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Abstract. In this paper we give a generalization of Myers’ Theorem for
complete H-contact manifolds (M,η, g, ξ, φ) with the metric g satisfying
the critical point condition of the Chern-Hamilton functional. In this our
result the role of the Ricci tensor Ric is replaced by Bakry-Emery Ricci
tensor Ric+Lξg. We also give sufficient conditions so that an almost Ricci
soliton be trivial, with an application to the case of the geodesic flow as
potential vector field of an almost contact Ricci soliton.
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1 Introduction and statement of the results

Let (M, g) be a Riemannian manifold and let Ric be its Ricci tensor. If M admits a
smooth vector field X0 satisfying

Ric+ LX0
g = λg(1.1)

some real constant λ, then (M, g,X0, λ) is said to be a Ricci soliton, where LX0

denotes the Lie derivative operator in the direction of the vector field X0. Ricci
solitons are natural generalizations of Einstein metrics and special solutions of the
Ricci flow (see [5]). A Ricci soliton is said to be shrinking, steady or expanding if
λ > 0, λ = 0 or λ < 0, respectively. Non trivial compact Ricci solitons only exist in
dimension ≥ 4 (cf. [12, 14]) and these manifolds must have positive scalar curvature
[9], which is constant if and only if the soliton is trivial [8].

Since Ricci solitons (g,X0, λ) generalize Einstein metrics, it is natural to ask
whether Myers’ Theorem remains valid replacing the Ricci tensor Ric by the ten-
sor

RicX0
:= Ric+ LX0

g
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also called the Bakry-Emery Ricci tensor (cf., for example, [24] and references
therein).

Recall that the classic Myers’ Theorem [15] states that a complete Riemannian
manifold (M, g) satisfying Ric ≥ cg, c = const. > 0, is compact. As noted in [8],
if we replace the condition Ric ≥ cg > 0 in Myers’ Theorem by RicX0

≥ cg, the
conclusion fails; an example is the Euclidean space (Rn, g0) with X0 the radial vector
field. Then, M. Fernández-López and E. Garćıa-Ŕıo proved the following result under
the condition that ∥X0∥ is bounded.

Theorem A ([8], Theorems 1,2) Let (M, g) be a complete Riemannian n-manifold
satisfying

RicX0 ≥ λg

for some positive constant λ, and ∥X0∥ ≤ a for some constant a ≥ 0. Then, M is
compact and the fundamental group π1(M) is finite.

More recently, with the same hypothesis of Theorem A, Wu [24] has proved that
the diameter of (M, g) satisfies diam(M) ≤ (2a/λ) +

(
π/

√
λ/(n− 1)

)
. Moreover,

Derdzinski [10] proved that if (M, g) is a compact Riemannian manifold such that
RicX0 > 0 for some smooth vector field X0, then π1(M) has only finitely many
conjugacy classes.

In this paper, by using Theorem A and the tensor Ricξ = Ric + Lξg, we give
a generalization of Myers’ Theorem for complete H-contact manifolds (M,η, g, ξ, φ)
with the metric g satisfying the critical point condition (2.3) of the Chern-Hamilton
functional ([6], [23]). More precisely, our result is the following.

Theorem 1.1. Let (M,η, g, ξ, φ) be a complete H-contact (2n+1)-manifold with the
metric g satisfying the critical point condition of the Chen-Hamilton functional. If

Ricξ ≥ λg, λ > −2 + µ ≥ −2 +
∥τ∥√
2n

, τ = Lξg,(1.2)

where λ, µ are constant, then M is compact, the fundamental group π1(M) is finite
and the first Betti number b1(M) = 0.

The main idea of the proof of Theorem 1.1 is to use the so called D-homothetic
deformation. This technique was introduced by Tanno [22] and used by Hasegawa
and Seino [13], Goldberg and Toth [11] and by Blair and Sharma [4].

As a consequence of our Theorem 1.1 we have the following

Corollary 1.2. ([22],[13]) Let (M,η, g) be a complete K-contact (2n+ 1)-manifold.
If Ric ≥ λ g > −2 g, then M is compact, the fundamental group π1(M) is finite and
the first Betti number b1(M) = 0.

