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Abstract. An (α, β)-metric is defined by a Riemannian metric α and 1-
form β. In this paper, we study a class of (α, β)-metrics F = αφ(β/α)
with φ(s) satisfying a known ODE. For any metric F in such a class, we
show that in dimension n ≥ 3, F is of scalar flag curvature if and only if
F is locally projectively flat, if β is closed. While for a subclass with F
being a general square metric type, we prove that in dimension n ≥ 3, F
is of scalar flag curvature if and only if F is locally projectively flat.
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1 Introduction

The flag curvature in Finsler geometry is a natural extension of the sectional curva-
ture in Riemannian geometry, and every two-dimensional Finsler metric is of scalar
flag curvature. It is the Hilbert’s Fourth Problem to study and classify projectively
flat metrics. The Beltrami Theorem states that a Riemannian metric is locally pro-
jectively flat if and only if it is of constant sectional curvature. It is known that
every locally projectively flat Finsler metric is of scalar flag curvature ([6] [12]). How-
ever, the converse is not true, due to the existence of Finsler metrics of constant flag
curvature which are not locally projectively flat ([1]). Therefore, it is an interesting
point to study and classify Finsler metrics of scalar flag curvature. This problem is
far from being solved for general Finsler metrics. Recent studies on this problem are
concentrated on Randers metrics and square metrics.

Randers metrics are among the simplest Finsler metrics in the form F = α + β,
where α is a Riemannian metric and β is a 1-form satisfying ‖β‖α < 1. Bao-Robles-
Shen classify Randers metrics of constant flag curvature by using the navigation
method ([1]). Further, Shen-Yildirim classify Randers metrics of weakly isotropic
flag curvature ([11]). There are Randers metrics of scalar flag curvature which are
neither of weakly isotropic flag curvature nor locally projectively flat ([2]). So far, the
problem of classifying Randers metrics of scalar flag curvature still remains open.

A square metric is defined in the form F = (α + β)2/α with ‖β‖α < 1. In
[10], Shen-Yildirim determine the local structure of locally projectively flat square
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metrics of constant flag curvature. L. Zhou shows that a square metric of constant
flag curvature must be locally projectively flat ([16]). Later on, we further prove that
a square metric in dimension n ≥ 3 is of scalar flag curvature if and only if it is locally
projectively flat ([9]).

Let F = αφ(β/α) be a (regular) (α, β)-metric (see its regular condition in Section

2). Two (α, β)-metrics F and F̃ are called of the same metric type if

F = αφ(β/α), F̃ = α̃φ(β̃/α̃) : α̃ =
√
α2 + εβ2, β̃ = kβ,

where ε, k are constant. In this paper, we consider a class of (α, β)-metric F =
αφ(β/α) with φ(s) being defined by
(1.1){

1 + (k1 + k3)s2 + k2s
4
}
φ′′(s) = (k1 + k2s

2)
{
φ(s)− sφ′(s)

}
,
(
φ(0) = 1, k2 6= k1k3

)
,

where k1, k2, k3 are constant. If k2 = k1k3, then F is of Randers metric type. The
ODE (1.1) appears in characterizing an (α, β)-metric which is Douglasian or locally
projectively flat ([4] [8] [13]). An important special metric type of (1.1), called general
square metric type, is

(1.2) F = α+ εβ ± β2

α
, (ε = constant).

If ε = 2 in (1.2), then F = (α+ β)2/α is a square metric.

Theorem 1.1. Let F = αφ(β/α) be an (α, β)-metric on an n(≥ 3)-dimensional
manifold M , where φ(s) satisfies (1.1). Assume β is closed if F is not of the metric
type (1.2). Then F is of scalar flag curvature if and only if F is locally projectively
flat.

Theorem 1.1 generalized a known result proved in [9] for square metrics. In The-
orem 1.1, the flag curvature K can be determined (Theorem 4.1 below). Theorem
1.1 might hold without the condition that β is closed when F is not of the metric
type (1.2), but we have not found a way to prove the general case. Possibly it even
might be true that β is closed for any (α, β)-metric (not of Randers type) of scalar
flag curvature in dimension n ≥ 3.

After proving Theorem 1.1 in Section 3, we further characterize locally projectively
flat (α, β)-metrics determined by (1.1) in dimension n ≥ 3 in terns of the covariant
derivatives bi|j and the Riemann curvature R̄ik of α (Theorem 4.1 below). This
characterization is different from that given in [8]. In the final section, we add an
appendix to show an application of Theorem 4.1 in two aspects: the local structure
of locally projectively flat (α, β)-metrics (see Section 5.1 below) (cf. [8] [15]), and the
classification for (α, β)-metrics which are locally projectively flat with constant flag
curvature (see Section 5.2 below) (cf. [5] [14]).

2 Preliminaries

For a Finsler metric F , the Riemann curvature Ry = Rik(y) ∂
∂xi ⊗ dxk is defined by

(2.1) Rik := 2
∂Gi

∂xk
− yj ∂2Gi

∂xj∂yk
+ 2Gj

∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
,
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where the spray coefficients Gi are given by

Gi :=
1

4
gil
{

[F 2]xkyly
k − [F 2]xl

}
.(2.2)

The Ricci curvature Ric is the trace of the Riemann curvature, that is, Ric := Rmm. A
Finsler metric is said to be of scalar flag curvature if there is a function K = K(x, y)
such that

(2.3) Rik = KF 2(δik − F−2yiyk), yk := (F 2/2)yiyky
i.

