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1 Introduction

We consider a real vector bundle E → M on a differentiable C∞-manifold M of
dimension n ≥ 2 with a linear connection ∇ : C∞(E) → C∞(T ∗M ⊗ E) and a Lie
group G, acting in the fibers of the bundles T ∗M ⊗ E and E. Let Diff(E, T ∗M ⊗
E) denote a C∞-module of first order linear differential operators D : C∞E →
C∞(T ∗M ⊗ E) on the space C∞(E) of smooth sections of E.

E. Stein and G. Weiss introduced in [20] the generalized gradient (in short, G-
gradient), as the differential operator D ∈ Diff(E, T ∗M ⊗E), which is the projection
of the covariant derivative ∇ s on the pointwise G-irreducible subbundle of the bundle
T ∗M⊗E for any section s ∈ C∞(E). For example, Maxwell and Dirac equations, are
based on these Stein-Weiss gradients (e.g., [20]). Later on, G-gradients were called
Stein-Weiss operators (see [6]). We will also use this terminology.

Let g be a Riemannian metric on M , then on any real vector bundle E → M
there exists a Riemannian metric, which we also denote by g. In this case, any Stein-
Weiss differential operator D admits a formal adjoint operator D∗ defined using g
(see [3, p. 34]). Based on this fact, we are interested in a special class of second
order differential operators D∗D, from which many geometric statements can be de-
rived. In [6, 17], they studied ellipticity of second order differential operators D∗D.
Our starting point is the following statement: If D is a differential operator of order
k with injective symbol, then D∗D is elliptic. We also consider an elliptic differential
operator ∆E = ∆̄ + tℜ (of the Weitzenböck decomposition form) for a suitable con-
stant t, see [9], acting on C∞(E), where ∆̄ = ∇∗∇ is the rough or Bochner Laplacian,

*Balkan Journal of Geometry and Its Applications, Vol.27, No.1, 2022, pp. 138-151.
© Balkan Society of Geometers, Geometry Balkan Press 2022.



On kernels of second-order elliptic operators 139

∇∗ denotes the formal adjoint of ∇ with respect to g (e.g., [3, p. 53] and [16, p. vii]),
and ℜ is a smooth symmetric endomorphism of E depending linearly in a known way
on the curvature R∇ of the connection ∇ on E. An example of a bundle to which
the above reasoning applies is the space of differential p-forms, where the role of ∆E

is played by the Hodge-De Rham Laplacian ∆H . A smooth section s ∈ C∞(E) is
called ∆E-harmonic if ∆E s = 0 (see [16, p. 104]). Below, we consider the relationship
between the operators ∆E and D∗D and give examples of such harmonic sections.

The article has the following structure. In Section 2, we review the properties
of Stein-Weiss operators D defined on differential p-forms (1 ≤ p ≤ n − 1) and
corresponding second order elliptical operators D∗D, and also the geometry of tensors
lying in kernels of such operators. In Sections 3 and 4, we extend the results of
[21, 22, 25] for symmetric p-tensors (p ≥ 2). In Sections 5 and 6, we study the global
geometry of traceless symmetric conformal Killing tensors and Codazzi tensors using
second-order elliptic operators based on Stein-Weiss operators and the approach of a
short article [24], where the question was investigated for tensors of order p = 2.

2 Stein-Weiss operators on differential forms

Let a linear group GL(n,R) act in the fibers of tensor bundles over M . Let C∞ΛpM
denote the space of C∞-sections of the bundle of p-forms on M for 1 ≤ p ≤ n − 1,
and d : C∞ΛpM → C∞Λp+1M the exterior derivative operator (see [3, p. 21]). There
is a pointwise GL(n,R)-irreducible decomposition T ∗M ⊗ΛpM = Λp+1M ⊕ kerΛp+1

for the pointwise algebraic alternation operator Λp : T ∗M ⊗ ΛpM → Λp+1M . As a
consequence, we have the following pointwise GL(n,R)-irreducible decomposition:

(2.1) ∇ω = L1 ω + L2 ω

for any ω ∈ C∞ΛpM , where L1 = (p+1)−1d and L2 = ∇− (p+1)−1d (see [21]). Due
to [20, 11], these L1 and L2 are GL(n,R)-gradients, or, Stein-Weiss operators, defined
on C∞ΛpM . The kernels L1 and L2 consist of closed p-forms and Killing p-forms,
respectively, and the last ones, for (pseudo-)Riemannian manifolds, are called Killing-
Yano tensors (see [26, p. 559]). For a Riemannian manifold (M, g), the decomposition
(2.1) is pointwise orthogonal, i.e., g(L1ω, L2ω) = 0 for any ω ∈ C∞ΛpM .

Note that d : C∞ΛpM → C∞Λp+1M has a formally adjoint operator d∗ :
C∞Λp+1M → C∞ΛpM with respect to Riemannian metric onM , called codifferential
(see [3, c. 54]). Thus, for L2 there exists a formally adjoint operator L∗

2 = p(p+1)−1d∗.
Using these operators, we build the second order differential operator

(2.2) L∗
2L2 = p(p+ 1)−1(∆̄− (p+ 1)−1d∗d).

