
On conformal change of spherically

symmetric metrics

M. Maleki

Abstract. In this paper, we find necessary and sufficient conditions un-
der which a spherically symmetric metric with isotropic S-curvature or
isotropic E-curvature is invariant under conformal transformations. As
an application, we solve one of the open problems presented by Shen and
find a class of metrics of isotropic E-curvature which is not of isotropic
S-curvature.
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1 Introduction

The study of conformal geometry has a long and well established history. From the
beginning, conformal geometry has played an important role in physical theories. In
Riemannian geometry, the conformal properties of Riemannian metrics have been
studied by many geometers. There are many important local and global results in
Riemannian conformal geometry, which in turn lead to a better understanding of
Riemannian manifolds. For example, the Poincaé metric on the standard unit ball
Bn is conformally flat Riemannian metric of constant sectional curvature K = 1.
More generally, the conformal properties of a Finsler metric deserve extra attention.
The Weyl theorem states that the projective and conformal properties of a Finsler
space determine the metric properties uniquely (see [9]). The study of conformal
geometry is a recent popular trend in Finsler geometry. Two Finsler metrics F and
F̄ on a manifold M are said to be conformally related, if there is a scalar function
c = c(x) on M such that F̄ = ec(x)F . The scalar function c = c(x) is called the
conformal factor. In [1], Bácsó-Cheng studied the behavior of Riemann curvature,
Ricci curvature, Landsberg curvature, mean Landsberg curvature and S-curvature
under the conformal changes.

In this paper, we focus on the class of spherically symmetric Finsler metrics in
Rn. A Finsler metric F is said to be spherically symmetric if F satisfies F (Ax,Ay) =
F (x, y) for all A ∈ O(n), equivalently, if the orthogonal group O(n) acts as isometrics
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of F . Such metrics were first introduced by Rutz [13]. The class of spherically sym-
metric Finsler metrics forms an important class of general (α, β)-metrics [15]. This
class of Finsler metrics contains many Finsler metrics with important curvature prop-
erties, like the Shen metric [7], Bryant metric [3] and Berwald metric [2]. Moreover,
they exhibit remarkable symmetry, and are invariant under any rotations. So it is
quite valuable to study spherically symmetric Finsler metrics.

In [11], Maleki-Sadeghzadeh-Rajabi studied the conformal transformations be-
tween two spherically symmetric metrics in Rn. They found necessary and sufficient
conditions under which two conformally related spherically symmetric metrics are
Douglas metrics, or locally projectively flat.

There are several important non-Riemannian quantities in Finsler geometry. The
distortion τ is a basic quantity which characterizes Riemannian metrics among Finsler
metrics, namely, τ = 0 if and only if the Finsler metric is Riemannian. The horizontal
derivative of τ along geodesics is called S-curvature S, which is introduced by Shen for
comparison purposes on Finsler manifolds. A Finsler metric F on an n-dimensional
manifold M is said to have isotropic S-curvature if S = (n + 1)κF , where κ = κ(x)
is a scalar function on M . It is obvious that if F and F̄ are two homothety related
Finsler metrics on an n-dimensional manifold M and F is of isotropic S-curvature,
then F̄ is of isotropic S-curvature. It is natural to ask whether the converse property
holds, namely, if F and F̄ are two conformally related Finsler metrics of isotropic
S-curvature on an n-dimensional manifold M , then the conformal transformation is
a homothety. In the following, we show that this property is true for the class of
spherically symmetric metrics on Rn. More precisely, the following theorem holds:

Theorem 1.1. Let F (x, y) = |y|ϕ(r, s) and F̄ (x, y) = |y|ϕ̄(r, s) be two conformally
related non-Riemannian spherically symmetric metrics on Ω ⊂ Rn (n ≥ 3). Suppose
that F is of isotropic S-curvature. Then F̄ is of isotropic S-curvature if and only if
the conformal transformation reduces to a homothety transformation.

Taking twice the vertical covariant derivatives of the S-curvature gives rise to the
E-curvature. A Finsler metric F on an n-dimensional manifoldM is called of isotropic
E-curvature if E = n+1

2 σF−1h, where hy = hij(x, y)dx
i ⊗ dxj is the angular metric

defined by hij := FFyiyj and σ = σ(x) is a scalar function on M . We consider the
behavior of E-curvature of spherically symmetric metrics under the conformal change
and prove the following.

