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Abstract. Geodesic orbit manifolds (or g.o. manifolds) are those Rie-
mannian manifolds (M, g) whose geodesics are integral curves of Killing
vector fields. Equivalently, there exists a Lie group G of isometries of
(M, g) such that any geodesic γ has the simple form γ(t) = etX · p, where
e denotes the exponential map on G. The classification of g.o. manifolds
is a longstanding problem in Riemannian geometry. In this brief survey,
we present some recent results and open questions on the subject focusing
on the compact case. In addition we study the geodesic orbit condition
for the space SU(5)/ S(U(2)×U(2)).

M.S.C. 2010: 53C25, 53C30.
Key words: geodesic orbit manifold; geodesic orbit space.

1 Introduction

The prime examples of g.o. manifolds are the Euclidean space and the standard
sphere. In fact, any connected g.o. manifold (M, g) is homogeneous, i.e. there exists
a Lie group G of isometries of (M, g) acting transitively on M . Then any geodesic of
(M, g) admits the form

γ(t) = exp(tX) · p,

where exp denotes the Lie exponential map on G, p = γ(0) ∈ M and · denotes the
(isometric) action of G on M . The group G can be the full isometry group of (M, g) or
possibly a proper Lie subgroup of the isometry group. In any case, M is diffeomorphic
to the coset G/H where H is the stabilizer of a point p ∈ M , i.e. the closed subgroup
of G whose elements fix the point p ∈ M . The corresponding Riemannian space
(M = G/H, g) is called a geodesic orbit space while the (G-invariant) metric g is
called a geodesic orbit metric.

Various well studied classes of homogeneous Riemannian manifolds are geodesic or-
bit, including symmetric spaces, weakly symmetric spaces, isotropy irreducible spaces,
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δ-homogeneous spaces and naturally reductive spaces. While most of the aforemen-
tioned classes have been completely determined, the complete classification of Rie-
mannian g.o. manifolds remains a longstanding open problem.

The systematic study of g.o. manifolds was initiated by Kowalski and Vanhecke
in 1991 ([20]) who classified the g.o. spaces up to dimension six. Up to this day g.o.
manifolds have been extensively studied (see for example the recent book [10] on the
subject and the references therein). Since every g.o. manifold (M, g) is essentially a
homogeneous g.o. space (G/H, g), the classification of g.o. manifolds reduces to the
classification of g.o. spaces.

In this paper we focus on the compact case. In Section 2, we discuss the clas-
sification problem of compact g.o. spaces in a more technical manner and we give
some useful necessary and sufficient conditions for g.o. metrics. In Section 3, we
give an overview of some of the progress so far on the classification of compact g.o.
spaces. In Section 4, we state some of our recent results on the subject. Finally in
Section 5 we study the geodesic orbit metric condition for the homogeneous space
SU(5)/S(U(2)×U(2)).

2 Compact g.o. spaces: Necessary and sufficient
conditions

We recall that a Riemannian homogeneous space (G/H, g) is a Riemannian homoge-
neous manifold M = G/H equipped with a G-invariant metric g, i.e. a Riemannian
metric that is invariant by the action of G on G/H. When studying compact g.o.
spaces (G/H, g), one has to firstly consider the following general problem.

Problem 2.1. Let G/H be a homogeneous space with G compact. Find all G-
invariant g.o. metrics g on G/H.

Several partial classification results on g.o. spaces involve the solution of Problem
2.1 under general assumptions for G and/or H (c.f. Section 3). We proceed to discuss
some technical aspects of the problem.

Firstly, let g and h be the Lie algebras of G and H respectively. Since G is
compact, there exists an Ad-invariant inner product Q on g, which we consider fixed
(here Ad : G → Aut(G)) denotes the adjoint representation). We consider a Q-
orthogonal decomposition

g = h⊕mQ = h⊕m,

where m = mQ is the Q-orthogonal complement of h in g and coincides with the
tangent space of G/H at the origin eH. Moreover, AdH m ⊆ m and [h,m] ⊆ m. The
G-invariant metrics g on G/H are in bijection with AdH -invariant inner products ⟨ , ⟩
on m, which in turn are in bijection with metric endomorphisms Λ = ΛQ ∈ End(m)
satisfying

(2.1) ⟨X,Y ⟩ = Q(ΛX,Y ) for all X,Y ∈ m.