The main symbol σ(L∗
2L2)(ξ, ωx) of the operator (2.2) has the form

(2.3) σ(L∗
2L2) (ξ, ωx) = − p

p+ 1

( p

p+ 1
∥ξ∥2ωx +

1

p+ 1
ξ ∧ (ιξωx)

)
according to the following formulas (see [3, p. 461]):

σ(∇)(ξ, ωx) = ξ ⊗ ωx, σ(∇∗)(ξ, ωx) = −ιξθx,

σ(d) (ξ, ωx) = ξ ∧ ωx, σ(d∗)(ξ, ωx) = −ιξωx
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for all ξ ∈ R∗
xM \ {0}, ωx ∈ Λr(T ∗

xM) and θx ∈ T ∗
xM ⊗ Λr(T ∗

xM) at each point
x ∈ M . From (2.3) we obtain the following inequality:

−g(σ(L∗
2L2)(ξ, ωx), ωx) =

p

(p+ 1)2
(
p g(ξ, ξ)ωx + g(ιξ ωx, ιξ ωx)

)
> 0

for any nonzero ξ and ωx. Thus, (2.2) is an elliptic operator (see [3, p. 462]). On a
compact manifold M , the kernel of L∗

2L2 consists of Killing-Yano p-tensors (see [23]),
because of the inequality

∫
M

g(L∗
2L2ω, ω) dVg =

∫
M

g(L2ω,L2ω) dVg ≥ 0, where
dVg is the volume form of g; moreover, according to [3, p. 464], as a consequence
of ellipticity of L∗

2L2 : C∞ΛpM → C∞ΛpM we get the decomposition C∞Λp+1M =
kerL∗

2 ⊕ ImL2 with respect to the L2-global scalar product on (M, g), defined by
⟨ω, ω′⟩ = 1

p!

∫
M

g(ω, ω′) dVg, where ω, ω′ ∈ C∞ΛpM . As the result, we get

Proposition 2.1. For any ω ∈ C∞ΛpM and its SL(n,R)-gradients L1ω = (p +
1)−1dω and L2ω = ∇ω − (p + 1)−1dω on ΛpM the orthogonal decomposition (2.1)
holds. If (M, g) is compact, then the orthogonal decomposition C∞Λp+1M = kerL∗

2⊕
ImL2 holds. Moreover, L∗

2L2 in (2.2) is a nonnegative definite elliptic operator, whose
kernel is a finite-dimensional vector space over R consisting of Killing-Yano p-tensors.

Bourguignon [5] studied first order natural differential operators on the spaces of
C∞-sections of bundle of ΛpM on (M, g) with the structural group O(n,R) and the
Levi-Civita connection∇ (see the theory in [13]). By definition, if the symbols of these
operators are projectors on pointwise O(n,R)-irreducible subbundles of T ∗M ⊗ΛpM ,
they are called fundamental. Fundamental differential operators of Bourguignon are
Stein-Weiss operators. Bourguignon proved that T ∗M ⊗ ΛpM is decomposed into
three pointwise O(n,R)-irreducible subbundles. Based on this fact, Bourguignon de-
fined fundamental operators d and d∗ and indicated the existence of a third funda-
mental operator. He also noted that apart from the case p = 1, the third fundamental
operator does not have a simple geometric interpretation. As a consequence, this al-
lows for each ω ∈ C∞ΛpM to obtain an expansion of ∇ω ∈ C∞(T ∗M ⊗ΛpM) in the
sum of three pointwise O(n,R)-irreducible components

(2.4) ∇ω = G1ω +G2ω +G3ω.

Then, all three Stein-Weiss operators were found explicitly in [22]:

(2.5) G1 = (p+ 1)−1d, G2 = (n− p+ 1)−1g ∧ d∗, G3 = ∇−G1 −G2,

and it was proved in [27] that the kernel of G3 consists of conformal Killing p-forms.
Further, in [23], the operator G∗

3 formally conjugated to G3 on (M, g) was found,
the following second order differential operator was constructed and studied:

G∗
3G3 =

p

p+ 1

(
∆̄− 1

p+ 1
d∗d− 1

n− p+ 1
d d∗

)
.

For n = 2p we get G∗
3G3 = p

p+1

(
∆̄ − 1

p+1 ∆H

)
for the Hodge-de Rham Laplacian

∆H = d∗d + d d∗ (e.g., [16, p. 260]). The Hodge-de Rham Laplacian ∆H admits the
Weitzenböck decomposition (e.g., [3, p. 57]) ∆H = ∆̄ + ℜ, where ℜ depends linearly
in a known way on the curvature tensor and the Ricci tensor Ric of ∇. Moreover, for
n = 2 p we get the equality G∗

3G3 = ( p
p+1 )

2(∆̄ − 1
p ℜ), where ∆L = ∆̄ − p−1ℜ is the

Lichnerovich Laplacian (see [9]). Thus, the following is valid.



On kernels of second-order elliptic operators 141

Proposition 2.2. Let for each differential p-form ω ∈ C∞ΛpM the expansion of its
covariant derivative ∇ω ∈ C∞(T ∗M ⊗ ΛpM) in the sum (2.4) of pointwise O(n,R)-
irreducible components with Stein-Weiss operators (2.5) hold. Then for n = 2p the
operator p−2(p+ 1)2G∗

3G3 is the Lichnerovich Laplacian.

The Bochner-Weitzenböck formula (e.g., [16, p. 106]), can be rewritten as

1

2
∆ ∥ω ∥ 2 = −g(∆H ω, ω)− g(ℜ(ω), ω) + ∥G1ω ∥2 + ∥G2ω ∥2 + ∥G3ω ∥2.

The operator G∗
3G3 is elliptic for 2 ≤ p ≤ n − 1 (see [18, 10], where it lacks the

normalizing factor p(p + 1)−1 calculated in [23]): on a compact (M, g) the kernel of
G∗

3G3 is formed by conformal Killing p-forms.

