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Abstract. A connection between perturbative and nonperturbative ef-
fects in string theory is introduced. The Schottky covering of closed Rie-
mann surfaces to a larger class which may be related to ideal boundaries
with non-zero linear measure.
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1 Introduction

Closed string scattering amplitudes are evaluated by integrating the expectation val-
ues of products of vertex operators, after multiplying by picture-changing operators,
over compact Riemann surfaces integrating over the moduli space of metrics at genus
g and summing over the genus. The domain of string perturbation theory would be
the closed surfaces of finite genus and defined such that effectively closed infinite-genus
surfaces belong to the sum over histories. This class of surfaces is characterized by
the absence of a connection with observations at large distances from the interactions
regions.

Beginning with closed string theory described entirely by the diagrammatic ex-
panion, the preservation of the conformal invariance of the two-dimensional sigma
model is sufficient to yield conditions on the embedding space including the dimen-
sionality and the metric. There is no relation, however, between the string states that
are propagating within the Riemann surface and the dynamics in the target space.
Nonperturbative effects in string scattering processes have been identified with the
physical states that are represented by Dirichlet boundaries on finite-genus surfaces
and the ideal boundaries at infinite genus. These include open string states and states
on the ideal boundary that may comprise particles or strings.

A non-zero linear or harmonic measure of the ideal boundary requires a larger class
of Riemann surfaces, A connection between surfaces in the perturbative expansion of
the scattering matrix and these surfaces may be found by considering the coverings.
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The Schottky covering surface belongs to the class OAD and can have non-zero ca-
pacity [17]. A transition from the class of surfaces in the perturbation series to the
nonperturbative effects in string theory is found.

2 Surfaces in the class of Schottky coverings

The relation between the Dirichlet norm of an analytic function and the lengths of
curves on a surface will be summarized. It is equal to D =

∫
|t−t0≤d

∣∣dw
dt

∣∣ dσt. Let
w = c0 + c1(t− t0) + c2(t− t0)

2 + ...+ cn(t− t0)
n + ...(2.1)

dw

dt
= c1 + 2c2(t− t0) + ...+ ncn(t− t0)

n−1 + ....

Then

(2.2) D =

∫
|t−t0|≤d

[c1 + 2c2(t− t0) + ...+ ncn(t− t0)
n−1]2‘dσt.

Terms with azimuthal dependence will not contribute because the integral vanishes

D =

∫ 2π

0

∫ d

0

r dr[|c1|2 + 2|c2|2r2 + ...+ n|cn|2r2(n−1) + ...](2.3)

= 2π

[
|c1|2

d2

2
+ 22|c2|2

d2

4
+ ...+ n2|cn|2

d2n

2n
+ ...

]
= π[|c1|2 + 2|c2|c2|2 + ...+ n|cn|2 + ...]

= π

∞∑
n=1

n|cn|2d2n ≥ π|c1|2d2 = π2q2d2.

When the coefficients are bounded,

(2.4) D ≤
∫
|t−t0|≤d

∣∣∣∣dwdt
∣∣∣∣2 dσt = πd2

∣∣∣∣dwdt
∣∣∣∣2 dσt = πd2

∣∣∣∣dwdt
∣∣∣∣2
max

.

If the disk |t− t0| ≤ d is subdivided into n regions Kν , then it is represented by
{∪nν=1t | dν−1 ≤ |t− t0| ≤ dν}, and∫

dν−1≤|t−t0|≤dν

∣∣dw
dt

∣∣2
max

dσt = π(d2ν − d2ν−1) maxKν

∣∣∣ dwdtν ∣∣∣2
= π(d2ν − d2ν−1)qν ,

where qν = maxKν

∣∣∣ dwdtν ∣∣∣. Summing over the regions,

(2.5) D ≤ π

n∑
ν=1

(d2ν − d2ν−1)q
2
ν ≤ 2dπ

n∑
ν=1

(d2ν − d2ν−1)q
2
ν .
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Similarly,

(2.6)

∫
dν−1≤|t−t0|≤dν

∣∣∣∣dwdt
∣∣∣∣ dσt ≥ π(d2ν − d2ν−1) minKν

∣∣∣∣ dwdtν
∣∣∣∣2

and

(2.7) D ≥ π

n∑
ν=1

(d2ν − d2ν−1) minKν

∣∣∣∣ dwdtν
∣∣∣∣2 .

