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Abstract. The purpose of present paper is to introduce the study of screen
bi-slant lightlike submanifolds of indefinite Kaehler manifolds. We obtain
a characterization result for the existence of screen bi-slant lightlike sub-
manifolds of indefinite Kaehler manifolds. Then, we derive a necessary and
sufficient condition for the induced connection on a screen bi-slant lightlike
submanifold of an indefinite Kaehler manifold to be a metric connection.
Further, we derive the integrability conditions for the various distribu-
tions associated with such lightlike submanifolds. Finally, we emphasize
on the study of totally umbilical screen bi-slant lightlike submanifolds of
indefinite Kaehler manifolds.
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1 Introduction

The two well known classes of submanifolds namely, holomorphic and totally real sub-
manifolds of an almost Hermitian manifold, arise due to the action of almost complex
structure J̄ when for every vector field Y (̸= 0) tangent to any point p ∈ N , the angle
becomes 0 or π/2, respectively, between the tangent space TpN and J̄Y . Then, Chen
[4, 5] as a generalization of holomorphic and totally real submanifolds introduced
the notion of slant submanifold in 1990. In this continuation, Lotta [11, 12] inves-
tigated the concept of slant submanifolds in contact geometry. After that, Carriazo
[2] introduced the geometry of bi-slant submanifolds of almost Hermitian manifolds
as well as almost contact metric manifolds as a generalization of slant submanifolds.
On the similar note, several new generalized classes of slant submanifolds namely,
pseudo-slant submanifolds, semi-slant submanifolds, hemi-slant submanifolds came
into existence and the subject matter was dealt in detail by Carriazo [3], Papaghiuc
[13] and Sahin [15].

On the other hand, the study of lightlike submanifolds due to its interesting ge-
ometric properties attracted many geometers since last two decades. One may note
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that, the geometry of lightlike submanifolds has broad application area and has been
successfully employed in the theory of black holes, asymptotically flat spacetimes,
Killing horizon and electromagnatic as well as radiation fields (see, [6] and [9]). Then,
Sahin [14, 17], initiated the study of slant lightlike submanifolds in indefinite almost
Hermitian manifolds and indefinite Sasakian manifolds. Afterwards, some more gen-
eralizations of slant lightlike submanifolds viz. screen slant lightlike submanifolds,
screen pseudo-slant lightlike submanifolds, semi-slant lightlike submanifolds of indef-
inite Hermitian manifolds were considered and developed by others (for details, see
[10, 16, 18, 19]). But the theory of bi-slant submanifolds is yet to be explored in
lightlike geometry.

Therefore in this paper, we introduce screen bi-slant lightlike submanifolds in in-
definite Kaehler manifolds and justify the existence of this type of submanifolds by
giving a characterization result. Then, we derive a necessary and sufficient condition
for the induced connection on a screen bi-slant lightlike submanifold of an indefinite
Kaehler manifold to be a metric connection. Further, we establish some integrability
conditions for the distributions associated with such lightlike submanifolds. Finally,
we emphasize on the study of totally umbilical screen bi-slant lightlike submanifolds
of indefinite Kaehler manifolds.

2 Preliminaries

In the present section, we will review essential formulas and notations of lightlike
submanifolds following [6].
Assume a submanifold (Nn, g) of semi-Riemannian manifold (N̄m+n, ḡ) such that ḡ
is metric with index q satisfying m,n ≥ 1 and 1 ≤ q ≤ m + n − 1. If the metric
ḡ is degenerate on TN , then TpN and TpN

⊥ both becomes degenerate and there
exists a radical (null) subspace Rad(TpN) such that Rad(TpN) = TpN ∩ TpN

⊥.
If Rad(TN) : p ∈ N → Rad(TpN) is a smooth distribution on N with rank r > 0,
1 ≤ r ≤ n, then N is called an r-lightlike submanifold of N̄ . While the radical
distribution Rad(TN) of TN is defined as:

Rad(TN) = ∪p∈N{ξ ∈ TpN |g(u, ξ) = 0, ∀ u ∈ TpN, ξ ̸= 0}.

Further, S(TN) be the screen distribution in TN such that TN = Rad(TN) ⊥ S(TN)
and similarly S(TN⊥) is the screen transversal vector bundle in TN⊥ such that
TN⊥ = Rad(TN) ⊥ S(TN⊥).
Moreover, there exists a local null frame {N ′

i} of null sections with values in the
orthogonal complement of S(TN⊥) in S(TN⊥)⊥ such that

(2.1) ḡ(N ′
i , ξj) = δij , ḡ(N ′

i , N
′
j) = 0, for i, j ∈ {1, 2, .., r},

where {ξi} is any local basis of Γ(Rad(TN)). It implies that tr(TN) and ltr(TN),
respectively, be the vector bundles in TN̄ |N and S(TN⊥)⊥ with the property

tr(TN) = ltr(TN) ⊥ S(TN⊥),

and

(2.2) TN̄ |N = TN ⊕ tr(TN) = S(TN) ⊥ (Rad(TN)⊕ ltr(TN)) ⊥ S(TN⊥).
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Further, the Gauss and Weingarten formulas, for Y1, Y2 ∈ Γ(TN) and V ∈ Γ(tr(TN)),
are given by