3 The Stein-Weiss operator on symmetric tensors

Let C∞SpM be the space of C∞-sections of the bundle SpM of symmetric p-tensors
on M . Consider TxM at any point x ∈ M as an n-dimensional vector space V
with the structure group GL(n,R). Let SpV denote the p-th symmetric power of the
space V ∗ dual to V . The fiber of T ∗M ⊗ SpM is the tensor space V ∗ ⊗ SpV , which
will be regarded as the representation space of GL(n,R). Define an endomorphism
Sp+1 : V ∗ ⊗ SpV → Sp+1V ⊂ V ∗ ⊗ SpV , called the Young symmetrizer, see [1], by

(Sp+1(ϕ))i0i1...ip−1ip := ϕ(i0i1... ip−1 ip)

=
1

p+ 1

(
ϕi0i1...ip−1ip + ϕi1...ip−1ipi0 + . . .+ ϕipi0i1...ipip−1

)
for components ϕi0 i1...ip−1 ip = ϕ( ei0 , ei1 , . . . , eip) of any ϕ ∈ V ∗ ⊗ SpV in any basis
e1, . . . , en of V . The endomorphism Sp+1 is GL(n,R)-invariant and Sp+1(Sp+1(φ)) =
Sp+1(φ), i.e., Sp+1 is an idempotent in V ∗ ⊗ SpV . Thus, the GL(n,R)-invariant
decomposition of V ∗ ⊗ SpV into a direct sum V ∗ ⊗ SpV = ImSp+1 ⊕ ker Sp+1 of two
subspaces V ∗ ⊗ SpV holds, where ImSp+1 = Sp+1V , and kerSp+1 := Im(id − Sp+1)
consists of tensors of the form ϕ− Sp+1(ϕ).

Lemma 3.1. Let GL(n,R) act on fibers of tensor bundles on M . Then the following
pointwise GL(n,R)-irreducible decomposition holds:

(3.1) T ∗M ⊗ SpM = Sp+1M ⊕ ker Sp+1.

Proof. The first component of the expansion Sp+1V for V = TxM and any point
x ∈ M is irreducible GL(n,R) – a module. To find GL(n,R)-irreducible subspaces in
Sp+1V , we need a list of all correctly filled (n, p + 1)-Young schemes, which in this
case contains only one simple scheme 1 2 . . . p p+ 1 .

Thus, there are no other GL(n,R)-irreducible subspaces in Sp+1V other than Sp+1V .
To determine what weights with respect to the maximal tori (diagonal matrices) have
elements of ker Sp+1, we decompose V ∗⊗SpV into weighted spaces, where the weight
vectors are tensors of the form

φ̄
(l,j1,...,jl)
k,i1,...,il

=
{

1, if l = k and i1, . . . , il is a permutation of j1, . . . , j l,
0 , otherwise.
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The above tensor has weight diag(t1, . . . , tn) 7→ tkti1 . . . tip . Then the maximum
weight with respect to the order of domination λ ≥ µ ⇔ ∀m :

∑m
i=1 λi ≥

∑m
i=1 µi

has tensor ϕ(2,1,...,1) ̸= 0, since ϕ(1,1,...,1) = 0. The weight of this nonzero vector
is (p, 1, 0, . . . , 0). It follows that ker Sp+1 ∼= V ((p, 1, 0, . . . , 0)). Since the module
Sp+1V is GL(n,R)-irreducible, the decomposition (3.1) is also GL(n,R)-irreducible.
Based on the above, we conclude that there are only two Stein-Weiss differential
operators defined on the space of sections C∞SpM of SpM . We define the first-
order linear differential operator δ∗ : C∞SpM → C∞Sp+1M by means of the equality
δ∗φ = (p+ 1)Sp+1(∇φ). It has the following form in local coordinates x1, . . . , xn:

(δ∗φ)k i1...ip−1ip := ∇k φ i1...ip−1ip + . . .+∇ip φ i1...ip−1 k

where ∇k = ∇∂/∂xk , and φ ∈ C∞SpM . The value on ξ ∈ C∞T ∗
xM of the symbol

σ(δ∗) of the operator δ∗ is a homomorphism

σ(δ∗)(ξ, x) : φx ∈ Sp(TxM) → (p+ 1) ξ ⊙ φx ∈ Sp+q(TxM),

according to the law of symmetric multiplication φx ⊙ φ′
x = Sp+q(φx ⊗ φ′

x) for the
pointwise defined symmetric multiplication Sp+q : Sp(TxM)⊗Sq(TxM) → Sp+q(TxM)
and any tensors φ ∈ C∞SpM and φ′ ∈ C∞SqM . Therefore, P1 = (p+ 1)−1 δ∗ is the
first Stein-Weiss operator defined as symmetrization of the covariant derivative. □

Consider further an operator of the form P2 = ∇− (p+ 1)−1δ∗. The value of its
symbol σ(P2) on any 1-form ξ ∈ C∞T ∗M is the homomorphism

σ(P2)(ξ, x) : φx ∈ Sp(TxM) → (ξ ⊗ φx − (p+ 1) ξ ⊙ φx) ∈ kerSp+1(TxM)

defined at any point x ∈ M . Thus, the second operator will be P2.
Since for any φ ∈ C∞SpM there is a pointwise GL(n,R)-irreducible decomposition

(3.2) ∇φ = P1φ+ P2φ,

then due to Stein-Weiss approach in [20], the above P1 and P2 are Stein-Weiss ope-
rators on the space of symmetric p-tensors, because P1φ and P2φ are pointwise
GL(n,R)-irreducible components of the decomposition of ∇φ. Thus, we get

Proposition 3.2. Let M be a smooth n-dimensional (n ≥ 2) manifold with a linear
connection ∇ without torsion. Then there are two Stein-Weiss differential operators
P1 = 1

p+1δ
∗ and P2 = ∇− 1

p+1 δ
∗ on the space of sections C∞SpM .

The kernel of P1 consists of symmetric Killing p-tensors, that is, tensor fields
φ ∈ C∞SpM such that Sp+1(∇φ) = 0. The kernel of P2 consists of Codazzi p-tensors
φ ∈ C∞SpM , for which ∇φ ∈ C∞Sp+1M . According to [3, p. 35], the operator δ∗ :
C∞SpM → C∞Sp+1M has the formally adjoint operator δ : C∞Sp+1M → C∞SpM ,
called divergence and defined by the equality δ φ = −traceg∇φ. Here, the traceg
is given by the formula (traceg φ) (a3, . . . , ap) =

∑n
i=1 φ (ei, ei, a3, . . . , ap) for any

vectors a3, . . . , ap and orthonormal basis { e1, . . . , en} of TxM at any point x ∈ M .
Therefore, the formally adjoint to P1 operator has the form P ∗