More precisely, about the Corollary 1.2, Tanno [22] proved that: if a compact K-
contact manifold satisfies Ric + 2 g > 0, then b1(M) = 0; Hasegawa and Seino [13]
proved that: a complete Sasakian manifold for which Ric ≥ λ g, λ > −2, is compact.

Pigola et al. [17] defined a Ricci almost soliton as a Riemannian manifold (M, g)
satisfying the equation (1.1) where λ is an arbitrary smooth function. Barros et al.
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[2] proved that any compact non-trivial almost Ricci soliton with constant scalar cur-
vature is isometric to a Euclidean sphere Sn. On the other hand, another interesting
question is to find conditions under which an almost Ricci soliton is a trivial Ricci
soliton [17].

If a unit vector field is Killing, then it is geodesic and divergence-free, but the
converse in general is not true (the Reeb vector field of an arbitrary contact metric
manifold satisfies these conditions). The next result is given by the following

Theorem 1.3. Let (M, g,X0, λ) be an almost Ricci soliton, dimM = m > 2. Suppose
that the potential vector field X0 is unit, geodesic and divergence-free. Then, the
following are equivalent.

1) The almost Ricci soliton is trivial (i.e. X0 is Killing and g is Einstein);
2) X0 is an infinitesimal harmonic transformation;
3) X0 is an eigenvector of the Hodge-Laplacian with eigenvalue µ ≤ 2λ.

As a consequence of this Theorem we get the following.

Corollary 1.4. Let (M,η, g, ξ) be a contact metric manifold. If (g, ξ, λ) is an almost
Ricci soliton, then M is an Einstein K-contact manifold.

Corollary 1.5. Let (M, θ, J) be a strictly pseudo-convex CR manifold. If (gθ,−T, λ)
is an almost Ricci soliton, where T is the Reeb vector field of the contact from θ and
gθ is the corresponding Webster metric, then (η = −θ, gθ) is an Einstein Sasakian
structure on the manifold M .

We note that the geodesic flow ξ̃ on the unit tangent sphere bundle T1M of a
riemannian manifold (M, g) is the Reeb vector field of the so called g-natural contact
metric structures over T1M , which depend on three real parameters a, b, c (see Subsec-
tion 3.3, for a presentation of these structures). The standard contact metric structure
on T1M , i.e. the one induced from the Sasaki metric, is defined by the parameters
a = 1/4, b = c = 0. Then, an application of Corollary 1.4 gives the following

Theorem 1.6. Let (M, g) be a Riemannian manifold of dimension n ≥ 2 and
(G̃, η̃, φ̃, ξ̃) a g-natural contact metric structure over the unit tangent sphere bun-
dle T1M . Then, (G̃, ξ̃, λ) is an almost Ricci soliton if and only if (T1M, G̃, η̃) is
Einstein Sasakian with λ = 2(n − 1) > 0. Besides, in this case the base manifold
(M, g) has constant sectional curvature κ > 0, and the metric G̃ is of Kaluza-Klein
type defined by the parameters

a = (n− 1)/2n, b = 0, c = (κ− 1)a .

In particular: G̃ is Kaluza-Klein (resp. induced from the Sasaki metric) if and only
if M is a surface of constant Gaussian curvature κ = 1 + 4c > 0 (resp. κ = 1).

2 Preliminaries on contact metric manifolds

In this Section we collect some basic facts about contact Riemannian geometry and
refer to the monograph [3] for more information. All manifolds are supposed to
be connected and smooth. If (M, g) is a Riemannian manifold, in what follows we
shall denote by ∇ the Levi-Civita connection, by Ric the Ricci tensor, by Q the
corresponding Ricci operator and by r the scalar curvature.
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A contact manifold is a (2n+ 1)-dimensional manifold M equipped with a global
1-form η such that η ∧ (dη)n ̸= 0 everywhere on M . Then, there exists a unique
vector field ξ, called the Reeb vector field, such that η(ξ) = 1 and (dη)(ξ, ·) = 0. A
Riemannian metric g is said to be an associated metric if there exists a tensor φ, of
type (1, 1), such that

η = g(ξ, ·), dη = g(·, φ·) φ2 = −I + η ⊗ ξ.