(2.3) ∇̄Y1
Y2 = ∇Y1

Y2 + h(Y1, Y2), ∇̄Y1
V = −AV Y1 +∇t

Y1
V,

where {h(Y1, Y2),∇t
Y1
V } and {∇Y1

Y2, AV Y1} belong to Γ(tr(TN)) and Γ(TN), re-
spectively and ∇̄ represents the Levi-Civita connection on N̄ . Here, h is a symmetric
bilinear second fundamental form on Γ(TN) and AV is linear shape operator on N .
In view of decomposition given by (2.2), the Gauss and Weingarten formulas become

(2.4) ∇̄Y1
Y2 = ∇Y1

Y2 + hl(Y1, Y2) + hs(Y1, Y2),

(2.5) ∇̄Y1
N ′ = −AN ′Y1 +∇l

Y1
N ′ +Ds(Y1, N

′),

(2.6) ∇̄Y1W = −AWY1 +Dl(Y1,W ) +∇s
Y1
W,

where Y1, Y2 ∈ Γ(TN), N ′ ∈ Γ(ltr(TN)) and W ∈ Γ(S(TN⊥)). Furthermore, em-
ploying Eqs. (2.4)-(2.6), we derive

(2.7) g(AWY1, Y2) = ḡ(hs(Y1, Y2),W ) + ḡ(Y2, D
l(Y1,W )).

(2.8) ḡ(AWY1, N
′) = ḡ(Ds(Y1, N

′),W ).

Suppose that P denotes the projection morphism of TN on its screen distribution
S(TN), then some new geometric objects of S(TN) on N are given as

(2.9) ∇Y1
PY2 = ∇∗

Y1
PY2 + h∗(Y1, PY2), ∇Y1

ξ = −A∗
ξY1 +∇∗t

Y1
ξ.

where {h∗(Y1, PY2),∇∗t
Y1
ξ} ∈ Γ(Rad(TN)) and {∇∗

Y1
PY2, A

∗
ξY1} ∈ Γ(S(TN)). Fur-

ther, employing Eqs. (2.5), (2.6) and (2.9), we attain

(2.10) ḡ(hl(Y1, PY2), ξ) = g(A∗
ξY1, PY2).

Let ∇̄ is a metric connection on N̄ , therefore for Y1, Y2, Y3 ∈ Γ(TN), one has

(2.11) (∇Y1g)(Y2, Y3) = ḡ(hl(Y1, Y2), Y3) + ḡ(hl(Y1, Y3), Y2),

which implies that the induced connection ∇ on N is not a metric connection.
For curvature tensors R̄ of ∇̄, the equation of Codazzi is given by

(R̄(Y1, Y2)Y3)
⊥ =(∇Y1

hl)(Y2, Y3)− (∇Y2
hl)(Y1, Y3) +Dl(Y1, h

s(Y2, Y3))

−Dl(Y2, h
s(Y1, Y3)) + (∇Y1

hs)(Y2, Y3)− (∇Y2
hs)(Y1, Y3)

+Ds(Y1, h
l(Y2, Y3))−Ds(Y2, h

l(Y1, Y3)),(2.12)

where

(2.13) (∇Y1
hs)(Y2, Y3) = ∇s

Y1
hs(Y2, Y3)− hs(∇Y1

Y2, Y3)− hs(Y2,∇Y1
Y3),

(2.14) (∇Y1h
l)(Y2, Y3) = ∇l

Y1
hl(Y2, Y3)− hl(∇Y1Y2, Y3)− hl(Y2,∇Y1Y3),

for any Y1, Y2, Y3 ∈ Γ(TN).
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Definition 2.1. [1]. An indefinite almost Hermitian manifold (N̄ , ḡ, J̄) is said to be
an indefinite Kaehler manifold if

(2.15) J̄2 = −I, ḡ(J̄Y1, J̄Y2) = ḡ(Y1, Y2), (∇̄Y1
J̄)Y2 = 0, ∀ Y1, Y2 ∈ Γ(TN̄),

where ∇̄ be the Levi-Civita connection defined on N̄ .

An indefinite Kaehler manifold along with constant holomorphic sectional curva-
ture c is known as indefinite complex space form and it is denoted by N̄(c). Then, its
curvature tensor is given by

R̄(Y1, Y2)Y3 =
c

4
{ḡ(Y2, Y3)Y1 − ḡ(Y1, Y3)Y2 + ḡ(JY2, Y3)JY1

− ḡ(JY1, Y3)JY2 + 2ḡ(Y1, JY2)JY3},(2.16)

for Y1, Y2, Y3 ∈ Γ(TN̄).

3 Screen bi-slant lightlike submanifolds

Firstly, we state the following lemma given by Sahin [14], which is very useful for the
coming part of this article.

Lemma 3.1. Let N be an r-lightlike submanifold of an indefinite Kaehler manifold
N̄ of index 2q (provided 2q < dim(N)). Then, screen distribution S(TN) of lightlike
submanifold N is Riemannian.

Definition 3.1. Assume that N be a q-lightlike submanifold of an indefinite Kaehler
manifold N̄ with index 2q. Then, N is said to be a screen bi-slant lightlike submanifold
of N̄ , if the following conditions are satisfied:

(i) Rad(TN) is invariant with respect to J̄ , that is, J̄Rad(TN) = Rad(TN).