1 = (p + 1)−1δ. Let
us construct a second-order differential operator P ∗

1 P1 = (p+1)−2δ δ∗. The operator
P ∗
1 P1 : C∞SpM → C∞SpM is elliptic, since its principal symbol satisfies

−g(σ(P ∗
1 P1)(ξ, x)φx, φx) = g(ξ, ξ)g(φx, φx)− (p+ 1) g(ξ ⊙ φx(ξ, ·), φx)

= g(ξ, ξ) · g(φx, φx) + p · g(iξφx,iξφx) > 0(3.3)
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for any ξ ∈ T ∗
xM \ {0} and nonzero φx at any point x ∈ M . Thus, on a compact

(M, g) the kernel of P ∗
1 P1 is a finite-dimensional vector space over R. A local estimate

for the dimension of this space was found in [2]:

dimR kerP ∗
1 P1 ≤ Cn+p

p Cn+p−1
p − Cn+p

p+1 Cn+p−1
p−1 ,

where the equality is attained on the Euclidean sphere. Since
∫
M

g(P ∗
1 P1φ,φ) dVg =∫

M
g(P1φ, P1φ) dVg ≥ 0, the kernel of P ∗

1 P1 consists of symmetric Killing tensors
φ ∈ C∞SpM . By [3, p. 464], the following orthogonal decomposition is valid:

(3.4) C∞Sp+1M = ker P ∗
1 ⊕ ImP1

for the L2-global scalar product on a compact (M, g). Summing up, we formulate

Proposition 3.3. For any tensor field φ ∈ C∞SpM there is a pointwise orthogonal
decomposition (3.2), where P1 = 1

p+1δ
∗ and P2 = ∇− 1

p+1 δ
∗. On a compact manifold

(M, g), the second-order differential operator P ∗
1 P1 = (p + 1)−2δ δ∗ is a nonnegative

elliptic operator, whose kernel is a finite-dimensional vector space of symmetric Killing
p-tensors. Moreover, the orthogonal decomposition (3.4) is valid.

If (M, g) is a compact Riemannian manifold of nonpositive sectional curvature,
then ker P ∗

1 P1 consists of parallel symmetric p-tensors, that is, tensors φ obeying
the condition ∇φ = 0 (see [7]). If, in addition, M is connected and there is a point
at which all sectional curvatures are negative, then ker P ∗

1 P1 consists of symmetric
p-tensors of the form C · gk for some real constant C (see also [7]).

4 The Stein-Weiss operators on traceless symmetric tensors

Bourguignon studied first order natural differential operators on the spaces of C∞-
sections of the bundle S20M of symmetric traceless 2-tensors on (M, g), e.g., [6].
The symbols of such operators are projectors onto pointwise O(n,R)-irreducible sub-
bundles of T ∗M ⊗ S20M . The following decomposition is valid:

T ∗M ⊗ S20M = Pr S3
0M

(T ∗M ⊗ S20M)⊕ PrT∗M (T ∗M ⊗ S20M)⊕
⊕ PrkerS3

⋂
ker traceg (T

∗M ⊗ S20M).

As a consequence, we have the pointwise O(n,R)-irreducible decomposition

(4.1) ∇φ = D1 φ+D2 φ+D3 φ

for any traceless symmetric 2-form, or, the field of 2-tensors φ ∈ C∞S20M . Based on
this fact, Bourguignon defined all three operators D1, D2 and D3 and proved that the
kernel of the operator D1 consists of the divergence-free 2-tensors φ ∈ C∞S20M . He
argued that the kernels of D2 and D3 do not have a simple geometric interpretation.
In [25], these arguments were applied to a pseudo-Riemannian manifold (M, g), all
three Stein-Weiss operators were redefined on C∞-sections of S20M , and a geometric
interpretation of traceless symmetric 2-tensors lying in the kernel of each of them was
given. It was proved that the kernel of D1 consists of (traceless) symmetric conformal
Killing 2-tensors (see [26, p. 559]), and the kernel of D2 consists of traceless conformal
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Codazzi 2-tensors defined in [24]. The main difference of these tensors from well-known
Codazzi 2-tensors (e.g., [3, pp. 434; 436–440]) is their conformal invariance.

Consider a bundle Sp0M (p ≥ 2) of traceless symmetric p-tensors on M . For each
φ ∈ Sp0M , the equality traceg φ = 0 is valid.

Lemma 4.1. Let (M, g) be a Riemannian manifold of dimension n ≥ 2. Then the
following pointwise O(n,R)-irreducible decomposition is valid:

T ∗M ⊗ Sp0M = Pr Sp+1
0 M (T ∗M ⊗ Sp0M)⊕ Pr Sp−1

0 V (T
∗M ⊗ Sp0M)⊕

⊕ Pr kerSp+1
⋂

ker traceg (T
∗M ⊗ Sp0M).

Proof. The fiber of T ∗
xM ⊗ Sp0(T

∗
xM) at any point x ∈ M is an n-dimensional

(n > 1) cotangent vector space T ∗
xM . We will consider this tensor space as the

space of representations V ∗ ⊗ Sp0V of O(n,R). There are three orthogonal subspaces
kerSp+1

⋂
ker traceg, S

p+1
0 V and Sp−1

0 V of V ∗ ⊗ Sp0V such that (see [1])

V ∗ ⊗ Sp0V = Pr Sp+1
0 V (V

∗ ⊗ Sp0V )⊕ Pr Sp−1
0 V (V

∗ ⊗ Sp0V )⊕

⊕Pr ker Sp+1
⋂

ker traceg (V
∗ ⊗ Sp0V ).