Let d2ν − d2ν−1 ≥ d2

m1
and

(2.8) minKν

∣∣∣∣ dwdtν
∣∣∣∣2 ≥ 1

m2

∣∣∣∣ dwdtν
∣∣∣∣2 =

q2ν
m2

.

Then D ≥ π
m1m2

d2
∑n
ν=1 q

2
ν . Setting m1m2 = m,

(2.9) D ≥ πd2

m

n∑
ν=1

q2ν .

The length of a curve would be Dγ =
∫
γ
dw. Since

(2.10)

∫
dν−1≤|t−t0|≤dν

∣∣∣∣dwdt
∣∣∣∣ ≤ 2π(dν − dν−1)qν

and

(2.11) qν ≤
√
m2 minKν

∣∣∣∣ dwdtν
∣∣∣∣ ≤ √

m2qν ,

(2.12)

∫
dν−1≤|t−t0|≤dν

∣∣∣∣dwdt
∣∣∣∣ dt ≤ 2π(dν − dν−1)

√
m2

∑
Ki⊂Kν

qi.

The constant m2 must be larger than one, and

(2.13) m ≥ d2

d2ν − d2ν−1

.

Choosing m such that 2π(dν − dν−1)
√
m2 < m, Dγ < m

∑
i qi and

(2.14) D2
γ < m2

(∑
i

qi

)
< m2ℓν

∑
i

q2i <
m3ℓν
πd2

Dν .
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Similarly,
∑n
ν=1Dν ≤ NDγ for some constant N . An inequality for the reciprocals

of the lengths

(2.15)

n∑
ν=1

1

ℓν
<
m2

πd2
1

D2
γ

n∑
ν=1

Dν ≤ m3N

πd2
1

D2
γ

Dγ =
m3N

πd2
1

Dγ

follows. When Dγ → 0,
∑n
ν=1

1
ℓν

→ ∞. Consequently, the nonexistence of a noncon-
stant analytic function on the surface with finite Dirichlet norm requires this condition
on the lengths of curves in the regions Kν .

If Σt ⊂ σ is an increasing sequence of submanifolds of Σ, with L(g; Σs,Σt) being
the infimum of the length of curves connecting ∂Σs with ∂Σt and A(g; Σs,Σt) equal
to the area of Σt\Σs with respect to the metric g, the surface Σ is parabolic if

(2.16) limt→∞
L(g; Σs,Σt)

A(g; Σs,Σt)
= ∞.

When the hyperbolic lengths ℓ(cn) of the components {cn} of the boundary of the

convex ∂C ⊂ Σ satisfy
∑
n ℓ(cn)

1
2 < ∞, the Hausdorff dimension of the limit set

equals one. Then the Hausdorff dimension and the capacity of the ideal boundary
would be zero, which requires that the surface belongs to OG.

The linear measure of ∂Σ vanishes if Σ ∈ OAB . If U is the unit disk representing
the universal covering of the surface and containing ∂Σ, and f is a bounded analytic
function on Ū−∂Σ, then f has an analytic extention to Ū . Let Σn ⊂ Σ, limn→∞Σn =

Σ and limn→∞
∫
∂Σn

|dz| → 0. Then f(z0) = − 1
2πi

∫
∂U−∂Σn

f(z0)
z−z0 dz from the boundary

of the disk to the interior where z0 ∈ U ∪ Σ1,
∣∣∣∫∂Σn

f(z)
z−z0 dz

∣∣∣ ≤ Md−1
∫
∂Σn

|dz| → 0

for |f | < M and d < min∂Σ1
|z − z0| and f(z0) = 1

2πi

∫
∂U

f(z)
z−z0 dz is analytic in U .

Therefore, OAB is a subset of the class of surfaces with boundaries of zero linear
measure.

Type I surfaces are characterized by divergent Poincare series of the uniformizing
Fuchsian group and no border arc of the fundamental domain in the unit dis,. The
ideal boundaries of Type II surfaces have non-zero linear measure. Since OAB ⊂ OAD,
the possibility of surfaces in the class OAD, having boundaries with continua, exists.
The Dirichlet norm DR is infinite when

∑∞
n=1

1
σn

diverges, where σn is the number
of faces in a polyhedric representation of the surface. Since there are two sheets for
every border in any A-B cut, σn ≤ 4k(1 + 2n) with k being an upper bound for the
number of disks that are required to cover the cuts in Σ̃n, where limn→∞Σ̃n = Σ̃ is a
planar covering of a closed Riemann surface Σ. Then

∑
n

1
σn

= ∞ and Σ̃∈OAD [17].
The Schottky covering is intermediate between the surface and a planar covering with
a finite number of relations [18].

