On kernels of second-order elliptic operators defined by Stein-Weiss operators acting on covariant tensors

V. Rovenski, S. Stepanov and I. Tsyganok

Abstract. The article is devoted to the study of the global geometry of symmetric and skew-symmetric higher order tensors on complete Riemannian manifolds using second-order elliptic operators, which are constructed on the basis of Stein-Weiss operators.

M.S.C. 2010: 53A20, 58J60.

Key words: Riemannian manifold; elliptic operator; Codazzi tensor; conformal Killing tensor.

1 Introduction

We consider a real vector bundle $E \to M$ on a differentiable C^{∞} -manifold M of dimension $n \geq 2$ with a linear connection $\nabla : C^{\infty}(E) \to C^{\infty}(T^*M \otimes E)$ and a Lie group G, acting in the fibers of the bundles $T^*M \otimes E$ and E. Let $\mathrm{Diff}(E, T^*M \otimes E)$ denote a C^{∞} -module of first order linear differential operators $D: C^{\infty}E \to C^{\infty}(T^*M \otimes E)$ on the space $C^{\infty}(E)$ of smooth sections of E.

E. Stein and G. Weiss introduced in [20] the generalized gradient (in short, G-gradient), as the differential operator $D \in \text{Diff}(E, T^*M \otimes E)$, which is the projection of the covariant derivative ∇s on the pointwise G-irreducible subbundle of the bundle $T^*M \otimes E$ for any section $s \in C^{\infty}(E)$. For example, Maxwell and Dirac equations, are based on these Stein-Weiss gradients (e.g., [20]). Later on, G-gradients were called S-tein-Weiss operators (see [6]). We will also use this terminology.

Let g be a Riemannian metric on M, then on any real vector bundle $E \to M$ there exists a Riemannian metric, which we also denote by g. In this case, any Stein-Weiss differential operator D admits a formal adjoint operator D^* defined using g (see [3, p. 34]). Based on this fact, we are interested in a special class of second order differential operators D^*D , from which many geometric statements can be derived. In [6, 17], they studied ellipticity of second order differential operators D^*D . Our starting point is the following statement: If D is a differential operator of order k with injective symbol, then D^*D is elliptic. We also consider an elliptic differential operator $\Delta_E = \bar{\Delta} + t \Re$ (of the Weitzenböck decomposition form) for a suitable constant t, see [9], acting on $C^{\infty}(E)$, where $\bar{\Delta} = \nabla^*\nabla$ is the rough or Bochner Laplacian,

Balkan Journal of Geometry and Its Applications, Vol.27, No.1, 2022, pp. 138-151.

[©] Balkan Society of Geometers, Geometry Balkan Press 2022.

 ∇^* denotes the formal adjoint of ∇ with respect to g (e.g., [3, p. 53] and [16, p. vii]), and \Re is a smooth symmetric endomorphism of E depending linearly in a known way on the curvature R^{∇} of the connection ∇ on E. An example of a bundle to which the above reasoning applies is the space of differential p-forms, where the role of Δ_E is played by the Hodge-De Rham Laplacian Δ_H . A smooth section $s \in C^{\infty}(E)$ is called Δ_E -harmonic if $\Delta_E s = 0$ (see [16, p. 104]). Below, we consider the relationship between the operators Δ_E and D^*D and give examples of such harmonic sections.

The article has the following structure. In Section 2, we review the properties of Stein-Weiss operators D defined on differential p-forms $(1 \le p \le n - 1)$ and corresponding second order elliptical operators D^*D , and also the geometry of tensors lying in kernels of such operators. In Sections 3 and 4, we extend the results of [21, 22, 25] for symmetric p-tensors $(p \ge 2)$. In Sections 5 and 6, we study the global geometry of traceless symmetric conformal Killing tensors and Codazzi tensors using second-order elliptic operators based on Stein-Weiss operators and the approach of a short article [24], where the question was investigated for tensors of order p = 2.