Theorem 1.2. Let F (x, y) = |y|ϕ(r, s) and F̄ (x, y) = |y|ϕ̄(r, s) be two conformally
related non-Riemannian spherically symmetric metrics on Ω ⊂ Rn (n ≥ 3). Suppose
that F is of isotropic E-curvature. Then F̄ is of isotropic E-curvature if and only if
one of the following holds:

(i) The conformal transformation is a homothety;

(ii) For r2 − s2 > 0 and s ̸= 0, ϕ is given by

(1.1) ϕ(r, s) =
s

r2µ
ln
(
χµ

√
r2 − s2

s
+ p
)
,

where µ = µ(r) is a non-zero function, χ = χ(r) and p = p(r) are differentiable
positive functions such that 0 < χµ

√
r2 − s2/s+ p < 1, µ/s < 0 and p/χ ̸= constant.
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Example 1.1. Let F = F (x, y) denote the Funk metric on the standard unit ball
Bn. F is a spherically symmetric metric on Bn, namely, it is given by

F (x, y) = |y|ϕ
(
|x|, ⟨x, y⟩

|y|

)
,

where ϕ is in the following form

ϕ(r, s) =
s+

√
1− r2 + s2

1− r2
.

Using the Maple program, we get σ(r) = 1, Q = 0,

τ =
n+ 1

2
ln

(
s+

√
1− r2 + s2

1− r2

)
− n− 1

4
ln
(
1− r2 + s2

)
+

1

2
ln

(
1

(1− r2 + s2)
3
2

)

and

η =
n+ 1

2(1− r2)

(√
1− r2 + s2 + s

)
.

Then

η =
n+ 1

2
ϕ.

Therefore F is of isotropic S-curvature and κ(r) = 1
2 (this is shown by a different

method in [7]).
Now consider the conformal change of F ,

F̄ = |y|ϕ̄(r, s),

where

ϕ̄(r, s) =
ec(r)s+ ec(r)

√
1− r2 + s2

1− r2
.

According to Theorem 1.1, F̄ is not of isotropic S-curvature for any non-homothety
conformal transformation. This is because by using the Maple program, one can

investigate that σ̄(r) = enc(r), Q̄ = −c′(r)
2r

(
1− r2 + s2

)
,

τ̄ =
n+ 1

2
ln

(
ec(r)

(
s+

√
1− r2 + s2

)
1− r2

)
+

n− 1

2
ln

(
ec(r)√

1− r2 + s2

)

+
1

2
ln

(
ec(r)

(1− r2 + s2)
3
2

)
− nc(r),

and

η̄ =
n+ 1

2
e−c(r)ϕ̄

+
c′(r)

2r(
√
1− r2 + s2 + s)

(
(n+ 1)(1− r2)(r2 − s2) + s2(1− r2 + s2) + s

√
1− r2 + s2

)
.
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Then F̄ is of isotropic S-curvature if and only if c′ = 0, namely, the conformal
transformation is of homothety type. In [5], Cheng-Shen proved that a Randers
metric F = α + β is of isotropic S-curvature if and only if it is of isotropic E-
curvature. The Funk metric F is a Randers metric and if of isotropic S-curvature,
then of isotropic E-curvature. Note that this is not having any of the forms given
in Theorem 1.2. Therefore, F̄ = ec(r)F is not of isotropic E-curvature for any non-
homothety conformal transformation.

By definition, if F has isotropic S-curvature S = (n+1)κF for some scalar function
κ = κ(x) on M , then it has isotropic E-curvature E = n+1

2 κF−1h. In [14], Shen
introduced the following open problem:

Problem 1.2. Study and characterize (α, β)-metrics with isotropic E-curvature. De-
termine those which are not of isotropic S-curvature.

The class of spherically symmetric Finsler metrics contains many well-known
(α, β)-metrics. Then it is natural to consider the above question for the class of
spherically symmetric Finsler metrics. In the final section, as an application of The-
orem 1.2, we solve the mentioned open problem and find a class of metrics with
isotropic E-curvature which is not of isotropic S-curvature (see Theorem 4.3).

2 Preliminaries

Let M be an n-dimensional C∞ manifold. Denote by TxM the tangent space at
x ∈ M , by TM = ∪x∈MTxM the tangent bundle of M , and by TM0 = TM \ {0} the
slit tangent bundle onM . A Finsler metric onM is a function F : TM → [0,∞) which
has the following properties: (i) F is C∞ on TM0; (ii) F is positively 1-homogeneous
on the fibers of tangent bundle TM ; (iii) for each y ∈ TxM , the following quadratic
form gy on TxM is positive definite,

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
|s,t=0, u, v ∈ TxM.

Given a Finsler manifold (M,F ), then a global vector field G is induced by F
on TM0, which in standard coordinates (xi, yi) for TM0 is given by G = yi ∂

∂xi −
2Gi(x, y) ∂

∂yi , where

Gi :=
1

4
gil
[
∂2(F 2)

∂xk∂yl
yk − ∂(F 2)

∂xl

]
, y ∈ TxM.

G is called the spray associated to (M,F ). In local coordinates, a curve c(t) is a
geodesic if and only if its coordinates (ci(t)) satisfy c̈i + 2Gi(ċ) = 0.