The Schottky covering of a Riemann surface has no immediate role in string scat-
tering. However, it might be viewed as the equivalent of the discrete action of a
hyperbolic group in three dimensions. There, the covering space of the manifold, re-
alized as a quotient, is a manifold that may be relevant to three-dimensional physics.
From the classification of conformally flat hypersurfaces in higher-dimensional Eu-
clidean spaces, which are relevant to the quantum gravitational path integral, and
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the conformal equivalence to spheres and Schottky manifolds for dimensions greater
than or equal to four [13]. It is evident that these higher-dimensional space could
represent the background geometries for dynamical theories.

Theorem 1. A summation of the ratios of the linear measure of the ideal boundary
of the nth approximation to a Schottky covering surface with q algebraic relations to
a covering surface with 2 relations, from the index n0, where the nth0 approximation
is the first connected space, equals O(ζ(q, n0)) for

q ≥ 2.

Proof. The Schottky covering surface in two dimensions has a boundary in the
planar surface given by the union of the isometric circles of the uniformizing group.
However, the cycles in the surface can be cut and lifted to a covering surface such
that (C+

2i−1, C
−
2i−1, C

+
2i, C

−
2i) comprises boundary curves in the planar surface. With a

copey of this planar surface for each (m1, ...m2p) ∈ Z2p, C+
2i−1 in Φ(m1, ...,m2i−1,m2i, ...m2p)

may be identified with C−
2i−1 in Φ(m1, ...,m2i−1,m2i+1, ...m2p) and C

+
2i in Φ(m1, ...,m2i−1,m2i, ...,m2p)

and
C−

2i may be joined to Φ(m1, ...,m2i−1+1,m2i, ...,m2p) to create an unramified covering
surface.

If there are defining relations between these elements of the covering transfor-
mation group,

∑2p
j=1 γkjCj = 0, k = 1, ..., q, 0 ≤ q ≤ 2p, and r = 2p − q is the

rankof this group, the covering surface is closed when r = 0, the ideal boundary
consists of two components when r = 1, it belongs to OG when r ≤ 2 and there is
an infinite sequence of approximations along one end if r ≥ 2. There are p relations
γ2i−1C2i−1+γ2iC2i = 0, such that the rank is p, with the coefficients being integral and
not all vanishing, for covering surfaces in OAB [10]. In a coordinate system with a basis
of r vectors from the standard basis of E2p and the q vectors (γ1j , ..., γqj), the coor-
dinates (x1, ..., xq.y1, ..., yr) may be defined by (m1, ...,m2p) = (x1, ..., xq, y1, ..., yr)T ,
where T is constructed fromm the new basis vectors. The length of the boundary of
an nth approximation to the covering surface within the region Z(t1, ..., tr), defined
by Mtℓ ≤ yℓ ≤ M(tℓ + 1) and −n ≤ tℓ ≤ n, ℓ = 1, ..., r, may be demonstrated
to be O(nr−1) [11]. Defining the moduli of a component of the boundary to be
µκn = 2π∫

γκ
n
dvκn

and σn = 1∑k(n)
κ=1

1
µn
κ

, the result on the relation between the class of the

surface and the rank of the abelian group of covering transformations follows from∑∞
n=1 σn = ∞ for OG [12], limN→∞

{∑N
n=1 µn −

1
2 log K(N)

}
= ∞ for OAB , where

K(N) = maxn<Nk(n) [15], and
∑∞
n=1 µn = ∞ for OAD [16].

The length of the ideal boundary can be estimated by the sum of the lengths
of components modulo the equivalence relation. For OAB surfaces, the rank of
the abelian group on the component will not exceed one and it may be shown
that Lκn which yields the result for the limit. However, under the equivalence of
(γ1, γ2, 0, ..., 0), ..., (0, ..., 0, γ2i−1, γ2i, 0, ..., 0), ..., (0, ..., 0, γ2p−1, γ2p), with
(0, 0, ..., 0, 0), the linear measure of the ideal boundary may be set equal to zero in
OAB .