If K is a constant, F is said to be of constant flag curvature. A Finsler metric
F is said to be projectively flat in U , if there is a local coordinate system (U, xi)
such that Gi = Pyi, where P = P (x, y) is called the projective factor satisfying
P (x, λy) = λP (x, y) for λ > 0.

The Weyl curvature W i
k and the Douglas curvature D i

h jk are two important
projectively invariant tensors which are defined respectively by

W i
k : = Rik −

Rmm
n− 1

δik −
1

n+ 1

∂

∂ym
(
Rmk −

Rhh
n− 1

δmk
)
yi,(2.4)

D i
h jk : =

∂3

∂yh∂yj∂yk
(
Gi − 1

n+ 1

∂Gm

∂ym
yi
)
.

A Finsler metric is called a Douglas metric if D i
h jk = 0. A Finsler metric is of scalar

flag curvature if and only if W i
k = 0 ([12]). An n(≥ 3)-dimensional Finsler metric is

locally projectively flat if and only if: W i
k = 0 and D i

h jk = 0 ([6]).

For a Riemannian α =
√
aijyiyj and a 1-form β = biy

i, let

rij :=
1

2
(bi|j + bj|i), sij :=

1

2
(bi|j − bj|i), rij := aikrkj , sij := aikskj ,

rj := birij , sj := bisij , tij := sims
m
j , tj := bitij ,

where we define bi := aijbj , (aij) is the inverse of (aij), and ∇β = bi|jy
idxj denotes

the covariant derivatives of β with respect to α. Here are some of our conventions in
the whole paper. For a general tensor Tij as an example, we define Ti0 := Tijy

j and
T00 := Tijy

iyj , etc. We use aij to raise or lower the indices of a tensor.

An (α, β)-metric is a Finsler metric defined by a Riemann metric α =
√
aij(x)yiyj

and a 1-form β = bi(x)yi as follows:

F = αφ(s), s = β/α,

where φ(s) > 0 is a C∞ function on (−bo, bo). It is proved in [7] that an (α, β)-metric
is regular (positively definite on TM − 0) if and only if

(2.5) φ(s)− sφ′(s) > 0, φ(s)− sφ′(s) + (b2− s2)φ′′(s) > 0,
(
|β/α| = |s| ≤ b < bo

)
,

where b is defined by b := ||β||α. By (2.2), the spray coefficients Gi of an (α, β)-metric
F are given by

(2.6) Gi = Giα + αQsi0 + α−1Θ(−2αQs0 + r00)yi + Ψ(−2αQs0 + r00)bi,



On a class of Finsler metrics of scalar flag curvature 109

where Giα denote the spray coefficents of α and

Q :=
φ′

φ− sφ′
, Θ :=

Q− sQ′

2∆
, Ψ :=

Q′

2∆
, ∆ := 1 + sQ+ (b2 − s2)Q′.

For an (α, β)-metric, we can use (2.6), (2.1) and (2.4) to get the expression of the
Weyl curvature W i

k. We have given a Maple program in [9] to compute the Weyl
curvature for any (α, β)-metric. However, the expression of W i

k is very lengthy (cf.
[3]). So for the briefness, we will not write out the whole expression of W i

k in this
paper, but some key terms will be given.

3 Proof of Theorem 1.1

The following Lemma is already known.

Lemma 3.1. ([4]) Let F = αφ(s), s = β/α, be an n(≥ 3)-dimensional (α, β)-metric,
where φ = φ(s) satisfies the ODE (1.1). Then F is a Douglas metric if and only if β
satisfies

(3.1) bi|j = τ
{

(1 + k1b
2)aij + (k2b

2 + k3)bibj
}
,

where τ = τ(x) is a scalar function.

In this section, we will show that, in dimension n ≥ 3, if the metric F in Theorem
1.1 is of scalar flag curvature in two cases, then F satisfies (3.1) and it must be of
Douglas type. Thus F is locally projectively flat.

3.1 The case of β being closed

In this subsection, we assume β is closed for the (α, β)-metric F = αφ(β/α) in
Theorem 1.1. We will show (3.1) holds.

Lemma 3.2. Let F = αφ(β/α) be an (α, β)-metric, where φ(s) is given by (1.1).
Then we have

(3.2) 1 + k1b
2 > 0, 1 + (k1 + k3)b2 + k2b

4 > 0.

Proof. By the ODE (1.1), we have φ− sφ′ = exp
(
− 1

2

∫ s2
0

k1+k2θ
1+(k1+k3)θ+k2θ2

)
> 0, and

φ− sφ′ + (b2 − s2)φ′′ = (φ− sφ′) · 1 + k1b
2 + (k3 + k2b

2)s2

1 + (k1 + k3)s2 + k2s4
.

Since the above expression is positive for |s| ≤ b, we easily obtain (3.2). �

Using the condition that β is closed (sij = 0) and multiplying W i
k = 0 by

4(n2 − 1)
[
φ− sφ′ + (b2 − s2)φ′′

]5
α4
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and we get an equation denoted by Eq0 = 0. By the ODE (1.1) we can get φ(i)

(2 ≤ i ≤ 5) expressed by φ, φ′. Plug them into Eq0 = 0 and then multiply Eq0 = 0

by
[
1 + (k1 + k3)s2 + k2s

4
]5

. By this way, we have

4(φ− sφ′)5Eq1 = 0.