(ii) There exists non-degenerate orthogonal distributions D1 and D2 on N such that
S(TN) = D1 ⊥ D2.

(iii) For each non-zero vector field tangent to Di for i = 1, 2, at y ∈ U ⊂ N , the
angle θi(Y ) between J̄Y and the vector space Diy is constant, that is, it is
independent of the choice of y ∈ U ⊂ N and Y ∈ Diy .

This constant angle θi(Y ) for i = 1, 2, is known as slant angle of the distribution
Di, respectively. Moreover, a screen bi-slant lightlike submanifold is said to be proper
if Di ̸= {0} and θi ̸= 0, π/2, for i = 1, 2.
In view of Definition 3.1, the tangent bundle TN of N has the following decomposition

(3.1) TN = Rad(TN) ⊥ D1 ⊥ D2.

For any Y ∈ Γ(TN), we write

(3.2) J̄Y = fY + ωY,
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where fY and ωY are the tangential and transversal components of J̄Y , respectively.
Similarly, for any V ∈ Γ(tr(TN)),

(3.3) J̄V = tV + nV,

where tV and nV are the tangential and transversal components J̄V , respectively.
Consider ϕ1, ϕ2 and ϕ3 be the projections of TM on D1, D2 and Rad(TN), respec-
tively. Similarly, Consider η1, η2 and η3 be the projections of tr(TN) on J̄D1, J̄D2

and ltr(TN), respectively, where J̄D1 and J̄D2 are non-degenerate subbundles in
S(TN⊥). Then, for Y ∈ Γ(TN), we have

(3.4) Y = ϕ1Y + ϕ2Y + ϕ3Y.

On applying J̄ to (3.4), we obtain

J̄Y = J̄ϕ1Y + J̄ϕ2Y + J̄ϕ3Y,

which yields

(3.5) J̄Y = fϕ1Y + ωϕ1Y + fϕ2Y + ωϕ2Y + J̄ϕ3Y.

Further, (3.5) can be written as

(3.6) J̄Y = fY + ωϕ1Y + ωϕ2Y,

where fY = fϕ1Y + fϕ2Y + J̄ϕ3Y . Also, for W ∈ Γ(tr(TN)), we have

(3.7) W = η1W + η2W + η3W,

then applying J̄ to (3.7), we obtain

J̄W = J̄η1W + J̄η2W + J̄η3W,

which yields

(3.8) J̄W = tη1W + nη1W + tη2W + nη2W + J̄η3W.

Differentiating (3.5) and then by equating the tangent components and transversal
components, we obtain

(3.9) (∇Xf)Y = AωY X + ths(X,Y ),

J̄hl(X,Y ) = hl(X, fY ) +Dl(X,ωY )(3.10)

and

(3.11) (∇Xω)Y = −hs(X, fY ) + nhs(X,Y ),

where (∇Xf)Y = ∇XfY − f∇XY and (∇Xω)Y = ∇sωY − ω∇XY , for X,Y ∈
Γ(TN).
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Lemma 3.2. For a screen bi-slant lightlike submanifold N of N̄ , ωD1 and ωD2 are
orthogonal.

Proof. Let X ∈ Γ(D1) and Y ∈ Γ(D2); then ḡ(ωX,ωY ) = ḡ(J̄X − fX, ωY ) =
ḡ(J̄X, ωY ) = −ḡ(X, J̄ωY ) = −ḡ(X, tωY + nωY ) = 0, which completes the proof. □

Thus, it is clear that there exist µ ⊂ S(TN⊥) such that

(3.12) TN̄ = S(TN) ⊥ {Rad(TN)⊕ ltr(TN)} ⊥ {ω(D1) ⊥ ω(D2) ⊥ µ}.

Theorem 3.3. (Existence Theorem) Consider N be a q-lightlike submanifold of an
indefinite Kaehler manifold N̄ . Then N is a screen bi-slant lightlike submanifold, if
and only if,

(i) ltr(TN) is invariant with respect to J̄ .

(ii) the screen distribution S(TN) can be split as S(TN) = D1 ⊥ D2.

(iii) f2ϕiY = −cos2θi(ϕiY ), for i=1,2 and Y ∈ Γ(S(TN)).

(iv) tωϕiY = −sin2θi(ϕiY ), for i=1,2 and Y ∈ Γ(S(TN)).

Proof. Assume that N be a screen bi-slant lightlike submanifold of an indefinite
Kaehler manifold N̄ . Suppose that J̄N ′ ∈ Γ(Rad(TN)); then we get J̄ J̄N ′ =
−N ′ ∈ Γ(ltr(TN)), since Rad(TN) is invariant with respect to J̄ , therefore we
get a contradiction, which implies that J̄N ′ /∈ Γ(Rad(TN)). Now, employing Eqs.
(2.15) and (3.2), for Y ∈ Γ(S(TN)) and N ′ ∈ Γ(ltr(TN)), we acquire ḡ(J̄N ′, Y ) =
−ḡ(N ′, J̄Y ) = 0. Therefore, J̄N ′ does not belong to S(TN). In addition, for
W ∈ Γ(S(TN⊥)) and N ′ ∈ Γ(ltr(TN)), employing Eqs. (2.15) and (3.2), we obtain,
ḡ(J̄N ′,W ) = −ḡ(N ′, J̄W ) = 0, which implies that J̄N ′ does not belong to S(TN⊥).
Moreover, the angle between J̄ϕiY and Di is constant for i = 1, 2. Therefore, for
Y ∈ Γ(S(TN)), we have

cosθi(ϕiY ) =
ḡ(J̄ϕiY, fϕiY )

|J̄ϕiY ||fϕiY |
=

−ḡ(ϕiY, J̄fϕiY )

|ϕiY ||fϕiY |
(3.13)

=
−ḡ(ϕiY, f

2ϕiY )

|ϕiY ||fϕiY |
.