Each metric endomorphism Λ is symmetric with respect to Q, positive definite and
AdH -equivariant (i.e. Λ commutes with Adh for all h ∈ H). Conversely, any endomor-
phism of m with the above properties corresponds to a unique G-invariant Riemannian
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metric on G/H through Equation (2.1). For the rest of this paper, we will make no
distinction between a G-invariant metric on G/H and its corresponding metric en-
domorphism Λ ∈ End(m). The following is a necessary and sufficient condition for a
metric endomorphism to define a g.o. metric.

Proposition 2.1. ([2], [25]) Let G be a compact Lie group. The Riemannian space
(G/H,Λ) is a g.o. space if and only if there exists a map ξ : m → h such that

(2.2) [ξ(X) +X,ΛX] = 0 for all X ∈ m.

Therefore, Problem 2.1 reduces to the following.

Problem 2.2. Let G/H be a homogeneous space with G compact. Find all metric
endomorphisms Λ ∈ End(m) satisfying equation (2.2).

From equation (2.2), we observe that there are two fundamental difficulties in
solving Problem 2.2:
1. The general form of the metric endomorphism Λ may be quite complicated in
higher dimensions (see for example [25]), which makes the solution of Equation (2.2)
impossible through straightforward means.
2. The map ξ : m → h, which is called a geodesic graph, depends on the embedding
of H in G and it is generally non-differentiable at the origin. As a result, even if one
could solve Equation (2.2) through straightforward or computational means, it is not
possible to do so for large classes of spaces simultaneously.

To remedy difficulty 1., various simplification techniques from geometry, Lie the-
ory and representation theory have been applied, e.g. polar representations ([28]),
principal orbit types ([14]), root theory of semisimple Lie algebras ([2]), the isotypic
decomposition ([25]) and several others (see for example [10], [22], [25] and references
therein). These methods aim to create strong necessary conditions for a metric endo-
morphism Λ to be a g.o. metric. Although we will not delve into much detail about
those methods, we will state one of the most important simplification conditions called
the normalizer lemma.

Lemma 2.2. ([22]) The inner product ⟨ , ⟩ generating the metric of a geodesic or-
bit Riemannian space (G/H, g), is not only Ad(H)-invariant but also Ad(NG(H

0))-
invariant, where NG(H

0) is the normalizer of the identity component H0 of the group
H in G.

As a result of the above lemma, we have the following ([6]).

Proposition 2.3. Decompose the tangent space m of G/H into the Q-orthogonal
sum m = n⊕ p, where p is the tangent space of G/NG(H

0) and n is the Lie algebra of
the group NG(H

0)/H0. Then any metric endomorphism Λ, corresponding to a g.o.
metric on G/H, has the block-diagonal form

Λ =

(
Λ|n 0
0 Λ|p

)
,

where the block Λ|n defines a bi-invariant metric on the group NG(H
0)/H0 and the

block Λ|p defines a G-invariant g.o. metric on the space G/NG(H
0).
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An application of Proposition 2.3 will be shown in Section 5.

The following lemma is also useful, since it allows us to prove that some eigenvalues
of a g.o. metric are equal under certain algebraic conditions.

Lemma 2.4. ([25]) Let (G/H, g) be a g.o. space with G compact and with corre-
sponding metric endomorphism Λ with respect to an Ad-invariant inner product Q.
Let m be the Q-orthogonal complement of h in g.
1. Assume that m1,m2 are ad(h)-invariant, pairwise Q-orthogonal subspaces of m
such that [m1,m2] has non-zero projection on (m1 ⊕m2)

⊥. Let λ1, λ2 be eigenvalues
of Λ such that Λ|mi

= λi Id, i = 1, 2. Then λ1 = λ2.
2. Assume that m1,m2,m3 are ad(h)-invariant, pairwise Q-orthogonal subspaces of m
such that [m1,m2] has non-zero projection on m3. Let λ1, λ2, λ3 be eigenvalues of Λ
such that Λ|mi

= λi Id, i = 1, 2, 3. Then λ1 = λ2 = λ3.

To address difficulty 2., the usual strategy involves studying Problem 2.2 for suit-
ably chosen families of spaces G/H, such that the isotropy groups H have similar
embeddings in G or have consistent properties (e.g. H is abelian). This approach
has led to various partial classifications (see Section 3), which have significantly ad-
vanced our understanding of compact g.o. spaces and furthered the progress of their
classification.