2 Stein-Weiss operators on differential forms

Let a linear group $GL(n,\mathbb{R})$ act in the fibers of tensor bundles over M. Let $C^{\infty}\Lambda^pM$ denote the space of C^{∞} -sections of the bundle of p-forms on M for $1 \leq p \leq n-1$, and $d: C^{\infty}\Lambda^pM \to C^{\infty}\Lambda^{p+1}M$ the exterior derivative operator (see [3, p. 21]). There is a pointwise $GL(n,\mathbb{R})$ -irreducible decomposition $T^*M \otimes \Lambda^pM = \Lambda^{p+1}M \oplus \ker \Lambda^{p+1}$ for the pointwise algebraic alternation operator $\Lambda^p: T^*M \otimes \Lambda^pM \to \Lambda^{p+1}M$. As a consequence, we have the following pointwise $GL(n,\mathbb{R})$ -irreducible decomposition:

$$(2.1) \nabla \omega = L_1 \, \omega + L_2 \, \omega$$

for any $\omega \in C^{\infty}\Lambda^p M$, where $L_1 = (p+1)^{-1}d$ and $L_2 = \nabla - (p+1)^{-1}d$ (see [21]). Due to [20, 11], these L_1 and L_2 are $\operatorname{GL}(n,\mathbb{R})$ -gradients, or, Stein-Weiss operators, defined on $C^{\infty}\Lambda^p M$. The kernels L_1 and L_2 consist of closed p-forms and Killing p-forms, respectively, and the last ones, for (pseudo-)Riemannian manifolds, are called Killing-Yano tensors (see [26, p. 559]). For a Riemannian manifold (M,g), the decomposition (2.1) is pointwise orthogonal, i.e., $g(L_1\omega, L_2\omega) = 0$ for any $\omega \in C^{\infty}\Lambda^p M$.

Note that $d: C^{\infty}\Lambda^p M \to C^{\infty}\Lambda^{p+1}M$ has a formally adjoint operator $d^*: C^{\infty}\Lambda^{p+1}M \to C^{\infty}\Lambda^p M$ with respect to Riemannian metric on M, called codifferential (see [3, c. 54]). Thus, for L_2 there exists a formally adjoint operator $L_2^* = p(p+1)^{-1}d^*$. Using these operators, we build the second order differential operator

(2.2)
$$L_2^* L_2 = p(p+1)^{-1} (\bar{\Delta} - (p+1)^{-1} d^* d).$$

The main symbol $\sigma(L_2^*L_2)(\xi,\omega_x)$ of the operator (2.2) has the form

(2.3)
$$\sigma(L_2^*L_2)(\xi,\omega_x) = -\frac{p}{p+1} \left(\frac{p}{p+1} \|\xi\|^2 \omega_x + \frac{1}{p+1} \xi \wedge (\iota_\xi \omega_x) \right)$$

according to the following formulas (see [3, p. 461]):

$$\sigma(\nabla)(\xi,\omega_x) = \xi \otimes \omega_x, \quad \sigma(\nabla^*)(\xi,\omega_x) = -\iota_{\xi}\theta_x,$$

$$\sigma(d)(\xi,\omega_x) = \xi \wedge \omega_x, \quad \sigma(d^*)(\xi,\omega_x) = -\iota_{\xi}\omega_x$$

for all $\xi \in R_x^*M \setminus \{0\}$, $\omega_x \in \Lambda^r(T_x^*M)$ and $\theta_x \in T_x^*M \otimes \Lambda^r(T_x^*M)$ at each point $x \in M$. From (2.3) we obtain the following inequality:

$$-g(\sigma(L_2^*L_2)(\xi,\,\omega_x),\,\omega_x) = \frac{p}{(p+1)^2} (p\,g(\xi,\,\xi)\,\omega_x + g(\iota_\xi\,\omega_x,\,\iota_\xi\,\omega_x)) > 0$$

for any nonzero ξ and ω_x . Thus, (2.2) is an elliptic operator (see [3, p. 462]). On a compact manifold M, the kernel of $L_2^*L_2$ consists of Killing-Yano p-tensors (see [23]), because of the inequality $\int_M g(L_2^*L_2\omega,\omega)\,d\,\mathbf{V}_g = \int_M g(L_2\omega,L_2\omega)\,d\,\mathbf{V}_g \geq 0$, where $d\,\mathbf{V}_g$ is the volume form of g; moreover, according to [3, p. 464], as a consequence of ellipticity of $L_2^*L_2:C^\infty\Lambda^pM\to C^\infty\Lambda^pM$ we get the decomposition $C^\infty\Lambda^{p+1}M=\ker L_2^*\oplus \operatorname{Im} L_2$ with respect to the L^2 -global scalar product on (M,g), defined by $\langle\omega,\omega'\rangle=\frac{1}{n!}\int_M g(\omega,\omega')\,d\,\mathbf{V}_g$, where $\omega,\omega'\in C^\infty\Lambda^pM$. As the result, we get