On the other hand, we also have

cosθi(ϕiY ) =
|fϕiY |
|J̄ϕiY |

, for i = 1, 2.(3.14)

Thus, from Eqs. (3.13) and (3.14), we get

cos2θi(ϕiY ) =
−ḡ(ϕiY, f

2ϕiY )

|ϕiY |2
.(3.15)

As we know that, θi(ϕiY ) is constant on Di, for i = 1, 2. Thus, we conclude that

(3.16) f2ϕiY = −cos2θi(ϕiY ),
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which proves (iii). Next, for Y ∈ Γ(S(TN)), we have

(3.17) J̄ϕiY = fϕiY + ωϕiY for i = 1, 2.

Further, applying J̄ , the above equation yields

(3.18) −ϕiY = f2ϕiY + ωfϕiY + tωϕiY + nωϕiY.

Then, equating the tangential components on both sides, we acquire

(3.19) −ϕiY = f2ϕiY + tωϕiY.

As N is a screen bi-slant lightlike submanifold, thus using (3.16), we have f2ϕ1Y =
−cos2θ1(ϕ1Y ) and f2ϕ2Y = −cos2θ2(ϕ2Y ) , thus we attain

(3.20) tωϕiY = − sin2 θi(ϕiY ), for i = 1, 2,

which proves the assertion (iv).
Conversely, we can prove that Rad(TN) is invariant in a similar way that ltr(TN) is
invariant. Further, from Lemma 3.1, it is clear that S(TN) is Riemannian; then, for
i = 1, 2, we have

(3.21) g(fϕiY, fϕiY ) = −g(f2ϕiY, ϕiY ) = cos2θi(ϕiY )g(ϕiY, ϕiY ),

for Y ∈ Γ(S(TN)), which further gives

(3.22) cos2θi(ϕiY ) =
g(fϕiY, fϕiY )

g(ϕiY, ϕiY )
.

On the other hand, from condition (iv), one has tωϕiY = − sin2 θi(ϕiY ), for i = 1, 2.
Further, employing (3.19), we infer

(3.23) f2ϕiY = −(1− sin2θi(ϕiY )) = −cos2θi(ϕiY ).

Then, following the similar steps of assertion (iii), the proof follows. □

Corollary 3.4. Let N be a screen bi-slant lightlike submanifold of an indefinite
Kaehler manifold N̄ ; then one has

(3.24) g(fϕiX, fϕiY ) = cos2θig(ϕiX,ϕiY )

and

(3.25) ḡ(ωϕiX,ωϕiY ) = sin2θig(ϕiX,ϕiY ),

for i = 1, 2 and X,Y ∈ Γ(TN).

From (2.11), it can be noticed that the induced connection ∇ on a lightlike sub-
manifold is not necessarily a metric connection. Therefore, in the next characteriza-
tion result, we present a necessary and sufficient condition under which the induced
connection ∇ on a screen bi-slant lightlike submanifold of an indefinite Kaehler man-
ifold N̄ becomes a metric connection.
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Theorem 3.5. A necessary and sufficient condition for the induced connection ∇
on a screen bi-slant lightlike submanifold of an indefinite Kaehler manifold N̄ to be a
metric connection is that

∇X J̄Y ∈ Γ(Rad(TN)) and ths(X, J̄Y ) = 0,

for X ∈ Γ(TN) and Y ∈ Γ(Rad(TN)).

Proof. Assume that N be a screen bi-slant lightlike submanifold of an indefinite
Kaehler manifold N̄ . Since J̄ is an almost complex structure on N̄ , therefore for
X ∈ Γ(TN) and Y ∈ Γ(Rad(TN)), we have ∇̄XY = −∇̄X J̄2Y . Further, consider-
ing (2.15), we get ∇̄XY = −J̄∇̄X J̄Y . Now, employing (2.3) and then equating the
tangential components on both sides, we derive

(3.26) ∇XY = −J̄(∇X J̄Y )− ths(X, J̄Y ).

Hence, from (3.26), ∇XY ∈ Γ(Rad(TN)) if and only if ∇X J̄Y ∈ Γ(Rad(TN)) and
ths(X, J̄Y ) = 0, which proves the result. □

Theorem 3.6. Let N be a screen bi-slant lightlike submanifold of an indefinite
Kaehler manifold N̄ ; then

(i) the slant distributions Di is integrable, if and only if,

∇XfY −∇Y fX −AωϕiY X +AωϕiXY ∈ Γ(Di),

for X,Y ∈ Γ(Di) and i = 1, 2.