Associated metrics are known to exist.We refer to (M,η, g), or (M, ξ, η, φ, g), as a
contact metric (or contact Riemannian) manifold. The tensor h = 1

2Lξφ, where L
denotes the Lie derivative, plays a fundamental role in contact Riemannian geometry,
it is symmetric and satisfies:

a) hφ = −φh, hξ = 0, trh2 = 2n−Ric(ξ, ξ); b) ∇ξ = −φ− φh.(2.1)

In particular, from (2.1) follows that the Reeb vector field ξ is geodesic and
divergence-free. Since ξ is geodesic, we have

Lξη = 0 and (Lξg)(ξ, ·) = 0.
Besides, if X ∈ ker η, by using (2.1)b one gets

g([X,φX], ξ) = g(∇φXξ,X)− g(∇Xξ, φX) = 2g(X,X),

and this implies the following

Lemma 2.1. If f is a smooth function on a contact metric manifold satisfying
X(f) = 0 for any X ∈ ker η, then f is a constant function. In particular, if f1, f2 are
two smooth functions with the gradient ∇f1 = f2 ξ, then f1 is a constant and f2 = 0.

A contact metric manifold (M,η, g) is said to be a K-contact manifold if the Reeb
vector field ξ is a Killing vector field with respect to the associated metric g. If the
almost complex structure J on M ×R defined by J(X, fd/dt) = (ϕX−fξ, η(X)d/dt)
is integrable, i.e., the almost contact structure (η, ξ, φ) is normal, then M is said
to be Sasakian. Any Sasakian manifold is K-contact and the converse also holds in
dimension three.

In [18] we introduced theH-contact manifolds. A contact metric manifold (M,η, g)
is said to be an H-contact manifold if its Reeb vector field ξ is a harmonic vec-
tor field, that is, ξ satisfies the critical point condition for the energy functional
E(U) = (1/2)

∫
M

∥dU∥2dv defined on the space of all unit vector fields (we refer to
the monograph [7] for more information about harmonic vector fields on a Rieman-
nian manifold). Moreover, in [18] we proved that a contact metric manifold (M,η, g)
is H-contact if and only if ξ is an eigenvector of the Ricci operator Q. It should be
noted that the class of H-contact manifolds is very large. In particular, Sasakian
manifolds, K-contact manifolds, (k, µ)-spaces, (strongly) locally φ-symmetric spaces
are all examples of H-contact manifolds.

Now, let us quickly recall that a strictly pseudoconvex almost-CR structure is
equivalent to the notion of contact metric structure (we refer to [21] for more inform-
stion). LetM be a (2n+1)-dimensional manifold. A strictly pseudo-convex almost CR
structure on M is a pair (θ, J) where θ is an 1-form, J is an almost complex structure
on H = ker θ: J2 = −I, and the Levi form Lθ(X,Y ) := −(dθ)(X,JY ), X, Y ∈ H, is
positive definite. In particular, θ is a contact form and denote by T its Reeb vector
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field. We extend J to an endomorphism φ of the tangent bundle by requesting that
φ|H = J and φ(T ) = 0. Then, φ2 = −I + θ ⊗ T and the Webster metric gθ, defined
by

gθ(X,Y ) = (dθ)(X, JY ), gθ(X,T ) = 0, gθ(T, T ) = 1,

for any X,Y ∈ H, is a Riemannian metric on M . In this case the synthetic object
(η = −θ, ξ = −T, φ, g = gθ) is a contact metric structure on M . Vice versa, a contact
metric structure (η, ξ, φ, g) defines a strictly pseudo-convex almost CR structure on
M given by (θ = −η, J = φ|H). A strictly pseudo-convex almost CR structure is
called strictly pseudo-convex CR structure if the almost CR structure is integrable,
that is, the following condition is satisfied

J
(
[JX, Y ] + [X,JY ]

)
= [JX, JY ]− [X,Y ], X, Y ∈ H.(2.2)