For any compact homogeneous space G/H there exists at least one solution to
Problem 2.2: The metric ΛQ = Id satisfies Equation (2.2), with the corresponding
geodesic graph ξ being the zero map. A G-invariant metric with Λ = Id is called a
normal metric and it is clearly a g.o. metric. More generally, a G-invariant metric is
called naturally reductive if it satisfies Equation (2.2) with ξ linear. The corresponding
space (G/H,Λ) is called a naturally reductive space. It is evident that any naturally
reductive metric is a g.o. metric. Naturally reductive spaces have been extensively
studied by geometers, while their classification is also an open problem ([1], [27]).

3 Overview of results on compact g.o. spaces

Since the initial investigation of O. Kowalski and L. Vanhecke in [20], several authors
have contributed in the subject with quite interesting results. We will try to give a
short summary for some of these below. In [17] C. Gordon reduced the classification
of g.o. Riemannian manifolds G/H to the following cases: (a) G nilpotent, (b) G non
compact semisimple and (c) G compact semisimple In [28] H. Tamaru classified g.o.
spaces fibered over irreducible symmetric spaces. In [16] Z. Dušek, O. Kowalski and
S. Nikčević gave examples of g.o. manifolds in dimension 7. In [9] V. Berestovskii and
Yu. Nikonorov investigated the g.o. property for genelarized normal homogeneous
Riemannian manifolds (in other terminology δ-homogeneous manifolds). Also, in
[2] D. Alekseevsky and the first author classified simply connected generalized flag
manifolds admitting non normal g.o. metrics, obtaining two infinite families.

Homogeneous geodesics in Heisenberg groups and other pseudo-Riemannian man-
ifolds were studied by Z. Dušek and O. Kowalski in [15]. In [13] Z. Chen and Yu.
Nikonorov classified compact, simply connected g.o. spaces with two isotropy sum-
mands. In [18] Gordon and Nikonorov gave a geometric and algebraic characterization
of g.o. manifolds that are diffeomorphic to Rn. In [11] H. Chen, Z. Chen and S. Deng
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and in [23] Nikonorov gave examples of left-invariant Einstein metrics on compact
simple Lie groups which are not g.o. Note that there are examples of homogeneous
Einstein metrics that are neither naturally reductive, nor g.o. (e.g. SU(3)/Tmax, or
Aloff-Wallach spaces SU(3)/S2k,l).

In [7] the first author and Y. Wang classified g.o. spaces among generalized
Wallach spaces. Recall that these are homogeneous spaces G/H such that m =
m1 ⊕ m2 ⊕ m3 with [mi,mi] ⊂ k, mi irreducible. In [8] the first author, Y. Wang and
G. Zhao classified g.o. spaces among M -spaces. These are homogeneous spaces G/K1

such that G/K is a generalized flag manifold with K = C(S) ×K1, (S a torus in G
and K1 the semisimple part of K). In [25] the second author gave classification of
g.o. spaces by using isotypic decomposition.

In [24] Yu. Nikolayevsky and Yu. Nikonorov proved that a Ledger-Obata space
is a g.o. space if and only if it is naturally reductive. This is a homogeneous space
of the form (F × F × · · · × F )/diag(F ), where F is a connected, compact, simple Lie
group. In [26] the second author studied g.o. spaces (G/H, g) with H abelian, and in
[14] Z. Chen, Yu. Nikolayevski and Yu. Nikonorov studied g.o. spaces (G/H, g) with
H simple.

In [12] H. Chen, Z. Chen and F. Zhu constructed g.o. spaces from by strongly
isotropy spaces.

Finally, the notion of homogeneous geodesics has been extended to geodesics which
are orbits of a product of two or more exponential factors, i.e. γ(t) = exp(tX)exptY ·o
by the first two authors and G. Calvaruso ([5]).

For G compact and semisimple we have the following recent classification results:
In [26] the second author proved the following: Let G be a compact, semisimple

Lie group and H a closed abelian subgroup. The Riemannian space (G/H,Λ) is
geodesic orbit if and only if Λ is a normal metric, i.e. induced from a bi-invariant
metric on G.