Proposition 2.1. For any $\omega \in C^{\infty}\Lambda^p M$ and its $SL(n,\mathbb{R})$ -gradients $L_1\omega = (p+1)^{-1}d\omega$ and $L_2\omega = \nabla \omega - (p+1)^{-1}d\omega$ on $\Lambda^p M$ the orthogonal decomposition (2.1) holds. If (M,g) is compact, then the orthogonal decomposition $C^{\infty}\Lambda^{p+1}M = \ker L_2^* \oplus \operatorname{Im} L_2$ holds. Moreover, $L_2^*L_2$ in (2.2) is a nonnegative definite elliptic operator, whose kernel is a finite-dimensional vector space over \mathbb{R} consisting of Killing-Yano p-tensors.

Bourguignon [5] studied first order natural differential operators on the spaces of C^{∞} -sections of bundle of $\Lambda^p M$ on (M,g) with the structural group $O(n,\mathbb{R})$ and the Levi-Civita connection ∇ (see the theory in [13]). By definition, if the symbols of these operators are projectors on pointwise $O(n,\mathbb{R})$ -irreducible subbundles of $T^*M\otimes \Lambda^p M$, they are called fundamental. Fundamental differential operators of Bourguignon are Stein-Weiss operators. Bourguignon proved that $T^*M\otimes \Lambda^p M$ is decomposed into three pointwise $O(n,\mathbb{R})$ -irreducible subbundles. Based on this fact, Bourguignon defined fundamental operators d and d^* and indicated the existence of a third fundamental operator. He also noted that apart from the case p=1, the third fundamental operator does not have a simple geometric interpretation. As a consequence, this allows for each $\omega \in C^{\infty}\Lambda^p M$ to obtain an expansion of $\nabla \omega \in C^{\infty}(T^*M\otimes \Lambda^p M)$ in the sum of three pointwise $O(n,\mathbb{R})$ -irreducible components

$$\nabla \omega = G_1 \omega + G_2 \omega + G_3 \omega.$$

Then, all three Stein-Weiss operators were found explicitly in [22]:

(2.5)
$$G_1 = (p+1)^{-1}d, \quad G_2 = (n-p+1)^{-1}g \wedge d^*, \quad G_3 = \nabla - G_1 - G_2,$$

and it was proved in [27] that the kernel of G_3 consists of conformal Killing p-forms. Further, in [23], the operator G_3^* formally conjugated to G_3 on (M, g) was found, the following second order differential operator was constructed and studied:

$$G_3^*G_3 = \frac{p}{p+1} \left(\bar{\Delta} - \frac{1}{p+1} d^*d - \frac{1}{n-p+1} d d^* \right).$$

For n=2p we get $G_3^*G_3=\frac{p}{p+1}\left(\bar{\Delta}-\frac{1}{p+1}\Delta_H\right)$ for the Hodge-de Rham Laplacian $\Delta_H=d^*d+d\,d^*$ (e.g., [16, p. 260]). The Hodge-de Rham Laplacian Δ_H admits the Weitzenböck decomposition (e.g., [3, p. 57]) $\Delta_H=\bar{\Delta}+\Re$, where \Re depends linearly in a known way on the curvature tensor and the Ricci tensor Ric of ∇ . Moreover, for $n=2\,p$ we get the equality $G_3^*G_3=(\frac{p}{p+1})^2(\bar{\Delta}-\frac{1}{p}\Re)$, where $\Delta_L=\bar{\Delta}-p^{-1}\Re$ is the Lichnerovich Laplacian (see [9]). Thus, the following is valid.

Proposition 2.2. Let for each differential p-form $\omega \in C^{\infty}\Lambda^{p}M$ the expansion of its covariant derivative $\nabla \omega \in C^{\infty}(T^{*}M \otimes \Lambda^{p}M)$ in the sum (2.4) of pointwise $O(n, \mathbb{R})$ -irreducible components with Stein-Weiss operators (2.5) hold. Then for n=2p the operator $p^{-2}(p+1)^{2}G_{3}^{*}G_{3}$ is the Lichnerovich Laplacian.