The irreducibility of the components of the decomposition of V ∗ ⊗ Sp0V under the
action of O(n,R) follows from Theorem by G. Weyl on quadratic O(n,R)-invariant
forms (see [6, pp. 313–314]). There are three such independent invariant quadratic
forms, which are specified using components ϕi0 i1...ip = ϕ(ei0 , ei1 , . . . , eip) of ϕ ∈
V ∗ ⊗ Sp0V in the orthonormal basis e1, . . . , en of V , and have the form

Ψ1(ϕ) =
∑n

i0,i1,...,ip=1
(ϕi0i1...ip)

2, Ψ2(ϕ) =
∑n

i,i2,...,ip=1
(ϕii i2...ip)

2,

Ψ3(ϕ) =
∑n

i0,i1,i2,...,ip=1
ϕi0i1i2...ipϕi1i0i2...ip .

They represent all possible traces of the ϕ⊗ϕ -form. Since there are three such forms,
the decomposition V ∗ ⊗ Sp0V , which also has three tensor components, is O(n,R)-
irreducible according to result of H. Weil (see [6, pp. 313–314]). □

Let Diff(Sp0M, T ∗M ⊗ Sp0M) denote the C∞M -module of first-order linear diffe-
rential operators D : C∞Sp0M → C∞(T ∗M ⊗ Sp0M) on the space of smooth sections
C∞Sp0M of the bundle Sp0M . Due to the pointwise orthogonal decomposition of the
bundle T ∗M ⊗Sp0M from [1], we get the pointwise O(n,R)-irreducible decomposition
(4.1) of the covariant derivative of any tensor field φ ∈ C∞Sp0M . Then certain D1, D2

and D3 are Stein-Weiss operators on C∞Sp0M . The Stein-Weiss operator D1, whose
symbol is the projector onto the pointwise irreducible component Sp0M , is

(4.2) D1 φ =
1

p+ 1

(
δ∗φ+

p(p+ 1)

n+ 2(p− 1)
g ⊙ δ φ

)
for any φ ∈ C∞Sp0M and an algebraic operator g⊙ : Sp−1M → Sp+1M defined
pointwise by g⊙ := (2p − 1)Sp+1(g⊗) (see [1]). In local coordinates x1, . . . , xn on
(M, g), the expression (4.2) appears as

(4.3) (D1φ)i0i1i2...ip =
1

p+ 1

(
δ∗φ i0i1i2...ip +

p(p+ 1)

n+ 2(p− 1)
g(i0i1 δ φ i2...ip)

)
.
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Using the identity g(i0i1 δ φ i2...ip) = g(i0(i1 δ φ i2...ip)) for the pointwise symmetrization
operator Sp+1 (g ⊗ δ φ)i0i1...ip = g(i0i1 δ φ i2...ip), we rewrite (4.3) in the form

(D1φ)i0i1i2...ip =
1

p+ 1

(
δ∗φi0i1i2i3 ···ip−1ip +

1

n+ 2(p− 1)

(
gi0i1δφi2i3···ip−1ip

+ gi0i2δφi3···ip−1ipi1 + . . .+ gi0ip−1δφipi1i2...ip−2 + gi0ipδφi1i2i3···ip−1

+ gi1i2δφi3i4···ip−1ipi0 + gi1i3δφi4···ip−1ipi0i2 + . . .+ gi1ipδφi0i2i3...ip−1

+ gi1i0δφi2i3i4···ip−1ip + gi2i3δφi4i5···ipi0i1 + gi2i4δφi5···ipi0i1i3 + . . .

+ gi2i0δφi1i3i4...ip + gi2i1δφi3i4···ipi0 + · · ·+ gipi0δφi1i2i3···ip−1

+ gipi1δφi2i3···ip−1i0 + . . .+ gipip−2δφip−1i0i1i3...ip−3 + gipip−1δφi0i1i2i3···ip−2

))
.(4.4)

Based on (4.4), we get D1φ ∈ C∞Sp+1
0 M . We call φ ∈ C∞Sp0M a symmetric con-

formal Killing p-tensor, if D1φ = 0, which coincides with the notion of a conformal
Killing p-tensor, e.g., [7, 8]. For p = 1 condition D1φ = 0 takes the form of well-
known equations of a conformal Killing vector (see [26, pp. 559]). Formally conjugate
to (4.2) operator D∗

1 : C∞Sp+1
0 M → C∞Sp0M is given for any φ̄ ∈ C∞Sp+1

0 M by

(4.5) D∗
1φ̄ =

1

p+ 1

(
δ φ̄+

p(p+ 1)

n+ 2(p− 1)
(g ⊙ δ)∗φ̄

)
=

1

p+ 1
δ φ̄,

because (g⊗)∗ = traceg. Therefore, (g ⊙ δ)∗φ̄ = (2p − 1)δ∗(traceg φ̄) = 0 for any

traceless tensor φ̄ ∈ C∞Sp+1
0 M . Based on the operators D1 and D∗

1 , we define a
second-order differential operator of the form D∗

1D1 : C∞Sp0M → C∞Sp0M , which
according to (4.4) and (4.5) is given by the following equality:

(4.6) D∗
1D1φ =

1

(p+ 1)2

(
δ δ∗φ+

1

n+ 2(p− 1)
(−2 δ∗δ φ+ p(p− 1) g ⊙ δ δ φ)

)
.

For the Sampson Laplacian operator ∆S = δ δ∗ − δ∗δ, (4.6) can be rewritten as

(4.7) D∗
1D1φ =

1

(p+1)2(n+2(p− 1))

(
2∆S φ+(n+2(p−2))δ δ∗φ+p(p−1) g⊙δ δ φ

)
.