Next, let (M,η) be an oriented compact contact manifold. Denote by M(η) the
set of all Riemannian metrics associated to the contact form η. Tanno [23] considered
the Dirichlet energy

E(g) =
1

2

∫
M

∥τ∥2dv, τ = Lξg,

defined for any g ∈ M(η). Then, he found the critical point condition ([23], Theorem
5.1)

∇ξτ = 2τφ, equivalently ∇ξh = −2φh.(2.3)

The Dirichlet energy E(g) was first studied by Chern and Hamilton [6] for compact
contact three-manifolds (there was an error in their calculation of the critical point
condition, as was pointed out by Tanno). This functional is known in literature also
with the name of Chern-Hamilton energy functional. We note that K-contact metrics
and Sasakian metrics are trivial critical metrics, besides we note that the critical point
condition (2.3) has a tensorial character, so it holds also in the non compact case.

3 Proofs of the results

3.1 Proof of Theorem 1.1

Proof. Let (M,η, g, ξ, φ) be a complete H-contact (2n + 1)-manifold satisfying the
conditions of Theorem 1.1. Consider the new contact metric structure defined by the
so called D-homothetic deformation ([22]):

g̃ = gt = tg + t(t− 1)η ⊗ η, η̃ = tη, ξ̃ = (1/t)ξ, φ̃ = φ, t=const. > 0.

Recall that the Ricci tensors of the metrics g, g̃ are related by (see [11], p. 368)

R̃ic = Ric− 2(t− 1)g + 2(t− 1)(nt+ n+ 1)η ⊗ η +
t− 1

t
g
(
(∇ξh)φ+ 2h, ·

)
.(3.1)

Since g satisfies the critical point condition (2.3). Formula (3.1) becomes

R̃ic = Ric− 2(t− 1)g + 2(t− 1)(nt+ n+ 1)η ⊗ η.(3.2)

Now, we show that there exits t > 0 for which the Bakry-Emery Ricci tensor
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R̃icξ̃ := R̃ic+ Lξ̃ g̃

of the Riemannian manifold (M, g̃) satisfies:

R̃icξ̃ ≥ cg̃, for some constant c > 0.(3.3)

Let X be an arbitrary smooth vector field, X = X1 + X2 where X1 is vertical, i.e.
X1 = fξ, and X2 is horizontal, i.e., X2 ∈ ker η. Since Lξη = 0, one gets Lξ̃ g̃ = Lξg,
and thus

(Lξ̃ g̃)(X1, ·) = f(Lξg)(ξ, ·) = 0.(3.4)

Since (M,η, g) is H-contact, from (3.1) follows that also (M, η̃, g̃) is H-contact, i.e.,
ξ̃ is an eigenvector of Q̃, and thus by using (3.4) we get

R̃icξ̃(X1, X2) = 0.(3.5)

Moreover, by using (3.2), (3.4) and (2.1)a, we have

R̃icξ̃(X1, X1) = Ric(X1, X1)− 2(t− 1)g(X1, X1) + 2(t− 1)(nt+ n+ 1)η(X1)η(X1)

= f2
(
Ric(ξ, ξ) + 2n(t2 − 1)

)
= f2

(
2n− trh2 + 2n(t2 − 1)

)
= f2

(
2nt2 − trh2

)
.

Since the tensors Lξg and h are related by Lξg = 2g(hφ·, ·), we have ∥Lξg∥2 = 4trh2

and thus the condition µ ≥ ∥τ∥√
2n

gives

−trh2 ≥ −(n/2)µ2.

Then, from above equation we obtain

R̃icξ̃(X1, X1) ≥ f2
(
2nt2 − (n/2)µ2

)
=

n

2t2
(
4t2 − µ2

)
g̃(X1, X1).

Therefore, if we put t = t1 > (µ/2) ≥ 0 and c1 = n
2t2

(
4t2 − µ2

)
> 0, we get

R̃icξ̃(X1, X1) ≥ c1g̃(X1, X1), where g̃ = gt with t = t1 > (µ/2) ≥ 0.(3.6)

Now, we consider R̃icξ̃(X2, X2). By using (3.2), (3.4) and (1.2) we get

R̃icξ̃(X2, X2) = Ric(X2, X2) + (Lξg)(X2, X2)− 2(t− 1)g(X2, X2)

≥ λ g(X2, X2)− 2(t− 1)g(X2, X2)

=
1

t
(2− 2t+ λ)g̃(X2, X2).