It is surprising that Eq1 is independent of φ and by Eq1 = 0 we have

0 = 24(n− 2)(k2 − k1k3)3(α2bk − βyk)yiβ3
[
α4 + (k1 + k3)α2β2 + k2β

4
]2
r200

+Cik
[
(1 + k1b

2)α2 + (k2b
2 + k3)β2

]
,(3.3)

where Cik are homogeneous polynomials in (yi).

Lemma 3.3. For some k, α2bk−βyk cannot be divisible by (1+k1b
2)α2+(k2b

2+k3)β2.

Proof. Otherwise, for some scalar functions fk = fk(x) we have

α2bk − βyk = fk
[
(1 + k1b

2)α2 + (k2b
2 + k3)β2

]
.

Then we have

b2α2 − β2 = f
[
(1 + k1b

2)α2 + (k2b
2 + k3)β2

]
, f := bkfk,

which implies 1 + k1b
2 + (k2b

2 + k3)b2 = 0. This is a contradiction by Lemma 3.2. �

Lemma 3.4. α4 + (k1 + k3)α2β2 + k2β
4 cannot be divisible by (1 + k1b

2)α2 + (k2b
2 +

k3)β2, provided that k2 6= k1k3.

Proof. We can prove it in two cases: k2b
2 + k3 = 0 and k2b

2 + k3 6= 0. We need
Lemma 3.2 and the fact k2 6= k1k3. The details are omitted. �

By (3.3), Lemma 3.3 and Lemma 3.4 we have (3.1) for some scalar function τ =
τ(x). Thus F in Theorem 1.1 is a Douglas metric by Lemma 3.1.

3.2 The case of F being metric of type (1.2)

In this section, we will prove Theorem 1.1 when F is of the metric type (1.2). In
the following discussion, we put F = α + εβ + β2/α. The proof for the case F =
α+ εβ − β2/α is similar.

To complete the proof of Theorem 1.1, we only need to show that β is closed when
F is of scalar flag curvature in n ≥ 3. Then Theorem 1.1 follows from the result in
Subsection 3.1.

Lemma 3.5. β is closed ⇐⇒ tij = 0 ⇐⇒ tkk = 0.

Now we begin our discussion. We will prove our results in two cases: ε 6= 0 and
ε = 0. The method used in the following proof is similar to the idea in [9] for the
consideration of square metrics. Multiplying W i

k = 0 by (n2 − 1)α18(α2 − β2)4
[
(1 +

2b2)α2 − 3β2
]5

gives an equation in the following form

H + αP = 0,
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where H,P are homogeneous polynomials in (yi). This is equivalent to

(3.4) H = 0, P = 0,
(
H =

10∑
i=0

Aiα
2i, P =

9∑
i=0

Biα
2i
)
,

where Ai, Bi are homogeneous polynomials in (yi).

Case I: Assume ε 6= 0. We shall first show the following

Lemma 3.6. If H = 0, P = 0, then s0 = 0.

Proof. The equation P = 0 can be written as

(3.5) (· · · )
[
(1 + 2b2)α2 − 3β2

]
+ 2592(n− 2)εβ3(α2 − β2)4(α2bk − βyk)yis0P̃ = 0,

where

(3.6) P̃ := (β2 − α2)r00 + 4α2βs0,

and the equation α2H = 0 can be written as

(3.7) (· · · )
[
(1 + 2b2)α2 − 3β2

]
+ 648(n− 2)β3(α2 − β2)4(α2bk − βyk)yiH̃ = 0,

where

(3.8) H̃ := 4ε2s20α
6 + (r00 − 4βs0)2α4 − 2β2r00(r00 − 4βs0)α2 + r200β

4.

The omitted terms in the parentheses in (3.5) and (3.7) are homogeneous polynomials
in (yi). Since (1 + 2b2)α2− 3β2 is irreducible (b2 < 1), it is easy to see from (3.5) and

(3.7) that both P̃ (if s0 6= 0) and H̃ are divisible by (1 + 2b2)α2 − 3β2.

Suppose s0 6= 0. Then it follows from (3.5) that P̃ is divisible by (1+2b2)α2−3β2.
Thus from (3.6), there is a homogeneous polynomial f in (yi) of degree two satisfying

(3.9) (β2 − α2)r00 + 4α2βs0 = f
[
(1 + 2b2)α2 − 3β2

]
.

It is clear that (3.9) can be rewritten as

(3.10) (4βs0 − r00 − f − 2b2f)α2 + (r00 + 3f)β2 = 0.

It follows from (3.10) that r00 + 3f = 2(b2− 1)τα2 for some scalar function τ = τ(x).
Solving f from this and plugging it into (3.10) again yields

(3.11) r00 = τ
[
(1 + 2b2)α2 − 3β2

]
+

6βs0
1− b2

.

From (3.7), H̃ is divisible by (1 + 2b2)α2 − 3β2. Then it follows from (3.8) that
there is a homogeneous polynomial h in (yi) of degree six such that

(3.12) 4ε2s20α
6+(r00−4βs0)2α4−2β2r00(r00−4βs0)α2+r200β

4 = h
[
(1+2b2)α2−3β2

]
.

Plugging (3.11) into (3.12) yields

(3.13) (· · · )
[
(1 + 2b2)α2 − 3β2

]
+ 36ε2α6(α2 − β2)2s20 = 0,

where the omitted term in the parenthesis above is a homogeneous polynomial in (yi).
It is easy to get a contradiction from (3.13) since s0 6= 0 by assumption. �



112 Guojun Yang

Lemma 3.7. If H = 0, P = 0, then

(3.14) t00 = γ(α2 − β2),

where γ = γ(x) is a scalar function on M .