Let us prove the ellipticity of the operatorD∗
1D1. First, note that at each point x ∈ M

for any φ ∈ C∞Sp0M and ξ ∈ T ∗
xM \ {0} the equality g(σ(g ⊙ δ δ)(ξ, x)φx, φx) = 0

holds, which is a consequence of the tracelessness of the tensor field φ. Second, for
any nonzero φ ∈ C∞Sp0M the inequality −g(σ(∆S)(ξ, φx), φx) = g(ξ, ξ)g(φx φx) > 0
holds (see [15]). By (3.3), −g(σ(δ δ∗)(ξ, φx), φx) > 0 holds. Thus, the inequal-
ity −g(σ(δ δ∗)(ξ, φx), φx) > 0 takes place; hence, D∗

1D1 is elliptic. Then its ker-
nel on a compact (M, g) is finite-dimensional. Moreover,

∫
M

g(D∗
1D1 φ, φ) dVg =∫

M
g(D1φ, D1φ) dVg ≥ 0, thus, this vector space consists of symmetric conformal

Killing p-tensors φ ∈ C∞Sp0M . The following orthogonal decomposition takes place:

(4.8) C∞Sp+1M = ker D∗
1 ⊕ ImD1

for the L2-global scalar product on the compact (M, g). Summing up, we formulate

Proposition 4.2. The pointwise O(n,R)-irreducible decomposition (4.1) of the co-
variant derivative of any tensor field φ ∈ C∞Sp0M holds. On a compact (M, g), a
second-order differential operator D∗

1D1 for the Stein-Weiss operator

D1 φ = (p+ 1)−1
(
δ∗φ+ (n+ 2(p− 1))−1(g ⊙ δ φ)

)
,
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and its formally conjugate D∗
1, is a nonnegative elliptic operator, whose kernel is a

finite-dimensional vector space over R and consists of symmetric conformal Killing
p-tensors. Moreover, the orthogonal decomposition (4.8) is valid.

The second Stein-Weiss differential operator D2, whose symbol is the projector
onto the second pointwise irreducible component of the decomposition TM∗⊗Sp0M is

(D2 φ)i0 i1 i2...ip−2 ip−1 ip = −p(n+ p− 1)−1 gi0 ( i1δ φi2...ip)

(see [1]), and its kernel consists of traceless divergence-free p-tensors.
The third Stein-Weiss differential operator D3, whose symbol is the projector onto

the third pointwise irreducible component of the decomposition TM∗ ⊗ Sp0M , is

(D3 φ)i0 i1 i2...ip−2 ip−1 ip = ∇i0φi1i2...ip +
p

n+ p− 1
gi0( i1 δ φi2...ip)

− 1

p+ 1

(
δ∗φi0i1i2...ip +

p(p+ 1)

n+ 2(p− 1)
g(i0i1 δ φ i2...ip)

)
for any φ ∈ C∞Sp0M (see [1]). For any φ ∈ kerD3, the following equations hold:

(4.9) ∇i0φi1i2...ip −∇i1φi0i2...ip =
p

n+ p− 1

(
gi0 ( i1 δ φi2...ip) − gi1 ( i0 δ φi2...ip)

)
.

5 Global Riemannian geometry of conformal Killing tensors

The kernel of D1 consists of p-tensors φ ∈ C∞Sp0M for p ≥ 2 that satisfy

(5.1) δ∗φ = − p(p+ 1)

n− 2(p− 1)
g ⊙ δ φ.

Each such p-tensor is a symmetric conformal Killing p-tensor (e.g., [7, 8]). Note that
the requirement of tracelessness is included here in the definition of the conformal
Killing p-tensor (p ≥ 2) as well as in [26, p. 559] for the case p = 2. The condition
φ ∈ ker D1

⋂
ker δ defines a symmetric Killing p-tensor φ ∈ C∞Sp0M , because (5.1)

implies that δ∗φ = 0. Taking into account (4.7), we find

(5.2) g(∆S φ, φ) = −2−1(n+ 2(p− 2)) g(δ δ∗φ, φ)

for Sampson Laplacian ∆S = δ δ∗ − δ∗δ and conformal Killing tensors φ ∈ C∞Sp0M .
From (5.2) we conclude that the symmetric divergence-free (traceless) conformal
Killing tensor, or, equivalently, the symmetric traceless p-Killing tensor belongs to
the kernel of ∆S . For a compact manifold (M, g), it follows from (5.2) that∫

M

g(∆S φ, φ) dVg = −2−1(n+ 2(p− 2))

∫
M

g(δ φ, δ φ) dVg.

Thus, any traceless conformal Killing p-tensor belonging to the kernel of the Sampson
Laplacian is divergence-free, thus it is a Killing p-tensor. We get the following

Proposition 5.1. On a compact Riemannian manifold, a symmetric (traceless) con-
formal Killing p-tensor belongs to the kernel of the Sampson Laplacian if and only if
it is a traceless p-Killing tensor.
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For any Killing p-tensor (p ≥ 2), direct calculations lead to the following formula:
2 δ φ = δ∗(traceg φ). Thus, on a compact Riemannian manifold of negative Ricci cur-
vature, every symmetric Killing tensor of rank 3 is traceless. The Sampson Laplacian
∆S : C∞SpM → C∞SpM admits the Weitzenböck decomposition (see [15])

(5.3) ∆S φ = ∆̄φ−ℜ(φ).

The formula (5.3) indicates that ∆S is a particular form of Lichnerovich’s Lapla-
cian (see [3, p. 79] and [9]). Here, ℜ is linearly expressed in terms of the Rieman-
nian curvature tensor and the Ricci tensor of the Levi-Civita connection and satisfies
g(ℜ(φ), φ′) = g(ℜ(φ′), φ) for any φ, φ′ ∈ C∞SpM (see [15]). Thus, Φp(φx, φx) =
g(ℜ(φx), φx) is a quadratic form for any φx ∈ Sp(T ∗

xM) and x ∈ M . Since ∆S is
an elliptic operator, by [3, p. 632], the L2(M)-orthogonal decomposition C∞SpM =
ker∆S ⊕ Im∆S is valid. The symmetric tensor φ ∈ C∞SpM such that φ ∈ ker∆S

is called ∆S-harmonic section (see [16, p. 104]), and the space of such tensors on a
compact Riemannian manifold (M, g) is finite-dimensional. The following is valid.

Proposition 5.2. On a compact Riemannian manifold (M, g) the space of ∆S-
harmonic sections is finite-dimensional.

Using Proposition 5.2 and (5.3), we can formulate the following

Corollary 5.3. On a Riemannian manifold (M, g), any divergence-free or, e.g., trace-
less Killing p-tensor is a ∆S-harmonic section.