Consequently, if we put 0 < t = t2 < 2+λ
2 , where 2 + λ > µ ≥ 0, and c2 =

1
t (2− 2t+ λ), then

R̃icξ̃(X2, X2) ≥ c2 g̃(X2, X2), where g̃ = gt with t = t2 <
2 + λ

2
.(3.7)
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Now, taking t1 = t2 = t and g̃ = gt, where t is a positive real number satisfying
0 ≤ µ < 2t < 2 + λ, then from (3.6) and (3.7), we have

R̃icξ̃(X2, X2) ≥ c1 g̃(X2, X2), where c1 =
n

2t2
(4t2 − µ2),

R̃icξ̃(X2, X2) ≥ c2 g̃(X2, X2), where c2 =
1

t
(2− 2t− λ),

R̃icξ̃(X1, X2) = 0.

Therefore, if we put c = min{c1, c2}, then R̃icξ̃(X,X) ≥ c g̃(X,X), that is, (3.3). On
the other hand, for any t > 0, (η̃, g̃ = gt) is again a complete contact metric structure
on M ([22], Lemma 11.1). Then, (M, g̃) is a complete Riemannian manifold, ξ̃ is
a unit vector field, and the condition (3.3) is satisfied. Hence, by Theorem A, we
obtain that M is compact and the fundamental group π1(M) is finite. Besides, the
homology groupH1(M,Z) = π1(M)/[π1(M), π1(M)], for which the first Betti number
b1(M) = 0. □

Proof. of Corollary 1.2
If the contact metric structure is K-contact, that is, Lξg = 0, then for ∥τ∥ = 0 and
µ = 0 the condition (1.2) becomes Ric ≥ λ g > with λ > −2. Thus, Corollary 1.2
follows from Theorem 1.1. □

3.2 Proof of Theorem 1.3, Corollary 1.4 and Corollary 1.5

Before to start the proof of Theorem 1.3, we recall that a vector field X0 on a Rie-
mannian manifold (M, g) is called an infinitesimal harmonic transformation if the
one-parameter group of local transformations of (M, g) generated by X0 are local
harmonic diffeomorphisms. Moreover, X0 is infinitesimal harmonic transformation if
and only if holds the condition (see [16], p.574)

∆X0 = 2QX0,

where ∆ is the Hodge-Laplacian.

Proof. (of Theorem 1.3)
Recall the following Yano’s formula (see, for example, [19] Prop. 9.6)

Ric(X0, X0) = ∥∇X0∥2 −
1

2
∥LX0g∥

2
+ (divX0)

2(3.8)

+ div(∇X0
X0)− div

(
(divX0)X0

)
.

Since X0 is a unit, geodesic, divergence-free vector field, Yano’s formula (3.8) becomes

Ric(X0, X0) = ∥∇X0∥2 −
1

2
∥LX0

g∥2 .(3.9)

Besides, (
LX0g

)
(X0, X) = (1/2)X

(
g(X0, X0)

)
+ g(∇X0X0, X) = 0.(3.10)
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From definition of almost Ricci soliton, by using (3.10), we get that X0 is an eigen-
vector of the Ricci operator, i.e.,

QX0 = λX0.(3.11)

Now, we show that the properties 1), 2), 3) are equivalent.

1) ⇒ 2).

Suppose that X0 is a Killing vector field. Then X0 satisfies the equation (see, for
example, [19] p.266)

∆̄X0 = QX0,

where ∆̄ is the rough Laplacian. Then, by Weitzenböck’s formula, we have

∆X0 = ∆̄X0 +QX0 = 2QX0,

that is, X0 is an infinitesimal harmonic transformation.

2) ⇒ 3).

Suppose X0 infinitesimal harmonic transformation, that is, ∆X0 = 2QX0. Since
QX0 = λX0, we have thatX0 is an eigenvector of the Hodge-Laplacian with eigenvalue
µ = 2λ.