Proof. By Lemma 3.6, we have s0 = 0. Now plug s0 = 0 into H = 0, and then H = 0
can be written as

(· · · )(α2 − β2) + 384(n+ 1)(4 + ε2)(1− b2)5β16yi(βbk − yk)t00 = 0,

where the omitted term in the parenthesis above is a homogeneous polynomial in (yi).
Now it is clear from the above equation that (3.14) holds for some scalar function
γ = γ(x). �

Lemma 3.8. If H = 0, P = 0, then β is closed.

Proof. By (3.14) we have

(3.15) ti0 = γ(yi − βbi), tk0 = γ(yi − βbi), t0 = 0, tmm = γ(n− b2).

Plugging (3.14), (3.15) and s0 = 0 into H/(α2 − β2) = 0 yields

0 = (· · · )(α2 − β2) + 64(n+ 1)(4 + ε2)(1− b2)5β16 ×[
γ(yk − βbk)(nβbi − βbi − 3yi − b2yi)− 3(n− 1)si0sk0

]
,(3.16)

where the omitted term in the parenthesis above is a homogeneous polynomial in (yi).
Then it follows from (3.16) that there are scalar functions σik = σik(x) such that

(3.17) γ(yk − βbk)(nβbi − βbi − 3yi − b2yi)− 3(n− 1)si0sk0 = σik(α2 − β2).

It has been prove in [9] that β is closed by (3.17). Here we also show it. Exchanging
the indices i and k in (3.17), we have

(3.18) γ(yi − βbi)(nβbk − βbk − 3yk − b2yk)− 3(n− 1)si0sk0 = σki(α
2 − β2).

Then (3.17)− (3.18) gives

γ(n− 4− b2)β(bkyi − biyk) = (σik − σki)(α2 − β2),

which implies that γ = 0 since n − 4 − b2 6= 0 (b2 < 1). Now since γ = 0, (3.17)
reduces to

(3.19) −3(n− 1)si0sk0 = σik(α2 − β2).

It is clear from (3.19) that si0 = 0 and thus β is closed. �

Case II: Assume ε = 0. In this case, there are some different steps from that in Case
I.

In (3.4), we have P = 0 and A10 = 0 for H. First we have the following lemma.
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Lemma 3.9. If H = 0, then

(3.20) t00 = γ(α2 − β2) +
s20

1− b2
,

where γ = γ(x) is a scalar function.

Proof. Rewrite H = 0 in the following form

(· · · )(α2 − β2) + 1536(n+ 1)(1− b2)4β16
[
(1− b2)t00 − s20

]
yi(bkβ − yk) = 0,

where the omitted term in the parenthesis above is a homogeneous polynomial in (yi).
It is clear that the above equation shows that α2 − β2 is divisible by (1− b2)t00 − s20.
This fact implies that (3.20) holds for some scalar function γ = γ(x). �

Lemma 3.10. If H = 0, then β is closed.

Proof. By Lemma 3.9 that (3.20) holds. Then it follows from (3.20) that

tik = γ(δik − bibk) +
6sisk
1− b2

, tk0 = γ(yk − βbk) +
sks0

1− b2
, ti0 = γ(yi − βbi) +

sis0
1− b2

,

tmm = γ(n− 2b2), tk = (1− b2)γbk, t0 = (1− b2)γβ sms
m = −b2(1− b2)γ.

Plugging the above formula and (3.20) into H · (1− b2)/(α2 − β2) = 0 gives

(3.21) Ãik(α2 − β2) + 24(1− b2)β4Bik = 0,

where Ãik and Bik are homogeneous polynomials in (yi), and Bik are in the following
form

Bik = (n2 − 1)(1− b2)β
[
(1− b2)βsk0 − 3s0(yk − βbk)

]
si0 + (n− 1)(1− b2)βs0

[
(n+ 1)βbi

−3yi
]
sk0 + 3(yk − βbk)

{[
2(1− b2)2γβ2 + (3n− 5)s20

]
yi − (n2 − 1)βs20b

i
}
.

By (3.21), there are polynomials Aik such that

(3.22) Bik = Aik(α2 − β2).

Contracting (3.22) by bib
k we obtain

(3.23) Xα2−β2
[
6(1− b2)3γβ2−2(n2−3n+ 5)(1− b2)s20 +X

]
= 0, (X := Aikbib

k),

By (3.23), there is a scalar function ξ = ξ(x) such that X = ξβ2, and then plugging
it into (3.23) yields

ξ(α2 − β2)− 6(1− b2)3γβ2 + 2(n2 − 3n+ 5)(1− b2)s20 = 0,(3.24)

ξ(aij − bibj)− 6(1− b2)3γbibj + 2(n2 − 3n+ 5)(1− b2)sisj = 0.(3.25)

Contracting (3.25) by aij and using the expression of sms
m implied by (3.20) we

obtain

(3.26) ξ(n− b2)− 2b2(1− b2)2(n2 − 3n+ 8− 3b2)γ = 0.
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Contracting (3.25) by bibj gives

(3.27) ξ = 6b2(1− b2)2γ.

Substitute (3.27) into (3.26) and we have

(3.28) 2(n− 2)(n− 4)b2(1− b2)2γ = 0.

(1). If n 6= 4, then by (3.28) we have γ = 0. In this case, by γ = 0 and (3.24)
we have s0 = 0 and then by (3.20) we get t00 = 0. Therefore, it shows β is closed by
Lemma 3.5.