The initial estimate of Ln = O(nr−1) in the nth-order approximation to the cover-

ing surface may be compared with
∑k(n)
κ=1 L

κ
n without equivalence relations. Each time

there is a relation of the form γ2i−1C2i−1+γ2iC2i = 0, the factors of 2n and 2n+1 in
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the formula Ln =
∑

{δi}[(2n1)
r − (2n)r

′
(2n + 1)r−r

′
]L(δ1, .., δr), with the boundary

arc with connecting regions Z(t1, ...tr) to Z(t1 + δ1, ..., tr + δr) and r′ = |{δℓ ̸= 0}|
can be reduced to constants. When there are q relations with s additional terms, this
estimate is replaced by

∑
{δℓ}

[(2n+ 1)r−q − (2n)r−q−s−r
′
(2n+ 1)s+r

′
]L(δ1, ..., δr)(2.17)

= (2n+ 1)s+r
′
O(nr−q−s−r

′−1) = O(nr−q−1).

Then

(2.18)

∑k(n)
κ=1 L

κ
n

Ln(no equivalence relations)
=

O(nr−q−1)

O(nr−1)
= O

(
1

nq

)
.

A summation over n is consistent with the classification theory through the summation
over moduli of subregions in the exhaustion of the covering surfaces. Summing over
n from n0, where the nth0 approximation to the covering surface is the first to be a
connected space, is

(2.19) O

( ∞∑
n=n0

1

nq

)
= O(ζ(q, n0)).

relative to one for the linear measure of the ideal bounda of an OAD surface with
an abelian covering transformation group with no relations. when q = 1, this sum
diverges, and it sufficient to note that the ratio is O

(
1
n

)
for the nth approximation.

□
The covering surface with an ideal boundary of one or two components may be con-

nected to the closed finite-genus surfaces and effectively closed infinite-genus surfaces
through a supplementary series to the diagrammatic expansion to generate surfaces
that would describe nonperturbative effects.

3 Deformations of Riemann surfaces

Worldsheet instantons represent the embedding of curves in the target space which
are solutions to the effective field equations. These solutions often arise as instantons
and solitons of the string theory that are backgrounds for a sigma model with a higher
degree of worldsheet supersymmetry [4] [19]. Amongst the nonperturbative effects in
Type I or heterotic string theory with Spin(32)/Z2 gauge group on a manifold R4×X
are the D-instanton path integral and contribution to the superpotential

ZC = exp

(
−A(C)
2πα′ + i

∫
C
B

)
Pfaff ′(DF )√

det′DB
(3.1)

WC = exp

(
−A(C)
2πα′ + i

∫
C
B

)
Pfaff ′(∂̄V (−1))

(det ∂̄O(−1))2(det′∂̄O)2
.
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where the O(−1)⊕O(−1) is the normal bundle of C in X and O ⊕O is the normal
bundle of C in R4 [19] where the operator on the fermion fields includes Lorentz
indices.

This formula has been computed for genus-zero surfaces [19]. By constrast with
the genus-zero contribution to the worldsheet path integral, there are higher-
derivative interactions at higher genus that affect only the kinetic terms. Even though
the superpotential is unchanged, it will be established whether the above mechanism
is related to the transition of the surface to a class of covering surfaces with ideal
boundaries of non-zero linear measure.

Derivatives on the worldsheet can be decomposed into tangential and normal de-
formations. The path integral at genus g would have the form

(3.2)

∫
D[Xµ]D[ψαµ ]e

−INSR+ID−inst.,g=0+ID−inst.,g>0 .

The tangential deformations of the metric are described by the quasiconformal trans-
formations dz → dz+µzz̄dz̄ and may be absorbed into the conventional moduli space
integral. The normal bundle contribution again will be given by integration over

the transverse oscillations and yields the factor Pfaff ′(DF )√
DB

when g = 0. For g > 0,

consider

(3.3)

∫
D[Xµ]

∣∣∣∣
norm.

e−
∫
d2ξ

√
h(∂Xµ∂Xµ)

g+1

∫
D[ψαµ ]

∣∣∣∣
norm.

e−
∫
d2ξ

√
h(ψ̄∂̄ψ)g+1

.

The bosonic integral would follow from

(3.4)

∫ ∞

−∞
dp e−(ap2)g+1

=
1√
a

∫ ∞

−∞
dp e−p

2(g+1)

=
1√
a
I2(g+1)

where I2n =
∫∞
−∞ dp e−p

2n

= 2Γ
(
1 + 1

2n

)
, such that

(3.5)

∫
D[Xµ] e−

∫
d2ξ

√
h(∂Xµ∂Xµ)

g+1

= (det DB)−4 28 Γ

(
1 +

1

2n

)8

.

The fermion integral, evaluated with Grassmann variables, would be

(3.6)

∫
dθ1dθ2...dθ7dθ8 [1 + (det ∂̄)θ1...θ8]

g+1 = (g + 1)(det ∂̄).