A Finsler metric F defined on a convex domain in Rn is called spherically sym-
metric if it is invariant under any rotations in Rn. According to the equation of
Killing fields, there exists a positive function ϕ depending on two variables so that

F = |y|ϕ(|x|, ⟨x,y⟩
|y| ), where x is a point in an open set Ω ⊂ Rn, y is a tangent vector
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at the point x and ⟨ . , . ⟩ and | . | are standard inner product and norm in Euclidean
space, respectively. For more details, see [16]. F has the expression F = uϕ(r, s),
where

(2.1) r = |x|, u = |y|, v = ⟨x, y⟩, s =
⟨x, y⟩
|y|

.

The metric tensor is given by

gij = ρδij + ρ0xixj + ρ1
(
xi

yj
u

+ xj
yi
u

)
+ ρ2

yi
u

yj
u
,

where

ρ := ϕ(ϕ− sϕs), ρ0 := ϕϕss + (ϕs)
2, ρ1 := ϕϕs − s

(
ϕϕss + (ϕs)

2
)
, ρ2 := −sρ1.

Therefore the determinant of the metric tensor and the inverse of the metric tensor
are given by

det(gij) = ϕn+1(ϕ− sϕs)
n−2

{
(ϕ− sϕs) + (r2 − s2)ϕss

}
,(2.2)

gij = ρ̄0δ
ij + ρ̄1

yi

u

yj

u
+ ρ̄2

(
xi y

j

u
+ xj y

i

u

)
+ ρ̄3x

ixj ,(2.3)

where

ρ̄0 :=
1

ϕ(ϕ− sϕs)
,

ρ̄1 :=

[
sϕ+ (r2 − s2)ϕs

][
ϕs(ϕ− sϕs)− sϕϕss

]
ϕ3(ϕ− sϕs)

[
ϕ− sϕs + (r2 − s2)ϕss

] ,

ρ̄2 := − ϕs(ϕ− sϕs)− sϕϕss

ϕ2(ϕ− sϕs)
[
ϕ− sϕs + (r2 − s2)ϕss

] ,
ρ̄3 := − ϕss

ϕ(ϕ− sϕs)
[
ϕ− sϕs + (r2 − s2)ϕss

] .
In [15], Yu-Zhu gave the necessary and sufficient conditions for F = αϕ

(
∥βx∥α, β

α

)
to

be a Finsler metric for any Riemannian metric α and 1-form β with ∥βx∥α < b0 . In

particular, considering F (x, y) = |y|ϕ
(
|x|, ⟨x,y⟩

|y|
)
, F is a Finsler metric if and only if

the positive function ϕ satisfies

ϕ− sϕs + (r2 − s2)ϕss > 0, when n ≥ 2,(2.4)

ϕ− sϕs > 0, when n ≥ 3.(2.5)

In [8], Huang-Mo proved the following.

Lemma 2.1. ([8]) Let F (x, y) = |y|ϕ(|x|, ⟨x,y⟩
|y| ) be a spherically symmetric Finsler

metric on Ω ⊂ Rn. Suppose that (x1, · · · , xn) are local coordinates on Rn and let
y = yi ∂

∂xi . Then its geodesic coefficients are given by

Gi = uPyi + u2Qxi,(2.6)
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where

P := − 1

ϕ

(
sϕ+ (r2 − s2)ϕs

)
Q+

1

2rϕ
(sϕr + rϕs) ,(2.7)

Q :=
1

2r

−ϕr + sϕrs + rϕss

ϕ− sϕs + (r2 − s2)ϕss
.(2.8)

Two Finsler metrics F and F̄ on a manifold M are said to be conformally related
if there is a scalar function c := c(x) such that F̄ = ec(x)F , where c is called conformal
factor. In particular, F and F̄ are called homothetically related if c is a constant.

The notion of the S-curvature can be defined for an arbitrary given volume form
dV = σ(x)dx on a Finsler manifold. The Busemann-Hausdorff volume form dVF =
σF (x)dx is given by

σF (x) =
V ol(Bn)

V ol
{
(yi) ∈ Rn|F (x, y) < 1

} ,
where V ol(Bn) is the Euclidian volume of the unit ball in Rn.

The distortion of F with respect to a given volume form dV = σ(x)dx is defined
by

τ(x, y) := ln

√
det
(
gij(x, y)

)
σ(x)

.

The distortion τ characterizes Riemannian metrics among Finsler metrics. The mean
Cartan torsion Iy : TxM → R is defined by Iy = Ii(x, y)dx

i, where Ik = ∂τ/∂yk.
Indeed, the mean Cartan torsion is as the vertical derivative of τ on TxM . By
Deicke’s theorem, a positive-definite Finsler metric is a Riemannian metric if and
only if τ = constant.

It is natural to study the rate of change of the distortion along geodesics. Let

(2.9) S(x, y) := τ;mym,

where ”;” denotes the horizontal covariant derivative with respect to the Berwald
connection of F . The S-curvature with respect to the volume form dV = σ(x)dx can
be formulated by

S =
∂Gm

∂ym
− ym

∂

∂xm
(lnσ).