(2). If n = 4, then plugging n = 4 and (3.27) into (3.24) shows

(3.29) (1− b2)γ(b2α2 − β2) + 3s20 = 0.

Since n ≥ 3, clearly by (3.29) we have s0 = 0, γ = 0, and then again by (3.20) we get
t00 = 0. Therefore, β is closed by Lemma 3.5. �

4 Characterizations for locally projective flatness

Let φ(s) satisfies (1.1). It is shown in [8] that an n(≥ 3)-dimensional (α, β)-metrics
F = αφ(β/α) is locally projectively flat iff.

bi|j = τ
{

(1 + k1b
2)aij + (k2b

2 + k3)bibj
}
,

Giα = θyi − τ(k1α
2 + k2β

2)bi.

where Giα are the spray coefficients of α, θ is a 1-form and τ = τ(x) is a scalar
function.

In the above characterization, Giα hold in a special coordinate system. On the
other hand, locally projectively flat Finsler metrics can be also characterized by pro-
jective quantities W i

k = 0 and D i
j kl = 0. Basing on this, we have the following

different characterization theorem.

Theorem 4.1. Let F = αφ(β/α) be an (α, β)-metric on an n(≥ 3)-dimensional
manifold M , where α =

√
aij(x)yiyj is Riemannian and β = bi(x)yi is a 1-form,

and φ(s) satisfies (1.1). Then F is locally projectively flat iff. the Riemann curvature
R̄ik of α and the covariant derivatives bi|j of β with respect to α satisfy the following
equations

bi|j = τ
{

(1 + k1b
2)aij + (k2b

2 + k3)bibj
}
,(4.1)

R̄ik = λ(α2δik − yiyk) + η
(
β2δik + α2bibk − βbiyk − βbkyi),(4.2)

τxi = qbi,(4.3)

where λ = λ(x), τ = τ(x) are scalar functions on M and η, q are defined by

(4.4) η :=
{
k21 +k2−2k1k3−k1(k2−k21)b2

}
τ2 +k1λ, q := (k3−2k1−k21b2)τ2−λ.

In this case, the flag curvature K is given by

32φ2K = fφ′φ−1
{[

24fφ−1φ′ + (3− 3f + hs2)2s−3b2 − 16hs
]
τ2 + 16λs

}
+
[
8(2ghs2 + 12f − 3g2)− g(3 + hs2 − 3f)2s−2b2

]
s−2τ2 − 16λg,(4.5)



On a class of Finsler metrics of scalar flag curvature 115

where f, g, h are defined by

(4.6) f := 1 + (k1 + k3)s2 + k2s
4, g := k2s

4 − k1s2 − 2, h := 3k2s
2 − k1 + 3k3.

Proof. Let F = αφ(β/α) be locally projectively flat in dimension n ≥ 3, where φ(s)
satisfies (1.1). Then the Weyl curvature W i

k vanish. It is shown in [8] that (4.1)
holds. Now by (4.1) we can obtain the expressions of these quantities:

r00, ri, r
m
m, r, r00|0, r0|0, r00|k, rk0|m, rk|0, etc.

For example, we have

r0|0 =
[
1 + (k1 + k3)b2 + k2b

4
]{[

(1 + k1b
2)α2 + (2k1 + 3k3 + 5k2b

2)β2
]
τ2 + τ0β

}
.

Define W̄ik := aimW̄
m
k , where W̄m

k are the Weyl curvature of α. Now plug all the
above quantities into (3.3) and then we can get W̄ik. We will discuss it under two
cases.

Case I: Assume k1 6= 0. We have

W̄ik =
k1

n− 1
bmωm(α2aik − yiyk)− (k1 + k2b

2)ω0 − k2bmωmβ
n− 1

βaik

+
1

n− 1

{k1 + k2b
2

n+ 1

[
(2n− 1)βωk − (n− 2)ω0bk

]
− k2bmωmβbk

}
yi

+ω0bi(k1yk + k2βbk)− (k1α
2 + k2β

2)biωk,(4.7)

where τi := τxi and

(4.8) ωi := τi +
(
k1 + k3 + k2b

2 − k2
k1

)
τ2bi.

Lemma 4.2. (4.7) ⇐⇒ (4.2) and (4.3), where q is defined by

(4.9) q := − η

k1
−
(
k1 + k3 + k2b

2 − k2
k1

)
τ2.

Proof. =⇒ : By the definition of the Weyl curvature W̄ik of α we have

(4.10) W̄ik = R̄ik −
1

n− 1
R̄ic00aik +

1

n− 1
R̄ick0yi,

where R̄ik := aimR̄
m
k and R̄icik denote the Ricci tensor of α. Using the fact R̄ik = R̄ki

we get from (4.10)

(4.11) W̄ik − W̄ki =
1

n− 1

(
R̄ick0yi − R̄ici0yk

)
.

By (4.7) we can get another expression of W̄ik − W̄ki. Thus by (4.7) and (4.11) we
have

(4.12) Tiyk − Tkyi + (n2 − 1)(k1α
2 + k2β

2)(ωibk − ωkbi) = 0,
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where we define

Ti : = (n+ 1)R̄ici0 − (2n− 1)(k1 + k2b
2)βωi

+
{

[(n2 + n− 3)k1 + (n− 2)k2b
2]ω0 + (n+ 1)k2b

mωmβ
}
bi.

