$

where $y_{i}=\left(\Delta_{1} u_{i}\right) / u_{i}$. The unique solution of (3.21) is $y_{i}=\tilde{\lambda}$, where $\tilde{\lambda}=\lambda /\left(\frac{1}{k-1}-k\right)$. Thus, $\tilde{\lambda}$ is the eigenvalue of the laplacian Δ_{1} on $\left(F_{1}, g_{F_{1}}\right)$, and u_{i} are the eigenfunctions: $\Delta_{1} u_{i}=\tilde{\lambda} u_{i}$. The mixed scalar curvature in this case is constant:

$$
\mathrm{S}_{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}}=\sum_{i \neq 1}\left(\Delta_{1} u_{i}\right) / u_{i}=(k-1) \tilde{\lambda}
$$

Similarly, we can find critical multiply twisted products for the action (1.2).

References

[1] M.A. Akivis, V.V. Goldberg, Differential geometry of webs. In Handbook of differential geometry, Vol. I, pp. 1-152, North-Holland, Amsterdam, 2000.
[2] E. Barletta, S. Dragomir, V. Rovenski and M. Soret, Mixed gravitational field equations on globally hyperbolic space-times, Classical and Quantum Gravity, $30: 8$, (2013) 085015, 26 pp.
[3] E. Barletta, S. Dragomir and V. Rovenski, The mixed Einstein-Hilbert action and extrinsic geometry of foliated manifolds, Balkan J. of Geometry and Its Appl. $22: 1,(2017), 1-17$.
[4] A. Bejancu and H. Farran, Foliations and geometric structures, Springer, 2006.
[5] A. L. Besse, Einstein manifolds. Springer, 1987.
[6] B.-Y. Chen, Differential geometry of warped product manifolds and submanifolds. World Scientific, 2017.
[7] F. Dobarro and B. Unal, Curvature of multiply warped products, J. Geom. Phys. 55(1) (2005) 75-106.
[8] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16:7 (1967), 715-737.
[9] F. Karaca (2020): Multiply warped products with compact Einstein manifolds, Quaestiones Mathematicae: 1-9, DOI: 10.2989/16073606.2020.1746933
[10] M. Neagu, A distinguished geometry perspective on multi-time affine quadratic Lagrangians. Preprint, arXiv:1611.01413v2, (2020).
[11] V. Rovenski, Einstein-Hilbert type action on space-times, Publications de l'Institut Mathématique, Issue: (N.S.) 103 (117) (2018), 199-210.
[12] V. Rovenski, Prescribing the mixed scalar curvature of a foliation. Balkan J. of Geometry and Its Applications, $24: 1$, (2019), 73-92.
[13] V. Rovenski, Integral formulas for a Riemannian manifold with several orthogonal complementary distributions, Global J. of Advanced Research on Classical and Modern Geometries, 10, 1 (2021), 32-42.
[14] V. Rovenski and T. Zawadzki, The Einstein-Hilbert type action on pseudoRiemannian almost product manifolds, J. Math. Physics, Analysis and Geometry, 15, 1 (2019), 86-121.
[15] V. Rovenski and T. Zawadzki, Variations of the total mixed scalar curvature of a distribution, Ann. Glob. Anal. Geom. 54 (2018), 87-122.
[16] S.E. Stepanov and J. Mikeš, Liouvile-type theorems for some classes of Riemannian almost product manifolds and for special mappings of Riemannian manifolds, Differential Geom. and its Appl. 54, Part A (2017), 111-121.
[17] C. Udrişte and I. Tevy, Geometric Dynamics on Riemannian Manifolds. Mathematics 8, 79 (2020). https://doi.org/10.3390/math8010079.
[18] P. Walczak, An integral formula for a Riemannian manifold with two orthogonal complementary distributions. Colloq. Math., 58 (1990), 243-252.
[19] Y. Wang, Multiply warped products with a semi-symmetric metric connection, Abstr. Appl. Anal., 2014, 12, (2014)

Author's address:

Vladimir Rovenski
Department of Mathematics, University of Haifa, Mount Carmel, 31905 Haifa, Israel.
E-mail: vrovenski@univ.haifa.ac.il

[^0]: Balkan Journal of Geometry and Its Applications, Vol.26, No.1, 2021, pp. 81-92.
 (C) Balkan Society of Geometers, Geometry Balkan Press 2021.