3) ⇒ 1).

By using the definition of the the rough Laplacian ∆̄ and the definition of the
Laplace-Beltrami ∆ operator acting on the functions, one gets (cf. also [7] Lemma
2.15)

g(∆̄X0, X0) =
1

2
∆ ∥X0∥2 + ∥∇X0∥2 .(3.12)

Then, since X0 is an eigenvector of the Hodge-Laplacian, that is ∆X0 = µX0, with
eigenvalue µ ≤ 2λ, by Weitzenböck’s formula and (3.12), we get

g(∆̄X0, X0) =
1

2
∆ ∥X0∥2 + ∥∇X0∥2 = ∥∇X0∥2

g(∆̄X0, X0) = g(∆X0 −QX0, X0) = µ− λ.

Then, these formulas and (3.9) give

λ = Ric(X0, X0) = µ− λ− 1
2 ∥LX0g∥

2
,

that is,

∥LX0g∥
2
= 2(µ− 2λ) ≤ 0.

Therefore, X0 is Killing and (M, g) is an Einstein Riemannian manifolds. □

Remark 3.1. Let (M, g,X0, λ) be a Ricci soliton where the potential vector field X0

is a unit vector field. Then, in this case, by using Proposition 3.1 and Theorem 3.2
of [20], we have that X0 is Killing if and only if X0 is geodesic and divergence free.
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Remark 3.2. Let (M, g,X0, λ) be an almost Ricci soliton. We observe that if the
potential vector field X0 is geodesic and eigenvector of the Hodge-Laplacian (∆X0 =
µX0), then

2(µ− 2λ)X0 + (m− 2)∇λ = 0, dimM = m.(3.13)

In fact, for an almost Ricci soliton, since X0 is geodesic, QX0 = λX0; besides holds
the following ([2], Lemma 2):

∆̄X0 = QX0 +
m−2
2 ∇λ = λX0 +

m−2
2 ∇λ.

Then, this equation, ∆X0 = µX0 and Weitzenböck’s formula, imply (3.13).

Proof. (of Corollary 1.4)
Recall that the Reeb vector field ξ of a contact metric (2n + 1)-manifold is a unit,
geodesic, divergence-free vector field. Besides ∆ξ = µξ, µ = 4n ([18], Corollary 3.7).
Thus, if (g, ξ, λ) is an almost Ricci soliton, by (3.13) with X0 = ξ and Lemma 2.1,
we have µ = 2λ. Then, by Theorem 1.3, ξ is Killing, and thus M is an Einstein
K-contact manifold. □

Proof. (of Corollary 1.5)
By using the notations of Section 2, (η = −θ, ξ = −T, φ, gθ) is a contact metric
structure. Then, if (gθ, ξ, λ) is an almost Ricci soliton, by Corollary 1.4 we get that
gθ is Einstein and ξ is Killing. Besides, the contact metric structure satisfies the
integrability condition (2.2). Therefore, Theorem 11 of [21] gives that the structure
(η, ξ, φ) is normal, and so (η = −θ, ξ = −T, φ, gθ) is Sasakian. □

3.3 Natural contact metric structures - proof of Theorem 1.6

g-natural contact metric structures
An interesting geometric situation in which a distinguished vector field, namely the
geodesic flow ξ̃ (also called the geodesic spray), appears in a natural way, is given by
the unit tangent sphere bundle T1M of a Riemannian manifold (M, g). This vector
field is the Reeb vector field of the natural contact metric structures on unit tangent
sphere bundles of which we now give a quick presentation (for more details we refer
to the papers [20], [1] and references therein).

Let (M, g) be an n-dimensional Riemannian manifold. Riemannian g-natural met-
rics (also called Riemannian natural metrics) form a wide family of Riemannian met-
rics on TM . These metrics depend on several smooth functions from [0,+∞) to R and
as their name suggests, they arise from a very “natural”construction starting from
the Riemannian metric g over M . The Sasaki metric, the Cheeger-Gromoll metric,
the Kaluza-Klein metrics, and the so called metrics of Kaluza-Klein type, are special
cases of Riemannian g-natural metrics.