(ii) the distribution Rad(TN) is integrable, if and only if,

hs(X, J̄Y ) = hs(J̄X, Y ),

for X,Y ∈ Γ(Rad(TN)).

Proof. For X,Y ∈ Γ(Di) for i = 1, 2, using (3.9), we derive

(3.27) ∇XfY −AωϕiY X − ths(X,Y ) = f∇XY,

by interchanging the role of X and Y in above equation, we get

(3.28) ∇Y fX −AωϕiXY − ths(Y,X) = f∇Y X.

Therefore, from Eqs. (3.27) and (3.28), we obtain

∇XfY −∇Y fX −AωϕiY X +AωϕiXY = f [X,Y ],

which proves the assertion (i).
For X,Y ∈ Γ(Rad(TN)), using (3.11), we have

(3.29) hs(X, J̄Y )− nhs(X,Y ) = ω∇XY.

On interchanging the role of X and Y in (3.29), we get

(3.30) hs(Y, J̄X)− nhs(Y,X) = ω∇Y X.

Further, from Eqs. (3.11) and (3.29), we obtain

hs(X, J̄Y )− hs(J̄X, Y ) = ω[X,Y ],

from which assertion (ii) follows. □
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Theorem 3.7. Let N be a screen bi-slant lightlike submanifold of an indefinite
Kaehler manifold N̄ . Then, f is parallel, if and only if, Ds(X,N ′) ∈ Γ(µ) and

ḡ(hs(X,Y ), ωZ) = ḡ(hs(X,Z), ωY ),

for X ∈ Γ(TN), Y, Z ∈ Γ(S(TN)) and N ′ ∈ Γ(ltr(TN)).

Proof. Employing (3.9) for Y ∈ Γ(Rad(TN)), X ∈ Γ(TN) and N ′ ∈ Γ(ltr(TN)), we
obtain ḡ((∇Xf)Y,N ′) = 0. Further, for Y ∈ Γ(S(TN)), we have ḡ((∇Xf)Y,N ′) =
ḡ(AωY X,N ′). Moreover, using (2.8) for X ∈ Γ(S(TN)), we acquire

(3.31) ḡ((∇Xf)Y,N ′) = ḡ(Ds(X,N ′), ωY ).

On the other hand, for X,Y ∈ Γ(TN) and Z ∈ Γ(S(TN)), we derive

ḡ((∇Xf)Y,Z) = g(AωY X,Z)− ḡ(hs(X,Y ), ωZ),

then employing (2.7), we get

(3.32) ḡ((∇Xf)Y, Z) = ḡ(hs(X,Z), ωY )− ḡ(hs(X,Y ), ωZ).

Thus, from Eqs. (3.31) and (3.32), the assertions follow. □

Theorem 3.8. Let N be a screen bi-slant lightlike submanifold of an indefinite
Kaehler manifold N̄ . If (∇Xf)Y = 0, for X ∈ Γ(TN) and Y ∈ Γ(Rad(TN)),
then the induced connection ∇ is a metric connection.

Proof. Using the hypothesis and (3.9), we have ths(X,Y ) = 0 for X ∈ Γ(TN) and
Y ∈ Γ(Rad(TN)). Therefore, g(ths(X,Y ), Z) = 0, for X,Z ∈ Γ(TN) and Y ∈
Γ(Rad(TN)). Thus, we attain

(3.33) ḡ(J̄hs(X,Y ), Z) = 0,

which further gives

(3.34) ḡ(hs(X,Y ), ωϕiZ) = 0 for i = 1, 2.

Moreover, by using (2.4) for X ∈ Γ(TN) and Y ∈ Γ(Rad(TN)), we have

ḡ(ωϕi∇XY, J̄hs(X,Y )) = ḡ(ωϕi∇XY, J̄∇̄XY − J̄∇XY − J̄hl(X,Y )).

Since ltr(TN) is invariant, then employing Eqs. (2.15) and (3.5), we acquire

ḡ(ωϕi∇XY, J̄hs(X,Y )) = ḡ(ωϕi∇XY, ∇̄X J̄Y )− ḡ(ωϕi∇XY, ωϕi∇XY ).

Further, employing (2.4), we get

ḡ(ωϕi∇XY, J̄hs(X,Y )) = ḡ(ωϕi∇XY, hs(X, J̄Y )− ḡ(ωϕi∇XY, ωϕi∇XY ).

Then, using (3.34), we obtain ḡ(ωϕi∇XY, J̄hs(X,Y )) = −ḡ(ωϕi∇XY, ωϕi∇XY ) and
further employing (3.25) for X ∈ Γ(TN) and Y ∈ Γ(Rad(TN)), we get

(3.35) ḡ(ωϕi∇XY, J̄hs(X,Y )) = − sin2 θig(ϕi∇XY, ϕi∇XY ).
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Now, using Eqs. (2.15) and (3.5), we have

ḡ(ωϕi∇XY, J̄hs(X,Y )) = −ḡ(fϕi∇XY, J̄hs(X,Y )),

for X ∈ Γ(TN) and Y ∈ Γ(Rad(TN)) and then employing (3.33), we obtain

(3.36) ḡ(ωϕi∇XY, J̄hs(X,Y )) = 0.