Also, in [14] Z. Chen, Yu. Nikolayevski and Yu Nikonorov proved the following:
Let (G/H, g) be a compact, irreducible and non normal g.o. space with H simple.
Then G/H is (up to a finite cover) one of the following spaces:

SO(9)/Spin(7) SO(10)/Spin(7) SO(11)/Spin(7)

E6/Spin(10) SU(n+ p)/SU(p) SO(2n+ 1)/ SU(n)

SO(4n+ 2)/ SU(2n+ 1) Sp(n+ 1)/ Sp(n) SU(2n+ 1)/Sp(n)

Spin(8)/G2 SO(9)/G2.

Therefore, the above lead to the following

Open Question: Classify the g.o. spaces (G/H, g) with H semisimple.

4 Statement of main results

The following results have appeared in [4] and [6].

Theorem 4.1. Let G/H be the space SO(n)/SO(n1) × · · · × SO(ns), where 0 <
n1 + · · · + ns ≤ n, and nj > 1, j = 1, . . . , s. A G-invariant Riemannian metric on
G/H is geodesic orbit if and only if it is a normal metric, i.e. it is induced from an
Ad-invariant inner product on the Lie algebra so(n) of SO(n).
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Remark 4.1. We remark that if n ̸= 4 then so(n) is simple, and thus any Ad-
invariant inner product is homothetic to the negative of the Killing form B(X,Y ) =
(n − 2)Trace(XY ). If n = 4 then so(n) ≡ so(3) ⊕ so(3), and thus any Ad-invariant
inner product is homothetic to the negative of the one-parameter family B1 + λB2,
λ > 0, where B1 denotes the Killing form of the first simple factor so(3) and B2

denotes the Killing form of the second simple factor so(3).

As a result of Theorem 4.1, we obtain the following.

Corollary 4.2. Let G/H be one of the spaces O(n)/O(n1)×· · ·×O(ns) or SO(n)/ S(O(n1)×
· · ·×O(ns)), where 0 < n1+ · · ·+ns ≤ n, nj > 1. A G-invariant Riemannian metric
on G/H is geodesic orbit if and only if it is normal.

The second main result is the following.

Theorem 4.3. Let G/H be the space U(n)/U(n1)×· · ·×U(ns), where n1+· · ·+ns ≤
n, and let NG(H) be the normalizer of H in G. If n1+· · ·+ns = n, then a G-invariant
Riemannian metric on G/H is geodesic orbit if and only if it is the normal metric
induced from the Ad-invariant inner product B(X,Y ) = −Trace(XY ) in u(n). If
n1 + · · ·+ns < n, then a G-invariant Riemannian metric g on G/H is geodesic orbit
if and only if g = gµ, µ > 0, where gµ denotes a one-parameter family of deformations
of the normal metric induced from the inner product B, along the center of the group
NG(H)/H.

We note that the metrics in Theorem 4.3 generalize the g.o. metrics on the Berger
spheres U(n)/U(n − 1) ([21]) and the g.o. metrics on the complex Stiefel manifolds
U(n)/U(n − k) ([25]). We also note that the g.o. metrics on the related class of
real flag manifolds were recently studied in [19]. Among other results, it is shown in
[19] that every g.o. metric on the real flag manifold SO(n)/ S(O(n1) × · · · × O(ns)),
n1 + · · ·+ ns = n, is normal, which is a special case of Corollary 4.2.

Theorem 4.4. Let G/H be the space Sp(n)/ Sp(n1)× · · · × Sp(ns), where 0 < n1 +
· · · + ns ≤ n. If G/H ̸= Sp(n)/Sp(n − 1) (i.e. if n − (n1 + · · · + ns) ̸= 1 or s > 1)
then a G-invariant Riemannian metric on G/H is geodesic orbit if and only if it is
the standard metric induced from the Killing form on the Lie algebra sp(n) of Sp(n).

If G/H = Sp(n)/Sp(n − 1) (i.e. s = 1 and n − n1 = 1) then a G-invariant
metric g on G/H is geodesic orbit if and only if g = gµ, µ > 0, where gµ denotes a
one-parameter family of deformations of the standard metric g1, along the fiber Sp(1)
of the fibration Sp(n)/ Sp(n− 1) → Sp(n)/ Sp(1)× Sp(n− 1).

We remark that the non standard geodesic orbit metric gµ appears in [21] and
[28].