Let G be a Riemannian g-natural metric on TM . The unit tangent sphere bundle
over a Riemannian manifold (M, g), is the hypersurface

T1M = {(x, u) ∈ TM |gx(u, u) = 1}.

The tangent space of T1M , at a point (x, u) ∈ T1M , is given by

(T1M)(x,u) = {Xh + Y v : X ∈ Mx, Y ∈ {u}⊥ ⊂ Mx},
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where Xh and Xv are the horizontal lift and the vertical lift of X. By XtG we denote
the tangential lift with respect to G, of a vector X ∈ Mx to (x, u) ∈ T1M ; of course
if X ∈ Mx is orthogonal to u, then XtG = Xv. The geodesic flow on T1M , that we
denote by ξ̃, is the restrictions of the geodesic flow on TM to its hypersurface T1M ,
thus

ξ̃(x,u) = uh
(x,u).

We call g-natural metrics on T1M the restrictions G̃ of g-natural metrics G of TM
to its hypersurface T1M . These metrics possess a simpler form. Precisely, G̃ is
completely determined by the identities

(3.1)


G̃(x,u)(X

h, Y h) = (a+ c) gx(X,Y ) + d gx(X,u)gx(Y, u),

G̃(x,u)(X
h, Y tG) = b gx(X,Y ),

G̃(x,u)(X
tG , Y tG) = a gx(X,Y )− ϕ

a+c+d gx(X,u)gx(Y, u),

for all (x, u) ∈ T1M and X, Y ∈ Mx, where a, b, c, d are constants and satisfy the
following inequalities:

a > 0, a(a+ c)− b2 > 0 and ϕ := a(a+ c+ d)− b2 > 0.

The standard Sasaki metric G̃S is defined by a = 1 and b = c = d = 0, a Kaluza-Klein
metric is defined by b = d = 0, and Kaluza-Klein type metric, that is, horizontal and
tangential lifts are mutually orthogonal with respect to G̃, is defined by b = 0.

In [1] Abbassi et al. have shown that there is a family of contact metric structures
(G̃, η̃, φ̃, ξ̃) over T1M , called g-natural contact metric structures. More precisely the
set (G̃, η̃, φ̃, ξ̃) is described as follows:

G̃ is defined by (3.1), ξ̃(x,u) = ϱuh, η̃(Xh) = (1/ϱ)g(X,u), η̃(XtG) = b ϱ g(X,u),

where ϱ being a positive constant satisfying

(1/ϱ2) = 4(a(a+ c)− b2) = (a+ c+ d),(3.2)

and φ̃ is completely determined by the relation dη̃ = G̃(·, φ̃). By using formula (3.2)
we get the parameter d as a function of a, b, c, thus the g-natural contact metric
structures depend on three real parameters. For a = 1

4 , b = c = 0, and consequently
d = 0 and ϱ = 2, we get the standard contact metric structure on T1M induced from
the Sasaki metric G̃S (see [3]).

Proof. (of Theorem 1.6)
Suppose that (G̃, ξ̃, λ) is an almost Ricci soliton. Then, by Corollary 1.4, (T1M, G̃, η̃)
is K-contact and Einstein. Since (T1M, G̃, η̃) is K-contact, by Theorem 2 of [1], we
obtain that (M, g) is of constant sectional curvature κ = (a + c)/a > 0, G̃ is of
Kaluza-Klein type (i.e., b = 0) and (T1M, G̃, η̃) is Sasakian. On the other hand, for
a Riemannian manifold of constant sectional curvature κ = (a + c)/a > 0, by using
(3.2), the natural contact metric structure over T1M are exactly the ones determined
by Riemannian natural metrics defined by the parameters

a > 0, b = 0, c = (κ− 1)a, and thus d = (a+ c)(4a− 1)− b2 = κa(4a− 1) .