Further, from Eqs. (3.35) and (3.36), we attain sin2 θig(ϕi∇XY, ϕi∇XY ) = 0 for
i = 1, 2. Since θi ̸= 0 and S(TN) is Riemannian, therefore we have ϕi∇XY = 0.
Then, ∇XY ∈ Γ(Rad(TN)), which means Rad(TN) is parallel. Hence, the theorem
is proved following [6]. □

4 Foliations determined by distributions

Theorem 4.1. Let N be a screen bi-slant lightlike submanifold of an indefinite
Kaehler manifold N̄ . Then, the screen distribution defines a totally geodesic foliation,
if and only if, J̄AωϕiY X −AωfϕiY X for i = 1, 2 has no components in Rad(TN) for
X,Y ∈ Γ(Di).

Proof. Using Eqs. (2.4) and (2.15), we have ḡ(∇XY,N ′) = ḡ(∇̄X J̄Y, J̄N ′), forX,Y ∈
Γ(Di) for i = 1, 2 and N ′ ∈ Γ(ltr(TN)). Thus, from Eqs. (2.6) and (3.5), we obtain

ḡ(∇XY,N ′) = ḡ(∇̄XfϕiY, J̄N
′)− ḡ(AωϕiY X, J̄N ′).

Again using Eqs. (2.4), (2.6), (2.15) and (3.5), we derive

ḡ(∇XY,N ′) = −ḡ(∇Xf2ϕiY,N
′)− ḡ(AωfϕiY X,N ′)− ḡ(AωϕiY X, J̄N ′),

thus in view of Theorem 3.3, we get

ḡ(∇XY,N ′) = cos2 θḡ(∇XY,N ′)− ḡ(AωfϕiY X,N ′)− ḡ(AωϕiY X, J̄N ′)

sin2 θḡ(∇XY,N ′) =− ḡ(AωfϕiY X,N ′)− ḡ(AωϕiY X, J̄N ′),

for i = 1, 2. Hence, the proof is completed. □

Theorem 4.2. Let N be a screen bi-slant lightlike submanifold of an indefinite
Kaehler manifold N̄ . Then, Rad(TN) defines a totally geodesic foliation, if and
only if,

ḡ(hl(X, fϕ1Z) + hl(X, fϕ2Z), J̄Y ) = −ḡ(Dl(X,ωϕ1Z) +Dl(X,ωϕ2Z), J̄Y ),

for X,Y ∈ Γ(Rad(TN)) and Z ∈ Γ(S(TN)).

Proof. Let N be a screen bi-slant lightlike submanifold of an indefinite Kaehler man-
ifold N̄ . To prove that Rad(TN) defines a totally geodesic foliation, it is sufficient to
show that ∇XY ∈ Γ(Rad(TN)), for every X,Y ∈ Γ(Rad(TN)). Since ∇̄ is a metric
connection, using Eqs. (2.4) and (2.15), for every X,Y ∈ Γ(Rad(TN)) and for every
Z ∈ Γ(S(TN)), we obtain

g(∇XY,Z) = ḡ(∇̄XY,Z) = −ḡ(Y, ∇̄XZ)

= −ḡ(∇̄X J̄Z, J̄Y ).(4.1)
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In view of (3.5), we get

ḡ(∇XY, Z) =− ḡ(∇̄X(fϕ1Z + ωϕ1Z + fϕ2Z + ωϕ2Z), J̄Y )

= ḡ(hl(X, fϕ1Z), J̄Y )− ḡ(Dl(X,ωϕ1Z), J̄Y )

− ḡ(hl(X, fϕ2Z), J̄Y )− ḡ(Dl(X,ωϕ2Z), J̄Y ),(4.2)

which completes the proof. □

Theorem 4.3. Let N be a screen bi-slant lightlike submanifold of an indefinite
Kaehler manifold N̄ . Then, Di for=1,2 defines a totally geodesic foliation, if and
only if,

ḡ(fY,AJ̄N ′X) = ḡ(AωY X, J̄N ′)

for X,Y ∈ Γ(Di) where i = 1, 2 and N ′ ∈ Γ(ltr(TN)).

Proof. Let N be a screen bi-slant lightlike submanifold of an indefinite Kaehler mani-
fold N̄ . To prove that Di for i = 1, 2 defines a totally geodesic foliation, it is sufficient
to show that ∇XY ∈ Di for i = 1, 2, for every X,Y ∈ Γ(Di) for i = 1, 2. Since ∇̄ is
a metric connection, using Eqs. (2.4) and (2.15), for every X,Y ∈ Γ(Di) for i = 1, 2
and N ′ ∈ Γ(ltr(TN)), we obtain

ḡ(∇XY,N ′) = ḡ(∇̄XY,N ′) = ḡ(∇̄X J̄Y, J̄N ′)

= −ḡ(J̄Y, ∇̄X J̄N ′)

= g(fY,AJ̄N ′X)− ḡ(ωY,Ds(X, J̄N ′)).(4.3)