Contracting (4.12) by yk we get

(4.13)
[
Ti + (n2 − 1)k1(ωiβ − ω0bi)

]
α2 − T0yi + (n2 − 1)k2β

2(ωiβ − ω0bi) = 0.

Contracting (4.13) by bi we obtain
(4.14)[
bmTm + (n2 − 1)k1(bmωmβ − b2ω0)

]
α2 +

[
(n2 − 1)k2β(bmωmβ − b2ω0)− T0

]
β = 0.

So by (4.14) there is some scalar function η̄ = η̄(x) such that

(4.15) T0 = (n2 − 1)k2β(bmωmβ − b2ω0) + (n+ 1)η̄α2.

Then by the definition of Ti and (4.15) we have

R̄ic00 = η̄α2 − (n− 2)
[
(k1 + k2b

2)ω0 − k2bmωmβ
]
β,(4.16)

R̄ici0 = η̄yi − (n− 2)
{k1 + k2b

2

2
(βωi + biω0)− k2bmωmβbi

}
.(4.17)

Now plugging (4.16) and (4.17) into (4.13) yields

(4.18) 2(n+ 1)k2Aiβ +Biα
2 = 0,

where Ai and Bi are defined by

Ai : = (b2ω0 − bmωmβ)yi + β2ωi − βω0bi,

Bi : = k2
{[

2(n+ 1)bmωmβ − (n− 2)b2ω0

]
bi − (n+ 4)b2βωi

}
+ (n− 2)k1(βωi − ω0bi).

If k2 = 0, then by (4.18) we have

(4.19) βωi − ω0bi = 0.

If k2 6= 0, then by (4.18) we have

(4.20) Ai = fiα
2,

where fi = fi(x) are scalar functions. Contracting (4.20) by yi we get

(4.21) fi = b2ωi − bmωmbi

Plugging (4.20) and (4.21) into (4.18) gives

(4.22) (n− 2)(k1 + k2b
2)(βωi − ω0bi)α

2 = 0.

If τ = 0, we can naturally find λ, η, q such that (4.1)–(4.3) hold, since in this case,
β(6= 0) is parallel and α is flat. So we may assume τ 6= 0, and then by (4.1) and
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Lemma 3.2, we have b2 6= constant. So by (4.22) we also get (4.19). Thus it follows
from (4.19) that

(4.23) ωi = ebi,

for some scalar function e = e(x). Now plugging (4.16), (4.17) and (4.23) into (4.7)
and (4.10) we obtain

(4.24) R̄ik = λ(α2aik − yiyk) + η
(
β2aik + α2bibk − βbiyk − βbkyi),

where we define

(4.25) λ :=
k1eb

2 + η̄

n− 1
, η := −k1e.

Clearly, (4.24) is just (4.2). It follows from (4.8), (4.23) and (4.25) that

τi = qbi =
{
− η

k1
−
(
k1 + k3 + k2b

2 − k2
k1

)
τ2
}
bi,

which implies (4.3) with q given by (4.9).
⇐= : We verify that both sides of (4.7) are equal. By (4.2) we have (4.16) and

(4.17). Since (4.10) naturally holds, we plug (4.16), (4.17) and (4.2) into (4.10) and
then we obtain the left side of (4.7). By (4.3) and (4.9) we get

(4.26) ωi = ebi = − η

k1

from (4.8). Then plugging (4.26) into the right side of (4.7) we obtain the result equal
to the left side of (4.7). �

In the final we compute the flag curvature and prove that η, q are given by (4.4).
As shown above, we have (4.1)–(4.3) with q being given by (4.9) since F is locally
projectively flat. Plug (1.1) and (4.1)–(4.3) and (4.9) into the Riemann curvature Rik
of F , and then a direct computation gives

Rik = KF 2(δik − F−1yiFyk) +
φ′(sFyk − φbk)

k1φ2(φ− sφ′)
×[

η −
{
k21 + k2 − 2k1k3 − k1(k2 − k21)b2

}
τ2 − k1λ

]
Fyi,(4.27)

where the expression of K = K(x, y) is omitted. Since F is of scalar flag curvature
and n ≥ 3, by (4.27) we must have

(4.28) η −
{
k21 + k2 − 2k1k3 − k1(k2 − k21)b2

}
τ2 − k1λ = 0.

Thus we get η given by (4.4). Plug η given by (4.4) into K, and then we obtain the
flag curvature K given by (4.5). By (4.9) and η in (4.4), we get q given by (4.4).

Case II: Assume k1 = 0. Then k2 6= 0 since k2 6= k1k3. We have

W̄ik

k2
=

(τ2 + bmτm)β2 − b2(βτ0 + τ2α2)

n− 1
δik + (τ0bk − βτk)βbi + τ2(α2bk − βyk)bi

+

[
(2n− 1)βτk − (n− 2)τ0bk

]
b2 + (n+ 1)

[
b2τ2yk − (τ2 + bmτm)βbk

]
n2 − 1

yi.(4.29)



118 Guojun Yang

Lemma 4.3. (4.29) ⇐⇒ (4.2) and (4.3), where q = q(x) is some scalar function and
η = k2τ

2.