Then, in this case, the Ricci tensor is given by (4.9) of [20], that is,

R̃ic = α G̃+ β η̃ ⊗ η̃, where α =
(−2a+ n− 1)

a
and β =

(2an− n+ 1)

a
.
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Since G̃ is Einstein, must be β = 0, that is, a = (n − 1)/2n, thus d = κ(n − 1)(n −
2)/2n2 and λ = α = 2(n − 1). In particular, G̃ is Kaluza-Klein, that is, b = d = 0
(equivalently, a = 1/4, b = 0 and c = (κ−1)/4) if and only if n = 2 and κ = 1+4c > 0.
Finally, G̃ is induced from the Sasaki metric G̃S , that is, a = 1/4, b = c = 0, if and
only if n = 2 and κ = 1. □

Remark 3.3. Theorem 1.6 extends Theorem 4.3 of [20] where (G̃, ξ̃, λ) was considered
as a Ricci soliton.
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[4] D.E. Blair and R. Sharma, Generalization of Myers’ Theorem on a contact man-
ifold, Illinois J. Math. 34 (1990), 837–844.

[5] H. D. Cao, Geometry of Ricci solitons, Chinese Ann. Math. Ser. B 27 (2006),
121–142.

[6] S.S. Chern and R.S. Hamilton, On Riemannian metrics adapted to three-
dimensional contact manifolds, Lect. Notes in Math. 1111, Springer-Verlag,
Berlin and New-York, 1985; 279–305.

[7] S. Dragomir and D. Perrone, Harmonic Vector Fields: Variational Principles
and Differential Geometry, Elsevier Science Ltd, 2011.

[8] M. Fernandez-Lopez and E. Garcia-Rao, A remark on compact Ricci solitons,
Math. Ann. 340 (2008); 893–896.

[9] D. Friedan, Nonlinear models in 2 + ε dimensions, Ann. Phys. 163 (1985), 318–
419.

[10] A. Derdzinski, A Myers-type theorem and compact Ricci solitons, Proc. AMS 134
(2006), 3645–3648.

[11] S. I. Goldberg and G. Toth, Torsion and deformation of contact metric structures
on 3-manifolds, Tohoku Math. J. 39 (1987), 365–372.

[12] R.S. Hamilton, The Ricci flow on surfaces, mathematics and general relativity
(Santa Cruz, CA, 1986), Contemp. Math. 71, Am. Math. Soc., Providence, RI,
1988; 237–262.

[13] I. Hasegawa and M. Seino, Some remarks on Sasakian geometry - applications
of Myers’ theorem and the canonical affine connection, J. Hokkaido Univ. Educ.
(Sect. II A) 32 (1981), 1–7.

[14] T. Ivey, Ricci solitons on compact three-manifolds, Diff. Geom. Appl. 3 (1993),
301–307.

[15] S. B. Myers, Riemannian manifolds with positive mean curvature, Duke Math.
J. 8 (1941), 401–404.



A Myers’ Theorem for H-contact manifolds and some remarks on almost ... 117

[16] O. Nouhaud, Transformations infinitesimales harmoniques, C. R. Acad. Sc.
Paris, Ser A 274 (1972), 573–576.

[17] S. Pigola, M. Rigoli, M. Rimoldi and A. Setti, Ricci almost solitons, Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (5), 10(4) (2011), 757–799.

[18] D. Perrone, Contact metric manifolds whose characteristic vector field is a har-
monic vector field, Diff. Geom. Appl. 20 (2004), 367–378.

[19] D. Perrone, Un’introduzione alla Geometria Riemanniana (in Italian), Aracne
Editrice, Rome, 2011.

[20] D. Perrone, Geodesic Ricci solitons on unit tangent sphere bundles, Ann. Global
Anal. Geom. 44 (2) (2013), 91–103.

[21] D. Perrone, Contact semi-Riemannian structures in CR Geometry: some aspects,
Special Issue “Applications of Differential Geometry”Axioms 8 (1), 6 (2019), 50
pp.

[22] S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math. 12
(1968), 700–717.

[23] S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer.
Math. Soc. 314 (1989), 349–379.

[24] J.Y. Wu, Myers’ type theorem with the Bakry-Émery Ricci tensor, Ann. Global
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Universitá del Salento,
Dipartimento di Matematica e Fisica “E. De Giorgi”
Via Provinciale Lecce-Arnesano, 73100 Lecce, Italy.
E-mail: domenico.perrone@unisalento.it