Further, employing (2.8), we obtain

(4.4) ḡ(∇XY,N ′) = g(fY,AJ̄N ′X)− ḡ(AωY X, J̄N ′),

which completes the proof. □

5 Totally umbilical screen bi-slant lightlike subman-
ifolds

Definition 5.1. [7] A lightlike submanifold (N, g) of a semi-Riemannian manifold
(N̄ , ḡ) is called totally umbilical, if there exists transversal curvature vector field
H ∈ Γ(tr(TN)) on N such that

(5.1) h(Y1, Y2) = Hḡ(Y1, Y2),

for Y1, Y2 ∈ Γ(TN). Using Eqs. (2.4) and (2.6), clearly N is totally umbilical, if and
only if, there exist smooth vector fields H l ∈ Γ(ltr(TN)) and Hs ∈ Γ(S(TN⊥)) such
that

(5.2) hl(Y1, Y2) = H lg(Y1, Y2), hs(Y1, Y2) = Hsg(Y1, Y2), and Dl(Y1,W ) = 0,

for Y1, Y2 ∈ Γ(TN) and W ∈ Γ(S(TN⊥)).
On the other hand, a lightlike submanifold is totally geodesic, if and only if, h(Y1, Y2) =
0, for Y1, Y2 ∈ Γ(TN). Thus, a lightlike submanifold is totally geodesic, if and only
if, H l = 0 and Hs = 0.
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Theorem 5.1. Consider N be a totally umbilical screen bi-slant lightlike submanifold
of an indefinite Kaehler manifold N̄ . Then, at least one of the following statements
is true:

(a) N is an anti-invariant submanifold.

(b) Di = {0} for i = 1, 2.

(c) If N is a proper screen bi-slant lightlike submanifold, then Hs ∈ Γ(µ).

Proof. For a totally umbilical screen bi-slant lightlike submanifold N of N̄ , employing
(5.1), for Z ∈ Γ(Di) for i = 1, 2, ΦZ ∈ D1 or D2, we have

(5.3) h(ϕZ, ϕZ) = g(ϕZ, ϕZ)H.

Then, using Eqs. (2.3) and (3.24), we obtain

(5.4) ∇̄ϕZϕZ −∇ϕZϕZ = cos2 θg(Z,Z)H,

which yields

(5.5) J̄∇̄ϕZZ − ∇̄ϕZωZ −∇ϕZϕZ = cos2 θg(Z,Z)H.

Further, using Eqs. (2.4) and (2.6), we derive

cos2 θg(Z,Z)H =J̄∇ϕZZ + J̄hl(ϕZ,Z) + J̄hs(ϕZ,Z) +AωZϕZ

−∇s
ϕZωZ −Dl(ϕZ, ωZ)−∇ϕZϕZ.

ΦZ ∈ Γ(D1) or D2 and employing (3.2), (3.3) and (5.4), we obtain

cos2 θg(Z,Z)H =ϕ∇ϕZZ + ω∇ϕZZ + g(ϕZ,Z)J̄H l + g(ϕZ,Z)tHs + g(ϕZ,Z)nHs

+AωZϕZ −∇s
ϕZωZ −Dl(ϕZ, ωZ)−∇ϕZϕZ.(5.6)

Taking the inner product with respect to ωZ in above equation, we get

cos2 θg(Z,Z)ḡ(Hs, ωZ) = ḡ(ω∇ϕZZ, ωZ)− ḡ(∇s
ϕZωZ, ωZ).(5.7)

Since (3.24) holds for i = 1, 2, ϕiX = ϕiY ∈ Γ(Di) and taking the covariant derivative
with respect to ϕZ, we get

(5.8) ḡ(∇s
ϕZωZ, ωZ) = sin2 θg(∇ϕZZ,Z).

Now, using Eqs. (3.25) and (5.8) in (5.7), we obtain

(5.9) cos2 θg(Z,Z)ḡ(Hs, ωZ) = 0.

Thus, (5.9) implies that either Z = 0 or θ = π/2 or Hs ∈ Γ(µ). Hence, the result
follows. □

Theorem 5.2. Every totally umbilical proper screen bi-slant lightlike submanifold of
an indefinite Kaehler manifold N̄ is totally geodesic.
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Proof. As N̄ is an indefinite Kaehler manifold therefore for Z ∈ Γ(Di) where i = 1, 2,
employing (2.15), we acquire ∇̄Z J̄Z = J̄∇̄ZZ, which implies that

∇ZϕZ + hl(Z, ϕZ) + hs(Z, ϕZ)−AωZZ +∇s
ZωZ +Dl(Z, ωZ)

= ϕ∇ZZ + ω∇ZZ + J̄hl(Z,Z) + ths(Z,Z) + nhs(Z,Z).(5.10)

Using (5.2) and equating the tangential components on both sides, the above equation
becomes

(5.11) ∇ZϕZ −AωZZ = ϕ∇ZZ + J̄hl(Z,Z) + ths(Z,Z).

Taking the inner product with respect to J̄ξ ∈ Γ(Rad(TN)) on both sides of (5.10),
we obtain

(5.12) g(AωZZ, J̄ξ) + ḡ(hl(Z,Z), ξ) = 0.

Then, employing (2.7), we have

(5.13) ḡ(hs(Z, J̄ξ), ωZ) + ḡ(J̄ξ,Dl(Z, ωZ)) + ḡ(hl(Z,Z), ξ) = 0.