Proof. We only show the final results of the necessity. Assume that (4.29) holds. By
similar steps as that in Lemma 4.2, we have

τi = qbi,(4.30)

R̄ik = λ(α2aik − yiyk) + k2τ
2
(
β2aik + α2bibk − βbiyk − βbkyi),(4.31)

where q = q(x), λ = λ(x) are scalar functions. By (4.31), η in (4.2) is given by
η = k2τ

2, which is equal to the η in (4.4) with k1 = 0. �

Now we compute the Riemann curvature Rik of F in this case and prove that
q are given by (4.4) with k1 = 0. By (1.1) and (4.1)–(4.3) with η = k2τ

2, a direct
computation gives

(4.32) Rik = KF 2(δik − F−1yiFyk)−
φ′(sFyk − φbk)

φ2(φ− sφ′)
(λ+ q − k3τ2)Fyi,

where the expression of K = K(x, y) is omitted. Since F is of scalar flag curvature
and n ≥ 3, by (4.32) we must have

(4.33) λ+ q − k3τ2 = 0.

Thus we get q given by (4.4) with k1 = 0.

5 Appendix

In this appendix, as an application of Theorem 4.1, we would like to use the charac-
terization (4.1)–(4.4) and the scalar flag curvature (4.5) to verify two known results
in [15] and [5] respectively. One is about the local structure of locally projectively
flat (α, β)-metrics and the other is about the classification on locally projectively flat
(α, β)-metrics of constant flag curvature.

5.1 A deformation on (α, β)-metrics

In Theorem 4.1, (4.1)–(4.4) are necessary and sufficient conditions for an n(≥ 3)-
dimensional (α, β)-metric satisfying (1.1) to be locally projectively flat. In [8], Shen
gives another characterization, and then in [15], Yu finds a deformation to obtain the
local structure based on Shen’s result. In this section, we will give the local structure
using (4.1)–(4.4) by a similar deformation.

Let u = u(t), v = v(t), w = w(t) satisfy the following ODEs:

u′ =
v − k1u

1 + (k1 + k3)t+ k2t2
,(5.1)

v′ =
u(k2u− k3v − 2k1v) + 2v2

u[1 + (k1 + k3)t+ k2t2]
,(5.2)

w′ =
w(3v − k3u− 2k1u)

2u
[
1 + (k1 + k3)t+ k2t2

] .(5.3)
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Let α and β satisfy (4.1)–(4.4), and define a new Riemann metric h =
√
hij(x)yiyj

and a new 1-form ρ = pi(x)yi by

(5.4) h :=
√
uα2 + vβ2, ρ := wβ,

where u = u(b2) 6= 0, v = v(b2), w = w(b2) 6= 0 are determined by (5.1)–(5.3). We
will show in the following that h is of constant sectional curvature and ρ is a closed
1-form which is conformal with respect to h.

By (4.1), a direct computation shows that the sprays Gih of h and Giα of α satisfy

(5.5) Gih = Giα + τ
{1

2
(k1α

2 + k2β
2)bi − (k1u− v)β

u
yi
}
,

By (4.1) and (5.5) we can directly get

(5.6) pi|j =
wτ

u
hij (= −2chij),

where the covariant derivatives are taken with respect to h. Now (5.6) implies that ρ
is a closed conformal 1-form with respect to h.

By (5.5) and using (4.1)–(4.4), we obtain

(5.7) R̃ik =
λu+ (k21ub

2 + 2k1u− v)τ2

u2
(h2δik − yiỹk),

where R̃ik are the Riemann curvatures of h and ỹk := hkmy
m. It follows from (5.7)

that h is of constant sectional curvature. We put it as µ, and then we obtain

(5.8) λ = µu− k1u(2 + k1b
2)− v

u
τ2.

It is already known that the local solution can be determined for a conformal
vector field on a Riemannian space of constant sectional curvature. In some local
coordinate system we may put h = hµ in the form

(5.9) hµ =

√
(1 + µ|x|2)|y|2 − µ〈x, y〉2

1 + µ|x|2
,

and then by (5.6) and (5.9) we obtain the 1-form ρ = piy
i given by (cf. [15])

(5.10) pi =
(k − µ〈a, x〉)xi + (1 + µ|x|2)ai

(1 + µ|x|2)
3
2

, pi =
√

1 + µ|x|2(kxi + ai).

where k is a constant and a = (ai) is a constant vector, and pi = himp
m. By (5.10)

we have

(5.11) p2 = ||ρ||2h = |a|2 +
k2|x|2 + 2k〈a, x〉 − µ〈a, x〉2

1 + µ|x|2
.

By (5.4) we have

(5.12) p2 =
w2b2

u+ vb2
, (p := ||ρ||h).
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Thus we can get the local expression of b2 from (5.11) and (5.12) for a given triple
(u, v, w). Additionally, c and τ in (5.6) are given by

(5.13) c =
−k + µ〈a, x〉
2
√

1 + µ|x|2
, τ = −2c

u

w
.

If we choose a triple (u, v, w) determined by (5.1)–(5.3), then by the above discus-
sion, we can obtain the local expressions of α and β by (5.4).

Remark 5.1. We can have different suitable choices of u, v, w satisfying (5.1)–(5.3).
For a square metric F = (α+ β)2/α, the triple (u, v, w) can be chosen as ([9])

u = (1− b2)2, v = 0, w =
√

1− b2.

For the general case in Theorem 4.1, we may choose the triple (u, v, w) as ([15])

(5.14) u = e2σ, v = (k1 + k3 + k2b
2)u, w =

√
1 + (k1 + k3)b2 + k2b4 e

σ,

where σ is defined by

2σ :=

∫ b2

0

k2t+ k3
1 + (k1 + k3)t+ k2t2

dt.

5.2 Constant flag curvature

In this section, we consider the classification in Theorem 4.1 when F is of constant
flag curvature. The following corollary has been proved in [5] [14] in a different way.