S is called the S-curvature of F . A Finsler metric F on an n-dimensional manifold
M is said to be of isotropic S-curvature if there exists a scalar function κ = κ(x) on
M such that S = (n+ 1)κF .

In the following we give some lemmas that will be used in the proof of our main
results.

Lemma 2.2. Let F and F̄ be two conformally related spherically symmetric metrics
on an open set Ω ⊂ Rn(n ≥ 3), F̄ = ec(x)F . Then the conformal factor c is the radial
function on the Euclidean space Rn.
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Proof. Since F and F̄ are spherically symmetric metrics, then we have

(2.10) F (Ax,Ay) = F (x, y), F̄ (Ax,Ay) = F̄ (x, y),

where A ∈ O(n). Furthermore, F and F̄ are conformally related

(2.11) F̄ (x, y) = ec(x)F (x, y).

Therefore

(2.12) F̄ (Ax,Ay) = ec(Ax)F (Ax,Ay),

and noting (2.10), we get

(2.13) F̄ (x, y) = ec(Ax)F (x, y).

Comparing (2.11) and (2.13), one concludes that

ec(Ax) = ec(x).

Then c(Ax) = c(x), which means that c is radial. □

Lemma 2.3. Let F be a spherically symmetric metric on an open subset Ω ⊂ Rn(n ≥
3) and dV = σ(x)dx be a given volume form. Suppose that F is of isotropic S-
curvature with respect to the volume form dV ,

(2.14) S(x, y) = (n+ 1)κ(x)F (x, y),

where κ = κ(x) and σ = σ(x) are the scalar functions on Ω. Then κ and σ are the
radial functions on Ω.

Proof. Let us first prove that κ(x) is a radial function. By assumption, F is of isotropic
S-curvature, and then it satisfies equation (2.14). Therefore for any A ∈ O(n), we
have

(2.15) S(Ax,Ay) = (n+ 1)κ(Ax)F (Ax,Ay).

The S-curvature is a scalar function on tangent bundle such as the Finsler metric
F ; then it is invariant under any isometries of (Ω, F ). The orthogonal group O(n)
consists of isometries of (Ω, F ). Then

(2.16) S(Ax,Ay) = S(x, y).

Furthermore, F is a spherically symmetric metric. Then it satisfies

(2.17) F (Ax,Ay) = F (x, y),

By substituting (2.16) and (2.17) into (2.15), we infer

S(x, y) = (n+ 1)κ(Ax)F (x, y).
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From (2.14) and the above equation, one can conclude that κ(Ax) = κ(x). Then, κ
is radial on Ω ⊂ Rn.

Now, we are going to show that σ(x) is a radial function. Let us consider the
Busemann-Hausdorff volume form dVBH = σBH(x)dx, which is given by

σBH(x) =
V ol(Bn)

V ol{(yi) ∈ Rn|F (x, y) < 1}
.

Let w := Ax : Rn → Rn be the linear transformation with associated matrix A ∈
O(n). Considering the image x of Rn under this linear transformation, we have

σBH(Ax) =
V ol(Bn)

V ol{(yi) ∈ Rn|F (Ax, y) < 1}
.

By (2.17) one can see that

V ol{y ∈ Rn|F (Ax, y) < 1} = V ol{Az ∈ Rn|F (x, z) < 1},

where z = A−1y. The volume is invariant under any rotations then

V ol{Az ∈ Rn|F (x, z) < 1} = V ol{z ∈ Rn|F (x, z) < 1}.

Hence
V ol{y ∈ Rn|F (Ax, y) < 1} = V ol{y ∈ Rn|F (x, y) < 1},

and therefore

σBH(Ax) = σBH(x).

This means that σBH is a radial function. □

In [17], Zhou proved the following.

Lemma 2.4. ([17]) Let F = uϕ(r, s) be a spherically symmetric Finsler metric on an
open set Ω ⊂ Rn and let dV = σ(r)dx be a given spherically symmetric volume form.
The S-curvature of the given volume form is given by

(2.18) S = u
{
(n+ 1)P + (r2 − s2)Qs + 2sQ+ a(r)s

}
,

where P and Q are given by (2.7) and (2.8), and a(r) := −σ′(r)/(rσ(r)).

In [1], Bácsó-Cheng proved the following.

Lemma 2.5. ([1]) Let F and F̄ be two conformally related Finsler metrics on a
manifold M , F̄ = ec(x)F . Then

(2.19) S̄ = S+ F 2ckIk,

where S and S̄ are the S-curvatures of F and F̄ , respectively, ck := gklcl and cl :=
∂c/∂xl.

It is easy to get the following result for two conformally related metrics of isotropic
S-curvature.
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Lemma 2.6. ([4]) Let F and F̄ be two Finsler metrics of isotropic S-curvature on
an n-dimensional manifold M , i.e, S = (n+1)κ(x)F and S̄ = (n+1)κ̄(x)F̄ . Suppose
that F̄ is conformally related to F , F̄ = ec(x)F . Then, κ̄(x) = e−c(x)κ(x).