From (5.3) we deduce the Bochner-Weitzenböck formula (e.g., [15] and [16, p. 106])

1

2
∆ ∥φ∥2 = −g(∆S φ, φ)− g(ℜ(φ), φ) + ∥∇φ ∥2 ,

where for ∇φ the pointwise O(n,R)-irreducible decomposition (4.1) holds. Thus,

(5.4)
1

2
∆ ∥φ ∥2 = −g(∆S φ, φ)− g(ℜ(φ), φ) + ∥D1φ ∥2 + ∥D2φ ∥2 + ∥D3φ ∥2 .

For a symmetric conformal Killing p-tensor, the formula (5.4) takes the form

(5.5)
1

2
∆ ∥φ∥2 = 2−1(n+ 2(p− 2)) g(δ δ∗φ, φ)− g(ℜ(φ), φ) + ∥D2φ∥2 + ∥D3φ∥2.

Suppose that M is compact, then integrating (5.5) we obtain∫
M

g(ℜ(φ), φ) dVg = 2−1(n+2p−4)

∫
M

∥δ∗φ∥2dVg+

∫
M

(∥D2φ∥2+∥D3φ∥2) dVg ≥ 0,

because
∫
M

g
(
δ δ∗φ, φ

)
dVg =

∫
M

∥ δ∗φ ∥2dVg ≥ 0. On (M, g) of nonpositive curva-
ture Φp(φ,φ) = g(ℜ(φ), φ) ≤ 0 holds for any φ ∈ Sp0M (see [8, 7]). If there is a point
at which the sectional curvature is negative, then Φp(φ, φ) = g(ℜ(φ), φ) < 0 for any
symmetric p-form φ ∈ Sp0M . Based on the above equality, we get the following

Proposition 5.4. On a compact Riemannian manifold (M, g) of nonpositive sectional
curvature sec, each symmetric conformal Killing tensor φ ∈ C∞Sp0M is parallel, i.e.,
∇φ = 0. Moreover, if there is a point at which sec < 0, then on (M, g) there are no
nonzero symmetric conformal Killing p-tensors φ ∈ C∞Sp0M .
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One can show 1
2 ∆ ∥φ∥2 = ∥φ∥∆ ∥φ∥+ ∥ d ∥φ∥ ∥2, where ∥∇φ ∥2 ≥ ∥ d ∥φ ∥ ∥2 by

Kato’s inequality (e.g., [16, p. 105]). Thus, the above equality takes the following form:

∥φ ∥∆ ∥φ ∥ =
1

2
∆ ∥φ ∥2 − ∥ d ∥φ ∥ ∥2 ≥ 1

2
∆ ∥φ ∥2 − ∥∇φ ∥2,

where ∆ ∥φ ∥2 due to (5.4) satisfies the inequality

1

2
∆ ∥φ ∥2 ≥ −g(∆S φ, φ)− g(ℜ(φ), φ).

Summing up, we get the following inequality:

(5.6) ∥φ ∥∆ ∥φ ∥ ≥ −g(∆S φ,φ)− Φp(φ,φ).

Let further φ ∈ C∞Sp0M be a Killing p-tensor, for which, as was proved above,
∆S φ = 0, then the inequality (5.6) can be rewritten as

(5.7) ∥φ ∥∆ ∥φ ∥ ≥ −Φp(φ,φ).

For (M, g) of nonpositive curvature, from (5.7) we find ∆∥φ ∥ ≥ 0, thus, ∥φ ∥ is
a nonnegative subharmonic function for any Killing p-tensor φ ∈ Sp0M . There is a
well-known theorem (see [14, p. 288]): On a complete simply connected Riemannian
manifold (M, g) of nonpositive curvature, any nonnegative subharmonic function f ∈
C2(M) satisfying

∫
M

fq dVg < ∞ for some q ∈ (0,∞), is constant. Setting f = ∥φ ∥,
we find ∥φ ∥ = C for some real constant C, thus, ∇φ = 0. On the other hand, in
this case ∫

M

∥φ ∥q dVg = Cq

∫
M

dVg = Cq Vol(M, g).

Since we assume ∥φ ∥ ∈ Lq(M) for some 0 < q < ∞, then for C ̸= 0 the volume
of (M, g) must be finite. If the volume of (M, g) is infinite, then necessarily φ ≡ 0.
The following has been proven.

Theorem 5.5. If a simply connected complete (M, g) has nonpositive sectional cur-
vature, then the symmetric Killing p-tensor (p ≥ 2) φ ∈ Sp0M such that

(5.8)

∫
M

∥φ ∥q dVg < ∞

for some q ∈ (0,∞) is parallel; and if (M, g) has infinite volume, then φ ≡ 0.

A Riemannian manifold (M, g) with δ∗Ric = 0 was popular [3, pp. 450-451]. In this
case, ∆S Ric = 0, thus, by Theorem 5.5, Ric = 0 (for a compact M , see [3, p. 451]).

Let M = G/H be a Riemannian symmetric space of noncompact type with a
G-invariant metric g. Then (M, g) is a complete Riemannian manifold of nonpositive
sectional curvature and negative definite Ricci tensor, thus, it is irreducible (see [12,
pp. 226, 236]). Therefore, it is true the following

Corollary 5.6. On a Riemannian symmetric space (M, g) of noncompact type, each
symmetric Killing p-tensor (p ≥ 2) φ ∈ Sp0M such that (5.8) holds for some q ∈
(0,∞), is parallel. Moreover, if p = 2, then φ ≡ 0.



On kernels of second-order elliptic operators 149

6 Global Riemannian geometry of rank p ≥ 2 Codazzi tensors

For a Codazzi p-tensor (p > 3) φ ∈ C∞SpM , from ∇φ ∈ C∞Sp+1M we conclude that
∇(traceg φ) ∈ C∞Sp−2M . From the condition (also defining the Codazzi p-tensor)

(6.1) P2φ = ∇φ− 1

p+ 1
δ∗φ = 0,

it follows that δ φ = −∇ (traceg φ) for any p ≥ 2. Therefore, the following is true.