5 Geodesic orbit metrics on the homogeneous space
SU(5)/ S(U(2)× U(2))

We consider the homogeneous space G/H = SU(5)/S(U(2)×U(2)). Here the isotropy
subgroup H = S(U(2) × U(2)) = {A ∈ U(2) × U(2) : det(A) = 1} is diagonally
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embedded in G = SU(5). We will study the G = SU(5)-invariant g.o. metrics on
G/H.

Let g = su(5) be the Lie algebra of G and let h = {X ∈ u(2)×u(2) : trace(X) = 0}
be the Lie algebra of H. Moreover, we consider the negative Q of the Killing form of
g, given by

Q(X,Y ) = − trace(XY ).

We also consider the Q-orthogonal decomposition

g = h⊕m.

We need to explicitly describe the tangent space m of G/H at the origin. To this end,
we firstly consider a Q-orthogonal basis of g. Let M5C be the set of complex 5 × 5
matrices and let Eab ∈ M5C, a, b = 1, . . . , 5, be the matrix having 1 in the (a, b)-entry
and zero elsewhere. For a, b = 1, . . . , 5, we set

(5.1) eab = Eab − Eba, fab =
√
−1(Eab + Eba), a < b, faa =

1

2

√
−1Eaa.

Observe that eab = −eba, fab = fba. The set

(5.2) B = {eab, fcd, fll − fl+1,l+1 : 1 ≤ a < b ≤ 5, 1 ≤ c < d ≤ 5, 1 ≤ l ≤ 4} ,

is a basis of su(5) which is orthogonal with respect to Q. The non zero bracket
relations among the vectors (5.1) are given by
(5.3)

[eab, ecd] = δbcead − δadecb − δacebd − δbdeac, [fab, ecd] = δbcfad − δadfcb + δacfbc − δbdfac,
[fab, fcd] = −δbcead + δadecb − δacebd − δbdeac.

We may identify the Lie algebra h with the Q-orthogonal sum

h = spanR{f22−f33, e23, f23, f44−f55, e45, f45}⊕spanR{v}, v := f22+f33−f44−f55.

Using relations (5.3), one can verify that the normalizer ng(h) of h in g is the Lie
algebra h⊕ spanR{w}, where

w := 4f11 − f22 − f33 − f44 − f55.

Therefore, we have the decomposition

m = n⊕ p, where n = spanR{w}

coincides with the Lie algebra of the group NG(H
0)/H0 (c.f. Proposition 2.3).

Let Λ be a g.o. metric on G/H. From Proposition 2.3 and the fact that n is one
dimensional, we have

(5.4) Λ|n = µ Id .

To fully describe the tangent space m with respect to the basis B, it remains to find
a basis for the space p. The space p decomposes into adng(h)-irreducible submodules
as

p = m01 ⊕m02 ⊕m12,
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where the subspaces mij have the following description in terms of the basis B:

m01 = spanR{e12, f12, e13, f13},
m02 = spanR{e14, f14, e15, f15},
m12 = spanR{e24, f24, e25, f25, e34, f34, e35, f35}.

All the submodules mij are pairwise inequivalent with respect to adng(h), and thus
Λ|mij

= λij Id. By combining Proposition 2.3 with Lemma 2.4, we deduce that

(5.5) Λ|p = λ Id .

Equations (5.4) and (5.5) imply that up to homothety we have

(5.6) Λ =

(
µ Id|n 0

0 Id|p

)
.

Now for a vector of the form X =
∑

1≤i<j≤5(cijeij + dijfij) ∈ g, denote by X̄ the
vector

X̄ :=
∑

1≤i<j≤5

(−dijeij + cijfij).

By virtue of equations 5.3, we obtain the following.

Lemma 5.1. Let X01 ∈ m01, X02 ∈ m02, X12 ∈ m12. The following Lie-bracket
relations are true.

[w, h] = {0}, [v, h] = {0}, [v, w] = 0

[w,X01] = 5X̄01 [w,X02] = 5X̄02, [w,X12] = 0,

[v,X01] = −X̄01 [v,X02] = X̄02, [v,X12] = 2X̄12.