The mean Berwald curvature Ey : TxM ⊗ TxM → R is defined by Ey = Eijdx
i ⊗

dxj , where

(2.20) Eij :=
1

2
Syiyj (x, y) =

1

2

∂2

∂yi∂yj

(∂Gm

∂ym

)
(x, y).

F is said to have isotropic E-curvature if there is a scalar function κ = κ(x) on M
such that

E =
1

2
(n+ 1)κ(x)F−1h,

where hy = hij(x, y)dx
i ⊗ dxj is the angular metric defined by hij := FFyiyj . Also,

F is called weakly Berwald metric if κ = 0.

3 Proof of theorem 1.1

Let F (x, y) = |y|ϕ(r, s) and F̄ (x, y) = |y|ϕ̄(r, s) be two conformally related spherically
symmetric metrics on Ω ⊂ Rn; then by noting Lemma 2.2, the conformal factor c is a
radial function on the Euclidean space Rn. By assumption, F and F̄ are of isotropic
S-curvature

(3.1) S = (n+ 1)κF, S̄ = (n+ 1)κ̄F̄ ,

where by considering Lemma 2.3, κ = κ(r) and κ̄ = κ̄(r) are radial functions on Ω.
Putting (3.1) in (2.19) implies that

(n+ 1)
(
ec(x)κ̄− κ

)
F = F 2ckIk.

By Lemma 2.6, we obtain

(3.2) ckIk = 0.

We have

(3.3) cj =
∂c

∂xj
= c′

xj

r
.

Contracting the above equation with gjk yields

(3.4) ck = gjkcj =
c′

r

[
ρ̄0x

k + sρ̄1
yk

u
+ ρ̄2

(
sxk + r2

yk

u

)
+ r2ρ̄3x

k

]
.

By definition, we have

(3.5) Ik = τssyk ,
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where τs := ∂τ
∂s and syk := ∂s

∂yk . Note that τ is a scalar function of r and s. Since

by Lemma 2.3, σ is a radial function, and also noting (2.2), the determinant of the
metric tensor is a scalar function of r and s. The following hold

uyj =
yj

u
,(3.6)

uyjyk =
1

u

(
δjk − uyjuyk

)
,(3.7)

syj =
1

u

(
xj − suyj

)
,(3.8)

syjyk =
1

u2

(
3suyjuyk − xjuyk − xkuyj − sδjk

)
.(3.9)

Putting (3.4) and (3.5) into (3.2) implies that

(3.10)
c′

ru
τs
(
ρ̄0 + sρ̄2 + r2ρ̄3

) (
r2 − s2

)
= 0.

Notice that

ρ̄0 + sρ̄2 + r2ρ̄3 =
ϕ− sϕs

ϕ2
[
ϕ− sϕs + (r2 − s2)ϕss

] > 0, when n ≥ 3.

Then either τs = 0, or c′ = 0. If τs = 0, then det(gij) is independent of s, and F
reduces to a Riemannian metric. This contradicts our assumption. Thus c′ = 0, and
the conformal transformation reduces to a homothety. This completes the proof. □

By Theorem 1.1, one immediately obtains the following result.

Corollary 3.1. Let F and F̄ be two conformally related non-Riemannian spherically
symmetric Finsler metrics on Ω ⊂ Rn (n ≥ 3). If F has vanishing S-curvature,
then F̄ has vanishing S-curvature if and only if the conformal transformation is a
homothety.

4 Proof of theorem 1.2

In this section, we shall study the behavior of spherically symmetric metrics of
isotropic E-curvature under conformal transformations. We shall further prove The-
orem 1.2. To this aim, we need the following Lemma.

Lemma 4.1. Let F and F̄ be two Finsler metrics of isotropic E-curvature on an
n-dimensional manifold M ,

(4.1) Eij =
1

2
(n+ 1)κFyiyj , Ēij =

1

2
(n+ 1)κ̄F̄yiyj ,

where κ = κ(x) and κ̄ = κ̄(x) are scalar functions on Ω. Suppose that F̄ is conformally
related to F , F̄ = ec(x)F . Then

(4.2) κ̄(x) = e−c(x)κ(x).
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Proof. Differentiating (2.19) with respect to yi and yj yields

S̄yiyj = Syiyj + (F 2ckIk)yiyj ,

and noting (2.20), we get

(4.3) Ēij = Eij +
1

2
(F 2ckIk)yiyj .

Substituting (4.1) into (4.3) yields

(4.4) (n+ 1)
(
κ̄ec(x) − κ

)
Fyiyj = (F 2ckIk)yiyj .

First let c(x) = constant. Then cj = 0 and

(4.5) ck = 0.

Plugging (4.5) into (4.4), one gets

(n+ 1)
(
κ̄ec(x) − κ

)
Fyiyj = 0.