Consequently, the determinant factors again would be

(3.7) 28(g + 1)Γ

(
1 +

1

2(g + 1)

)8 Pfaff ′(∂̄V (−1))

(det′∂̄O(−1))2(det′∂̄O)2

when the zero modes are not included in the determinants. The most general evalu-
ation of the fermion integral, with either commuting or anticommuting spinors, is
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(3.8)∫
D[ψαµ ]

∣∣∣∣
norm.

e−
∫
d2ξ

√
h(ψ̄∂̄ψ)g+1

=

{
I82(g+1)det

′(∂̄)−4 commuting spinors

(g + 1)(det ∂̄) anticommuting spinors

and the contribution of the two higher-derivative terms to the path integral is

(3.9)

∫
D[Xµ]

∣∣∣∣
norm.

e−
∫
d2ξ

√
h(∂µ∂Xµ)

g+1

∫
D[ψαµ ]

∣∣∣∣
norm.

e−
∫
d2ξ(ψ̄∂̄ψ)g+1

(3.10)

=

{
(216Γ

(
1 + 1

2(g+1)

)16
det ∂̄

(det′∂̄)4(det′∂̄O(−1))4
commuting spinors

28(g + 1)Γ
(
1 + 1

2(g+1)

)8 Pfaff ′(∂̄V (−1))

(det′∂̄O(−1))2(det′∂̄O)2
anticommuting spinors

It may be found that the normal bundle oscillations are consistent with the transition
of the surface to a covering. The evaluation of the contribution of the k-fold covering
to the D-instanton path integral has been calculated [3][5].

The worldsheets represent elements of the second cohomology class of the em-
bedding space, and the phase of Pfaff DF would be constrained by a relation
C1 + ... + Cs = 0 if these homology classes are not independent in H2(R4 × X;Z).
Then a cross-section of this relation can be lifted to that between homology gener-
ators for curves defining an intermediate covering common to each of the surfaces
C1, ..., Cs. The nonperturbative effect resulting from the non-zero linear measure
would be reduced by the factor in the theorem of §2 for this configuration.

4 Noncommutative boundaries of Riemann surfaces

The noncommutative generalization of the Riemann surface generates new terms in
the integral over moduli space. It has been determined that the coefficient in the
series expansion of the correlation function, derived from the functional derivatives

of the partition function with sources, increases by a factor of
(
1 + 1

g−1

)
for g ≥ 2.

Furthermore, noncommutative end theory [1] provides a Fock space consisting of
multiparticle states in the quantization of the classical model on a Riemann surface
with an ideal boundary [8].

The noncommutative end theory may be extended to a boundary continuum. The
principle of induction of the C∗ algebras on the union of ends C0(∪k=1Ek) ≃ C0(Ek)
is not necessarily valid for a continuum [2]. Nevertheless, when the ideal boundary
of the surface has a non-zero linear measure, a Hilbert space can be constructed on
a transformed boundary diffeomorphic to an interval. This Hilbert space would not
include the states on the ends of the surface, because the basis functions in the latter
space are not square integrable on the Cantor set [9]. It is a nonperturbative effect
requiring quantization in an instanton Hilbert space.

Previous studies of noncommutative limits of the uniformization of Riemann sur-
faces have followed the extension to the boundary of the covering surface. For the
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Schottky group Γ, the limit set ΛΓ may be defined to have Hausdorff dimension less
than or equal to 1. The Hilbert space of square integrable functions on this limit
set is HΛΓ

= L2(ΛΓ, dµ), where dµ is the Patterson-Sullivan measure [7]. The ideal
boundary of a surface uniformized by a Fuchsian group is a subset of the boundary
of the hyperbolic disk which is the universal covering space. It may be surmised
that the ideal boundary in the intermediate Schottky covering space is a subset of[(

∪gi=1ITℓ
∪ IT−1

ℓ

)
∪ ∪α̸=IVα

(
∪gi=1

(
ITℓ

∪ IT−1
ℓ

))]
\Γ =

(
∪gi=1(ITℓ

∪ IT−1
ℓ

)
, where

{Vα} is the elements of the Schottky group not equal to the identity. For a closed
finite-genus surface, every point on the isometric circles is the limit point of a sequence
of points generated by the group. Therefore, the limit set coincides with the union
of isometric circles, and there is no ideal boundary. By contrast, for an infinite-genus
surface, there will be an accumulation of handles, and therefore, infinite sequences of
points forming orbits of the uniformizing group, that have limit points exterior to the
isometric circles, producing an ideal boundary.