We are ready to find equivalent conditions for the g.o. metric Λ. Let X ∈ m.
According to the decomposition

m = n⊕ p = spanR{w} ⊕m01 ⊕m02 ⊕m12,

write X = cw + X01 + X02 + X12. Without any loss of generality, we may assume
that c = 1 and thus X = w +X01 +X02 +X12. By Equation (5.6), we have ΛX =
µw + X01 + X02 + X12. By Proposition 2.1, Λ is a g.o. metric if and only if for
all X ∈ m there exists a ∈ h such that 0 = [a + X,ΛX]. By using the facts that
X = w +X01 +X02 +X12, ΛX = µw +X01 +X02 +X12 and Lemma 5.1, Equation
(2.2) is equivalent to

0 = [a+X,ΛX] = [a+ w +X01 +X02 +X12, µw +X01 +X02 +X12]

= [a,X01] + 5(1− µ)X̄01 + [a,X02] + 5(1− µ)X̄02 + [a,X12].

Since [a,X01] ∈ m01, [a,X02] ∈ m02 and [a,X12] ∈ m12, the above equation is equiva-
lent to the system

1.[a,X01] + 5(1− µ)X̄01 = 0,(5.7)

2.[a,X02] + 5(1− µ)X̄02 = 0,(5.8)

3.[a,X12] = 0,(5.9)
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with unknown a ∈ h.

Acknowledgment. This research is co-financed by Greece and the European Union
(European Social Fund- ESF) through the Operational Programme “Human Re-
sources Development, Education and Lifelong Learning 2014-2020” in the context
of the project “Geodesic orbit metrics on homogeneous spaces of classical Lie groups”
(MIS 5047124).

References

[1] I. Agricola, A.C. Ferreira and T. Friedrich, The classification of naturally re-
ductive homogeneous spaces in dimensions n ≤ 6, Differential Geom. Appl. 39
(2015), 59–92.

[2] D. Alekseevsky and A. Arvanitoyeorgos, Metrics with homogeneous geodesics on
flag manifolds, Trans. Amer. Math. Soc. 359,(8) (2007), 3769–3789.

[3] A. Arvanitoyeorgos, An Introduction to Lie groups and the Geometry of homoge-
nous spaces, American Mathematical Society, 2003.

[4] A. Arvanitoyeorgos, N.P. Souris and Statha M.: Geodesic orbit metrics in a class
of homogeneous bundles over quaternionic Stiefel manifolds, J. Geom. Phys. 165
(2021) 104223.

[5] A. Arvanitoyeorgos, N.P. Souris and G. Carvaruso, Two-step homogeneous
geodesics in pseudo-Riemannian manifolds, Ann. Global Anal. Geom. 59,(3)
(2021), 297–317.

[6] A. Arvanitoyeorgos, N.P. Souris and M. Statha, Geodesic orbit metrics in a class
of homogeneous bundles over real and complex Stiefel manifolds, Geom. Dedicata
215, (2021), 31–50.

[7] A. Arvanitoyeorgos and Y. Wang, Homogeneous geodesics in generalized Wallach
spaces, Bull. Belg. Math. Soc. - Simon Stevin 24,(2) (2017), 257–270.

[8] A. Arvanitoyeorgos, Y. Wang and G. Zhao, Riemannian g.o. metrics in certain
M -spaces, Differ. Geom. Appl. 54,(A) (2017), 59–70.

[9] V.N. Berstovskii and Yu.G. Nikonorov, On δ-homogeneous Riemannian mani-
folds, Differential Geom. Appl. 26, (2008), 514–535.

[10] V.N. Berstovskii and Yu.G. Nikonorov, Riemannian Manifolds and Homogeneous
Geodesics, Springer, 2020.

[11] H. Chen, Z. Chen and S. Deng S, Compact simple Lie groups admitting left
invariant Einstein metrics that are not geodesic orbit C. R. Math. Acad. Sci.
Paris 356, (2018), 81–84.

[12] H. Chen, Z. Chen Z. and F. Zhu, Geodesic orbit metrics on homogeneous spaces
constructed by strongly isotropy irreducible spaces, Sci. China Math. 64, (2021),
2313–2326.

[13] Z. Chen Z. and Yu.G. Nikonorov, Geodesic orbit Riemannian spaces with two
isotropy summands I, Geom. Dedicata 203, (2019), 163–178.

[14] Z. Chen Z, Yu. Nikolayevski and Yu.G. Nikonorov, Compact geodesic orbit spaces
with a simple isotropy group, arXiv:2009.06329 (2020).
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