Thus we obtain (4.2). Notice that Fyiyj ̸= 0. Since Fyiyj = 0, infers gij = FyiFyj ,
we get det

(
gij(x, y)

)
= 0. Therefore F is not a Finsler metric, which leads to a

contradiction.

Now consider the case c(x) ̸= constant. From the definition, one can see that the
mean Cartan torsion is positively homogeneous of degree −1 on the tangent vector y
and satisfies

(4.6) Iky
k = 0,

for any vector y := (y1, ..., yn) ∈ TxΩ. Note that F is positively homogeneous of
degree one.

One may choose yk := ck, k = 1, · · · , n. Then (4.4) and (4.6) at this point are
as follows
(4.7)

(n+ 1)
[
κ̄(x)ec(x) − κ(x)

]
Fyiyj (x, c1, ..., cn) =

(
F 2(x, c1, ..., cn)ckIk(x, c

1, ..., cn)
)
yiyj

,

and

(4.8) Ik(x, c
1, ..., cn)ck = 0.

From (4.7) and (4.6), we derive (4.2). Note that Fyiyj ̸= 0 (as shown above). □

Proof of Theorem 1.2. Let F = uϕ(r, s) and F̄ = uϕ̄(r, s) be two Finsler metrics of
isotropic E-curvature (4.1). Plugging them into (4.3), one gets

(n+ 1)
(
κ̄ec(x) − κ

)
Fyiyj = (F 2ckIk)yiyj ,
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and by noting Lemma 4.1, we conclude

(4.9) (F 2ckIk)yiyj = 0.

From the previous section we know that

(4.10) F 2ckIk =
f ′

r
uγ,

where

γ :=
(r2 − s2)

(
ϕ− sϕs

)
ϕ− sϕs + (r2 − s2)ϕss

τs.

As shown in the proof of Theorem 1.1, τs ̸= 0. Differentiating (4.10) with respect to
yi and yj yields

(4.11) (F 2ckIk)yiyj =
f ′

r

[
γuyiyj + γs(uyisyj + uyjsyi) + γssusyisyj + γsusyiyj

]
.

By (4.9) and (4.11), we conclude that either f ′ = 0, or

(4.12) γuyiyj + γs(uyisyj + uyjsyi) + γssusyisyj + γsusyiyj = 0.

If f ′ = 0, then the conformal transformation is a homothety.
Now, assume that (4.12) holds. Putting (3.6), (3.7), (3.8) and (3.9) into (4.12)

yields

(γ − sγs)

u
δij −

sγss
u

(
xiuj + xjui

)
− γ − sγs − s2γss

u
uiuj +

γss
u

xixj = 0.

Therefore, γ − sγs = 0, which implies that

(4.13) γ = ds,

where d = d(r) is a differentiable function of r. Then

(r2 − s2)
(
ϕ− sϕs

)
ϕ− sϕs + (r2 − s2)ϕss

τs = ds,

which yields

(4.14) τs = d

(
s

r2 − s2
+

sϕss

ϕ− sϕs

)
.

By integrating (4.14), we get

(4.15) τ = d ln

[
g√

r2 − s2(ϕ− sϕs)

]
,

where g = g(r) is a differentiable positive function of r. Let us put

k := r2 − s2, Ψ :=
√
r2 − s2(ϕ− sϕs).



On conformal change of spherically symmetric metrics 99

Therefore, (2.8) and (4.15) can be written as follows

2rQ =
s

k

Ψr

Ψs
+

r

k
,(4.16)

τ = d ln
( g

Ψ

)
.(4.17)

Using (4.17) we can calculate the S-curvature and then, the E-curvature. The fol-
lowing holds

S = τ;mym =
∂τ

∂xm
ym − 2Gm ∂τ

∂ym
= τr

v

r
+ τsu− 2Gmτssym .(4.18)

By (2.6) and (4.18), we have

S =
v

r
τr + uτs(1− 2kQ).

Then

(4.19) S = uη,

where

(4.20) η :=
s

r
τr + τs(1− 2kQ).

Differentiating (4.19) with respect to yi and yj leads to

Syiyj = ηuyiyj + ηs(uyisyj + uyjsyi) + ηssusyisyj + ηsusyiyj .

Then

(4.21) Eij =
1

2

[
ηuyiyj + ηs(uyisyj + uyjsyi) + ηssusyisyj + ηsusyiyj

]
.

F = uϕ(r, s) is of isotropic E-curvature, and then we have

(4.22) Eij =
1

2
(n+ 1)κ̃(r)Fyiyj ,

where according to Lemma 2.3, κ is a radial function on the Euclidean space Rn. By
(4.21) and (4.22), we get

(4.23) λuyiyj + λs(uyisyj + uyjsyi) + λssusyisyj + λsusyiyj = 0,

where

(4.24) λ := η − (n+ 1)κ̃(r)ϕ.