Corollary 5.1. Let F = αφ(β/α) be an (α, β)-metric on an n(≥ 2)-dimensional
manifold M , where φ(s) satisfies (1.1). Suppose F is locally projectively flat with
constant flag curvature K and β is not parallel with respect to α. Then F must be in
the following form

(5.15) F =
(
√
α2 + kβ2 + εβ)2√

α2 + kβ2
,

where k and ε 6= 0 are constant. In this case, we have K = 0 and k = k1 − φ′(0)2/2.

Proof. Note that β is closed if F is locally projectively flat in n ≥ 3 ([8]). We
can use Theorem 4.1 to prove this corollary in n ≥ 3, and for the case n = 2, see
[14]. Since F is of constant flag curvature, K given by (4.5) is a constant. Put
φ(s) = 1 + a1s + a2s

2 + a3s
3 + · · · . Then by (1.1), we can express all ai’s (i ≥ 2)

in terms of k1, k2, k3. Multiply (4.5) by φ2 and we get an equation. Let pi be the
coefficients of si. Firstly, by p0 = 0, we get

(5.16) K = λ+
(
k21b

2 + k1 +
3

4
a21
)
τ2.

We show a1 6= 0. If a1 = 0, then plugging a1 = 0 and (5.16) into p2 = 0 yields

12τ2(k2 − k1k3) = 0.
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Since k2 6= k1k3, we get τ = 0 on the whole M . Thus by (4.1), β is parallel with
respect to α. So a1 6= 0. Now substitute (5.16) into p1 = 0 and then using a1 6= 0 we
obtain

(5.17) λ = −(k21b
2 + k3 + 2a21)τ2.

Next plugging (5.16) and (5.17) into p3 = 0 and using a1 6= 0 and τ 6= 0 we get

(5.18) k2 = −a41 +
3

5
(k1 − k3)a21 +

1

5
(k1k3 + 2k21 + 2k23).

Then similarly, by (5.16)–(5.18) and p4 = 0 we have

k3 = k1 − a21, k1 −
5

4
a21, −k1 +

10

3
a21.

If k3 = −k1 + 10a21/3, then plugging it and (5.16)–(5.18) into p5 = 0 yields

k1 =
5

12
a21,

13

6
a21,

55

24
a21.

It can be easily verified that if

k3 = k1 − a21, or k3 = −k1 +
10

3
a21 and k1 =

5

12
a21,

13

6
a21,

then we have k2 = k1k3. Therefore, we have

(5.19) k3 = k1 −
5

4
a21, or k3 = −k1 +

10

3
a21 and k1 =

55

24
a21.

The second case in (5.19) is a special case of the first case in (5.19). So by (5.18) and
(5.19), we have

(5.20) k2 =
3

8
a41 −

5

4
k1a

2
1 + k21, k3 = k1 −

5

4
a21.

Now by (5.16), (5.17) and (5.20) we get K = 0. Plug (5.20) into (1.1) and solving
the ODE we obtain (5.15) with k := k1 − a21/2, ε := a1/2. �

Corollary 5.2. Let F = (α + β)2/α be a non-Riemannian square metric on an
n(≥ 2)-dimensional manifold M . Then F is of constant flag curvature iff. either α
is flat and β is parallel with respect to α, or up to a scaling on F , α and β can be
locally expressed as

α =
(1 + 〈a, x〉)2

1− |x|2

√
(1− |x|2)|y|2 + 〈x, y〉2

1− |x|2
,(5.21)

β = ± (1 + 〈a, x〉)2

1− |x|2
{ 〈a, y〉

1 + 〈a, x〉
+
〈x, y〉

1− |x|2
}
,(5.22)

where a = (ai) ∈ Rn is a constant vector. In this case, the constant flag curvature
K = 0.
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Proof. This corollary has been verified in [10] [16]. Based on Theorem 4.1, we can
prove Corollary 5.1 in dimension n ≥ 3 in a different way. Let F be of constant
flag curvature. Then F is locally projectively flat by Theorem 1.1 (cf. [16]). For
F = α(1 + s)2, we can put k1 = 2, k2 = 0, k3 = −3 in Section 5.1 and in the proof of
Corollary 5.1. Now put u = (1− b2)2, v = 0, w =

√
1− b2 as shown in Remark 5.1,

and define h and ρ by (5.4). Now it follows from (5.8) and (5.17) that

(5.23) µ(1− b2)2 − 4(1 + b2)τ2 + (5 + 4b2)τ2 = 0.

Plug (5.12), (5.11) and (5.13) into (5.23) and then we get

(5.24) (1 + µ|x|2)3(k2 + µ+ µ|a|2) = 0.

Therefore by (5.24) we get

(5.25) µ = − k2

1 + |a|2
.

If k = 0, then µ = 0 by (5.25). In this case, we easily see that α is flat and β is
parallel. If k 6= 0, using (5.25), we plug (5.12), (5.9)–(5.11) into (5.4) and then put

k = δd, a =
ā

d
, 1 + |a|2 = δ2,

and next put

δ = k, d2 = −µ, ā = a,

and finally we get

α =
(k + 〈a, x〉)2

1 + µ|x|2
hµ, µ < 0,

β = ± 1√
−µ

(k + 〈a, x〉)2

1 + µ|x|2
{ 〈a, y〉
k + 〈a, x〉

− µ〈x, y〉
1 + µ|x|2

}
.

Then by choosing x̄i =
√
−µxi and a scaling on F we obtain (5.21) and (5.22). �
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