In view of (5.2), the above equation reduces to

(5.14) ḡ(Hs, ωZ)g(Z, J̄ξ) + ḡ(H l, ξ)g(Z,Z) = 0.

From Theorem 5.1, we have Hs ∈ Γ(µ); therefore from (5.14), we obtain

(5.15) ḡ(H l, ξ)g(Z,Z) = 0.

Since Di for i = 1, 2 is non-degenerate, therefore ḡ(H l, ξ) = 0, which implies

(5.16) H l = 0.

Moreover, Hs ∈ Γ(µ) for a proper totally umbilical screen bi-slant lightlike subman-
ifold of N̄ . Therefore, equating the transversal components on both sides of (5.10),
we have

ω∇ZZ + nhs(Z,Z) = hl(Z, ϕZ) + hs(Z, ϕZ) +∇s
ZωZ +Dl(X,ωZ).

Then, employing (5.2), we derive

ω∇ZZ + g(Z,Z)nHs = g(Z, ϕZ)H l + g(Z, ϕZ)Hs +∇s
ZωZ.

By taking the inner product of (5.10) with respect to J̄Hs, we obtain

(5.17) g(Z,Z)ḡ(Hs, Hs) = ḡ(∇s
ZωZ, J̄H

s).

Furthermore, one has ∇̄Z J̄H
s = J̄∇̄ZH

s and it implies

−AJ̄HsZ +∇s
Z J̄H

s +Dl(Z, J̄Hs) =− ϕAHsZ − ωAHsZ + t∇s
ZH

s

+ n∇s
ZH

s + J̄Dl(Z,Hs).(5.18)
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Since µ is invariant and by taking the inner product on both sides with respect to
ωZ, we infer

(5.19) ḡ(∇s
Z J̄H

s, ωZ) = −ḡ(ωAHsZ, ωZ) = − sin2 θg(AHsZ,Z).

As ∇̄ is a metric connection, thus we have (∇̄Z ḡ)(ωZ, J̄H
s) = 0, which implies that

ḡ(∇s
ZωZ, J̄H

s) = −ḡ(∇s
Z J̄H

s, ωZ); therefore (5.19) becomes

(5.20) ḡ(∇s
ZωZ, J̄H

s) = sin2 θg(AHsZ,Z).

Then, using (5.20) in (5.17), we derive

(5.21) g(Z,Z)ḡ(Hs, Hs) = sin2 θg(AHsZ,Z).

Now, employing (2.7), the above equation yields

g(Z,Z)ḡ(Hs, Hs) = sin2 θḡ(hs(Z,Z), Hs) = sin2 θg(Z,Z)ḡ(Hs, Hs),

it implies that
(1− sin2 θ)g(Z,Z)ḡ(Hs, Hs) = 0.

Since N is a proper screen bi-slant lightlike submanifold, therefore sin2 θ ̸= 1 and
from the non-degeneracy of Di for i = 1, 2, we derive

(5.22) Hs = 0.

Hence, the result follows from Eqs. (5.16) and (5.22). □

Theorem 5.3. For a proper totally umbilical screen bi-slant lightlike submanifold N
of an indefinite Kaehler manifold N̄ , ∇ is always a metric connection.

Proof. The proof follows directly from Eqs. (5.16) and (2.11). □

Theorem 5.4. There does not exist any proper totally umbilical screen bi-slant light-
like submanifold in N̄(c), provided, c ̸= 0.

Proof. For N ′ ∈ Γ(ltr(TN)), Y ∈ Γ(S(TN)) and ξ ∈ Γ(Rad(TN)), using (2.16), we
infer

(5.23) ḡ(R̄(Y, J̄Y )N ′, ξ) = − c

2
ḡ(J̄N ′, ξ)g(Y, Y ).

Moreover, using (2.12), we attain

(5.24) −ḡ(R̄(Y, J̄Y )N ′, ξ) = ḡ((∇J̄Y h
l)(Y,N ′), ξ)− ḡ((∇Y h

l)(J̄Y,N ′), ξ).

Then, from (5.23) and (5.24), we get

(5.25) − c

2
ḡ(J̄N ′, ξ)g(Y, Y ) = −ḡ((∇J̄Y h

l)(Y,N ′), ξ) + ḡ((∇Y h
l)(J̄Y,N ′), ξ).

Since N is totally umbilical; therefore using (5.2), we have

(5.26) (∇Y h
l)(J̄Y,N ′) = −{g(∇Y J̄Y,N

′) + g(J̄Y,∇Y N
′)}H l.
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ForN ′ ∈ Γ(ltr(TN)) and Y ∈ Γ(S(TN), one has ḡ(J̄Y,N ′) = 0; then taking covariant
derivative with respect to Y , we get g(J̄Y,∇Y N

′) = −g(∇Y J̄Y,N
′). Thus (5.26)

reduces to

(5.27) (∇Y h
l)(J̄Y,N ′) = 0.

Similarly, it follows that

(5.28) (∇J̄Y h
l)(Y,N ′) = 0.

Then, using (5.27) and (5.28), the relation (5.25) yields

− c

2
g(Y, Y )g(J̄N ′, ξ) = 0.

Hence, the non-degeneracy of S(TN) implies that c ̸= 0, which proves the result. □
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