Similarly, plugging (3.6), (3.7), (3.8) and (3.9) into (4.23) infers

(λ− sλs)
δij
u

− sλss
xiuyj + xjuyi

u
− (λ− sλs − s2λss)

uyiuyj

u
+ λss

xixj

u
= 0.
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Therefore

λ− sλs = 0,

and we obtain λ = h(r)s, where h = h(r) is a differentiable function of r.
We note that (4.24) can be written as follows

(4.25) η = hs+ (n+ 1)κ̃ϕ.

Putting (4.17) and (4.20) into (4.25) yields

s

r
d′ ln

( g

Ψ

)
+

s

r
d
(g′
g
− Ψr

Ψ

)
+ d
(
2kQ− 1

)Ψs

Ψ
= hs+ (n+ 1)κ̃ϕ.

By (4.16) and some simplifications, we get

d′

r
s ln

( g

Ψ

)
+

d

r

g′

g
s = hs+ (n+ 1)κ̃ϕ.

First assume that κ̃(r) = 0; then E = 0. In this case, we get

Ψ = g exp

(
d

d′
g′

g
− h

d′
r

)
.

Note that s ̸= 0 and Ψs = − s√
k
(ϕ− sϕs+ kϕss) ̸= 0 when n ≥ 2. Therefore κ̃(r) ̸= 0.

Assume that κ̃ ̸= 0 and d′ = 0. In this case, we have

ϕ(r, s) =
1

(n+ 1)κ̃(r)

(d0
r

g′

g
− h
)
s,

where d0 is a constant. Then F reduces to a Riemannian metric, which contradicts
our assumption.

Now, let κ̃ ̸= 0 and d′ ̸= 0. Then we have

ln
( g

Ψ

)
= (n+ 1)

r

d′
κ̃
ϕ

s
+

r

d′
h− d

d′
g′

g
.

Hence

Ψ = g exp

(
d

d′
g′

g
− h

d′
r

)
exp

(
−(n+ 1)

κ̃

d′
r
ϕ

s

)
.

Let us put

µ := (n+ 1)
κ̃

rd′
,(4.26)

χ := g(r) exp

(
d

d′
g′

g
− h

d′
r

)
.(4.27)

Then, we get

(4.28) Ψ = χ exp

(
−r2µ

ϕ

s

)
.
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Therefore

ϕ− sϕs =
χ√
k
exp

(
−r2µ

ϕ

s

)
.

Equivalently, we have (ϕ
s

)
s
exp

(
r2µ

ϕ

s

)
=

−χ

s2
√
k
.

Recall that
(

ϕ
s

)
s
:= ∂

∂s

(
ϕ
s

)
. By integrating the above equation, we conclude that

exp
(
r2µ

ϕ

s

)
=
∣∣∣χµ√k

s
+ p
∣∣∣,

where p = p(r) is a differentiable function of r. Then

(4.29) ϕ(r, s) =
s

r2µ
ln

(
χ
∣∣∣µ√k

s
+ δ
∣∣∣),

where δ := p/χ. By (4.29) we obtain

ϕ− sϕs =
s

(µ
√
k + δs)

√
k
,

ϕ− sϕs + kϕss = − r2µ

s(µ
√
k + δs)2

,

and by considering (2.4) and (2.5), we conclude

µ

s
< 0, when n ≥ 2,(4.30)

s

µ
√
k + δs

> 0, when n ≥ 3.(4.31)

By using (4.31), the relation (4.29) can be written as follows

(4.32) ϕ(r, s) =
s

r2µ
ln

[
χ
(
µ

√
k

s
+ δ
)]

.

Since ϕ(r, s) > 0, then from (4.30) one can conclude

ln
[
χ
(
µ

√
k

s
+ δ
)]

< 0.

This implies that

(4.33) 0 < µ

√
k

s
+ δ <

1

χ
.

Assume that δ ≤ 0 for some r. In this case, µ

√
k

s
> −δ ≥ 0. By (4.30) we have

√
k < − s

µ
δ ≤ 0 (n ≥ 2), which is a contradiction. Then δ must be positive.
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Now, we are going to calculate P and Q given by (2.7) and (2.8) for the spherically
symmetric metric (4.32). Using the Maple program, we obtain the following relations

P =
1

2r

{δ′
µ

s2√
k
− 2s

r
+

χ′

χ

1

r2µ

s2

ϕ

}
,(4.34)

Q =
1

2r

{
− µ′

µ

s2

r2
− δ′

r2µ

s3√
k
+

1

r

}
.(4.35)

First consider the case δ′ = 0. In this case (4.32), (4.34) and (4.35) reduce to:

ϕ(r, s) =
s

r2µ
ln

[
χ
(
µ

√
k

s
+ δ0

)]
,(4.36)

P = − s

r2
+

χ′

χ

1

2r3µ

s2

ϕ
,(4.37)

Q = −µ′

µ

s2

2r3
+

1

2r2
,(4.38)

where δ0 is a positive constant. By (2.18) and (4.19), we have

(4.39) η = (n+ 1)P + (r2 − s2)Qs + 2sQ+ as.