Proposition 6.1. For any Codazzi p-tensor φ ∈ SpM , where p > 3, on the Rieman-
nian manifold (M, g) the symmetric form traceg φ is a Codazzi (p − 2)-tensor. For
p ≥ 2, each traceless Codazzi p-tensor φ has zero divergence.

Based on (6.1) for the divergence-free Codazzi tensor φ ∈ SpM , we obtain

∆̄φ =
1

p+ 1
P ∗
1 P1 φ =

1

p+ 1
∆S φ.

Thus, it follows from the Weitzenböck expansion (5.3) that

(6.2) ∆̄φ = − 1

p+ 1
ℜ(φ).

Therefore, we can formulate the following

Proposition 6.2. Any divergence-free Codazzi p-tensor φ on a Riemannian manifold
(M, g) belongs to the kernel of the Lichnerovich Laplacian ∆L = ∆̄ + 1

p+1 ℜ.

From (6.2) we get the Bochner-Weitzenböck formula

(6.3)
1

2
∆ ∥φ ∥2 =

1

p+ 1
Φp(φ, φ) + ∥∇P1 ∥2.

Using (6.3), we obtain the inequality

(6.4) ∥φ ∥∆ ∥φ ∥ ≥ 1

p+ 1
Φp(φ, φ).

On (M, g) of nonnegative sectional curvature, we have the inequality Φp(φ, φ) ≥ 0 for
any φ ∈ SpM (see [4]). If this assumption is true, then from (6.4) we get ∆ ∥φ ∥ ≥ 0.
As a result, ∥φ ∥ becomes a nonnegative subharmonic function for any divergence-
free Codazzi p-tensor φ ∈ SpM . Due to S.T. Yau (see [16, p. 262] and [28]), on
a complete (M, g) of infinite volume the only nonnegative subharmonic function f
satisfying f ∈ Lq(M) for some 1 < q < ∞, is f ≡ 0. Since a complete noncompact
Riemannian manifold of nonnegative sectional curvature has infinite volume (see [14]),
we get φ ≡ 0. The following theorem is proved.

Theorem 6.3. On a complete noncompact Riemannian manifold (M, g) of nonne-
gative sectional curvature there is no nonzero divergence-free Codazzi tensor φ ∈
SpM (p ≥ 2) such that (5.8) holds for some q > 1.
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Remark 6.1. There are no complete noncompact conformally flat (M, g) of nonneg-
ative sectional curvature and constant scalar curvature such that Ric satisfies (5.8)
for some q > 1, since, in this case, Ric is a Codazzi divergence-free tensor, [3, p. 432].

Let M = G/H be a Riemannian symmetric space of compact type with a G-
invariant metric g. Then (M, g) is compact with nonnegative sectional curvature and
positive definite Ricci tensor, thus, it is irreducible (see [12, p. 256]).

The following theorem generalizes the result from [10].

Corollary 6.4. On a Riemannian symmetric space (M, g) of compact type, any
divergence-free Codazzi p-tensor φ ∈ SpM for p ≥ 2 has a constant length. In partic-
ular, if p = 2, then φ = C g for some real constant C.
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[10] Y. Homma, Bochner-Weitzenböck formulas and curvature actions on Rieman-
nian manifolds, Trans. Amer. Math. Soc., 358:1 (2005), 87–114.

[11] J. Kalina, A. Pierzchalski, P. Walczak, Only one of generalized gradients can be
elliptic, Annales Polonici Mathematici, LXVII:2 (1997), 111–120.

[12] S. Kobayashi, K. Nomizu, Foundations of differential geometry, Vol. II, USA,
Interscience Publishers, 1969.
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[19] I.G. Shandra, S.E. Stepanov, J. Mikeš, On higher-order Codazzi tensors on com-
plete Riemannian manifolds, Ann. Global Anal. Geom., 56:3 (2019), 429–442.

[20] E. Stein, G. Weiss, Generalization of the Cauchy-Riemann equations and repre-
sentations of the rotation group, Amer. J. Math., 90 (1968), 163–196.

[21] S.E. Stepanov, Smol’nikova M.V., Affine differential geometry of Killing tensors,
Russian Math. (Iz. VUZ), 48:11 (2004), 74–78 (2005).

[22] S.E. Stepanov, A class of closed forms and special Maxwell’s equations, Tensor
(N.S.) 58:3 (1997), 233–242.

[23] S.E. Stepanov, A new strong Laplacian on differential forms. Math. Notes 76:3-4
(2004), 420–425.

[24] S.E. Stepanov, V.V. Rodionov, Addition to a work of J.-P. Bourguignon, Differ.
Geom. Mnogoobr. Figur, 28 (1997), 68–72.

[25] S.E. Stepanov, I.I. Tsyganok, Conformal Killing L2-forms on complete Rieman-
nian manifolds with nonpositive curvature operator. J. Math. Anal. Appl., 458:1
(2018), 1–8.

[26] H. Stephani, et el., Exact solutions of Einstein’s field equations, Second Edition,
Cambridge, Cambridge University Press, 2003.

[27] S. Tachibana, On conformal Killing tensor in a Riemannian space, Tohoku Math.
J., 21 (1969), 56–64.

[28] S.T. Yau, Some function-theoretic properties of complete Riemannian manifolds
and their applications to geometry. Indiana Univ. Math. J., 25 (1976), 659–670.

Authors’ addresses:

Vladimir Rovenski
Department of Mathematics, University of Haifa,
Mount Carmel, 31905 Haifa, Israel.
E-mail: vrovenski@univ.haifa.ac.il

Sergey Stepanov and Irina Tsyganok
Department of Mathematics, Finance University,
Leningradsky Prospect, 49-55, 125468 Moscow, Russia.
E-mail: s.e.stepanov@mail.ru , i.i.tsyganok@mail.ru