Theorem 2. There exists a set representing the ideal boundary of a Riemann surface
which is invariant under PSL(2;Z) on which a Hilbert space can be defined.

Proof. The extension of the upper-half plane which is a universal cover of all sur-
faces of genus g ≥ 2 to the real line introduces noncommutative tori including Aθ =
⟨U, V |UV =, e2πiθV U, θ ∈ R\Q⟩ and the Morita equivalent Aθ′ , where θ

′ = aθ+b
cθ+d ,

with

(
a b
c d

)
, which are subspaces of bounded operators in L2(S1) [6]. The uni-

formizing Fuchsian group G is a subgroup of PSL(2;Z) and PGL(2;Z), and the sur-
face is (H2 × PSL(2;Z)/G)/(PSL(2;Z)) or H2 × (PGL(2;Z)/G)/PGL(2;Z), while
the boundary of modular curves to be C(RP1) × (PGL(2;Z)/G) ⋊ PGL(2;Z). The
orbits of PGL(2;R) in RP1 under the equivalence relation x ∼ y, Tmx = Tmy for

some m, n ∈ Z and Tx = 1
x−
[
1
x

]
, and the Lyapounov spectrum for T will be defined

by Lc = {β ∈ [0, 1]|λ(β) = limn→∞
1
n log|(T

n)′(β)| = c} with Hausdorff dimensions
between 0 and 1 such that [0, 1] = ∪cLc [14]. The ideal boundary of the Riemann sur-
face again can have non-zero linear measure if the Hausdorff dimension of the limit set
is less than 1, which occurs when ΛΓ ⊂ ∪c, dH(Lc)<1Lc. It follows that the quantiza-
tion on the boundary of modular curves may be formulated in a Hilbert space that is
a subspace of C([0, 1]\∪c, dH(Lc)<1Lc)×(PGL(2;Z)/G). Invariance under PSL(2;Z)
would increase the C∗ algebras because the corresponding orbits of PSL(2;Z) form a
subset of ∪c, dH(Lc)<1Lc. Furthermore, this set can be transformed to an interval in
[0, 1] and the Hilbert space with an orthonormal basis of square-integrable functions
could be defined. □

The quantum theory will be given by operators representing coefficients in an expan-
sion of classical fields.

5 Conclusions

The classification of Riemann surfaces has provided a delineation between those classes
that belong to the perturbative expansion of the string scattering process and the cat-
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egories resulting in nonperturbative effects. Since the closed Riemann surfaces define
virtual amplitudes which can be factorized from any real scattering process, much
of the effect on dynamics in the target space is related to the ends of the surfaces.
External vertex operators representing physical states, for example, are described by
semi-infinite cylindrical ends attached to a closed surface. The connection between
infinite-genus surfaces with the non-perturbative formulation of string theory begins
with the class characterized by ideal boundaries of non-zero harmonic measure. The
extension to surfaces with ideal boundaries of non-zero linear measure generates phys-
ical string states in the target space.

The class of surfaces with ideal boundaries of vanishing linear measure includes
OAB , the set of surfaces that does not admit a bounded analytic function. The class
OAD, the category of surfaces with no analytic function with finite Dirichet norm, has
a non-null intersection with the Type II surfaces with fundamental domains in the
unit disk having border arcs on the boundary. The Schottky coverings of finite-genus
surfaces are known to belong to OAD. Therefore, the passage to the covering surface
introduces a linear measure to the ideal boundary. The ratio of the linear measure
of a Schottky covering surface with relations at finite genus to the linear measure of
the ideal boundary for a covering with no relations has been calculated. It is found
to be the order of ζ(q, n0), where q is the number or relations and n0 labels the first
approximation that is a connected space. It decreases with q and would determine the
fraction of the linear measure for the uniformization of surfaces by groups of Schottky
type in the infinite-genus limit.

Surfaces of higher genus only contribute higher derivative terms and not tp the
superpotential in the effective action. The normal bundle oscillations yield a contri-
bution to the worldsheet instanton partition function that can be identified with a
mechanism for inducing a transition to the covering of the surface. The projection
of the relation between embeddings of different surfaces in the target space, affecting
the phase of the superpotential, to curves in the first homology class, is lifted to a
relation in an intermediate covering space that reduces the nonperturbative effects
resulting from the linear measure of the ideal boundary.
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