Since F is of isotropic E-curvature, then (4.25) holds, which by considering (4.39)
leads to

(4.40) (n+ 1)P + (r2 − s2)Qs + 2sQ+ as = hs+ (n+ 1)κ̃ϕ.

Putting (4.37) and (4.38) in (4.40) yields

(4.41)
χ′s2

2r3µχϕ
−
(
b+

1

r2

)
s− κ̃ϕ = 0,

where

b(r) :=
1

n+ 1

[
µ′

rµ
− 1

r2
+ h− a

]
.

Thus

(4.42)
χ′

2r3µχ

(
s

ϕ

)2

−
(
b+

1

r2

)
s

ϕ
− κ̃(r) = 0.

By (4.42), we have three main cases, as follows:

(i) If χ′ ̸= 0, then by solving (4.42), we obtain

ϕ(r, s) =

(
b+

1

r2
±

√(
b+

1

r2

)2

+
χ′

χ

2κ̃

r3µ

)−1
χ′

χ

s

r3µ
,
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which by considering (4.36), infers

r ln

[
χ
(
µ

√
k

s
+ δ0

)]
−

(
b+

1

r2
±

√(
b+

1

r2

)2

+
χ′

χ

2κ̃

r3µ

)−1
χ′

χ
= 0.

Differentiating the above equation with respect to s yields

−µr3

s
√
k
(
µ
√
k + δ0s

) = 0.

This contradicts with µ ̸= 0. Therefore, this case is impossible.

(ii) If χ′ = 0 and b(r) + 1
r2 ̸= 0, then (4.42) reduces to the following

(4.43)

(
b+

1

r2

)
s+ κ̃ϕ = 0.

Putting (4.36) in (4.43) implies that

ln

[
χ
(
µ

√
k

s
+ δ0

)]
+

r2µ

κ̃

(
b+

1

r2

)
= 0.

By the similar argument used in case (i), we obtain a contradiction.

(iii) If χ′ = 0 and b + 1
r2 = 0, then κ̃ = 0. As shown above, this is also impos-

sible.

Therefore, in any case, we get δ′ ̸= 0. Hence δ = p
χ must be non-constant. This

completes the proof. □

Remark 4.1. Similar to the equation (4.41), Zhou obtained another one for the
spherically symmetric Douglas metrics with isotropic S-curvature by a different method
[17].

By (4.25), one can conclude the following.

Corollary 4.2. Let F = uϕ(r, s) be a non-Riemannian spherically symmetric Finsler
metric (4.32) on Ω ⊂ Rn (n ≥ 3). Then, F is of isotropic S-curvature if and only if
h(r) = 0.

Let (M,F ) be an n-dimensional Finsler manifold. By definition, if F has isotropic
S-curvature S = (n + 1)κF , for some scalar function κ = κ(x) on M , then it has
isotropic E-curvature E = n+1

2 κF−1h. Conversely, if F has isotropic E-curvature
E = n+1

2 κF−1h, then it has almost isotropic S-curvature, i.e., there is a 1-form
η = ηi(x)y

i such that S = (n + 1){κF + η}. In [5], Cheng-Shen proved that a
Randers metric F = α+β is of isotropic S-curvature if and only if it is of isotropic E-
curvature. Then, Chun-Huan-Cheng extended this equivalency to the Finsler metric
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F = α−m(α+β)m+1 for every real constant m, including Randers metrics [6]. In [10],
Lee-Lee showed that these notions are equivalent for the Finsler metrics in the form
F = α + α−1β2. All the above metrics are special Finsler metrics, so-called (α, β)-
metrics. An (α, β)-metric is a scalar function on TM defined by F := αϕ(s), s = β/α,
where ϕ = ϕ(s) is a C∞ on (−b0, b0) with certain regularity, α is a Riemannian metric
and β is a 1-form on a manifold M .

In [14], Shen introduced the open problem 1.2. In [12], Najafi-Tayebi found a
condition for (α, β)-metrics under which the notions of isotropic S-curvature, almost
isotropic S-curvature and isotropic E-curvature are equivalent. But the second part
of the open problem 1.2 is not solved. By Theorem 1.2 and Corollary 4.2, we get the
following.

Theorem 4.3. Let F (x, y) = |y|ϕ(r, s) be a spherically symmetric Finsler metric on
an open subset Ω ⊂ Rn (n ≥ 3), which is given by

(4.44) ϕ(r, s) =
s

r2µ
ln

[
χµ

√
r2 − s2

s
+ p

]
,

where µ = µ(r) is a non-zero function, and χ = χ(r) and p = p(r) are differentiable
positive functions such that 0 < χµ

√
r2 − s2/s+ p < 1, µ/s < 0 and p/χ ̸= constant.

Suppose that h ̸= 0. Then, F has isotropic E-curvature and is not of isotropic S-
curvature.
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