The Bochner-Weitzenböck formula (e.g., [16, p. 106]), can be rewritten as

$$\frac{1}{2}\Delta \|\omega\|^2 = -g(\Delta_H \omega, \omega) - g(\Re(\omega), \omega) + \|G_1\omega\|^2 + \|G_2\omega\|^2 + \|G_3\omega\|^2.$$

The operator $G_3^*G_3$ is elliptic for $2 \le p \le n-1$ (see [18, 10], where it lacks the normalizing factor $p(p+1)^{-1}$ calculated in [23]): on a compact (M,g) the kernel of $G_3^*G_3$ is formed by conformal Killing p-forms.

3 The Stein-Weiss operator on symmetric tensors

Let $C^{\infty}S^pM$ be the space of C^{∞} -sections of the bundle S^pM of symmetric p-tensors on M. Consider T_xM at any point $x \in M$ as an n-dimensional vector space Vwith the structure group $GL(n,\mathbb{R})$. Let S^pV denote the p-th symmetric power of the space V^* dual to V. The fiber of $T^*M \otimes S^pM$ is the tensor space $V^* \otimes S^pV$, which will be regarded as the representation space of $GL(n,\mathbb{R})$. Define an endomorphism $S^{p+1}: V^* \otimes S^pV \to S^{p+1}V \subset V^* \otimes S^pV$, called the Young symmetrizer, see [1], by

$$(S^{p+1}(\phi))_{i_0 i_1 \dots i_{p-1} i_p} := \phi_{(i_0 i_1 \dots i_{p-1} i_p)}$$

$$= \frac{1}{p+1} \left(\phi_{i_0 i_1 \dots i_{p-1} i_p} + \phi_{i_1 \dots i_{p-1} i_p i_0} + \dots + \phi_{i_p i_0 i_1 \dots i_p i_{p-1}} \right)$$

for components $\phi_{i_0 \ i_1 \dots i_{p-1} \ i_p} = \phi(e_{i_0}, e_{i_1}, \dots, e_{i_p})$ of any $\phi \in V^* \otimes S^p V$ in any basis e_1, \dots, e_n of V. The endomorphism S^{p+1} is $\operatorname{GL}(n, \mathbb{R})$ -invariant and $S^{p+1}(S^{p+1}(\varphi)) = S^{p+1}(\varphi)$, i.e., S^{p+1} is an idempotent in $V^* \otimes S^p V$. Thus, the $\operatorname{GL}(n, \mathbb{R})$ -invariant decomposition of $V^* \otimes S^p V$ into a direct sum $V^* \otimes S^p V = \operatorname{Im} S^{p+1} \oplus \ker S^{p+1}$ of two subspaces $V^* \otimes S^p V$ holds, where $\operatorname{Im} S^{p+1} = S^{p+1} V$, and $\ker S^{p+1} := \operatorname{Im}(\operatorname{id} - S^{p+1})$ consists of tensors of the form $\phi - S^{p+1}(\phi)$.

Lemma 3.1. Let $GL(n, \mathbb{R})$ act on fibers of tensor bundles on M. Then the following pointwise $GL(n, \mathbb{R})$ -irreducible decomposition holds:

$$(3.1) T^*M \otimes S^pM = S^{p+1}M \oplus \ker S^{p+1}.$$

Proof. The first component of the expansion $S^{p+1}V$ for $V=T_xM$ and any point $x\in M$ is irreducible $\mathrm{GL}(n,\mathbb{R})$ – a module. To find $\mathrm{GL}(n,\mathbb{R})$ -irreducible subspaces in $S^{p+1}V$, we need a list of all correctly filled (n,p+1)-Young schemes, which in this case contains only one simple scheme $1 \ 2 \ \ldots \ p \ p+1$.

Thus, there are no other $GL(n, \mathbb{R})$ -irreducible subspaces in $S^{p+1}V$ other than $S^{p+1}V$. To determine what weights with respect to the maximal tori (diagonal matrices) have elements of ker S^{p+1} , we decompose $V^* \otimes S^p V$ into weighted spaces, where the weight vectors are tensors of the form

$$\bar{\varphi}_{k,i_1,\dots,i_l}^{(l,j_1,\dots,j_l)} = \left\{ \begin{array}{ll} 1, & \text{if } l=k \text{ and } i_1,\dots,i_l \text{ is a permutation of } j_1,\dots,j_l, \\ & 0, & \text{otherwise.} \end{array} \right.$$

The above tensor has weight $\operatorname{diag}(t_1,\ldots,t_n)\mapsto t_kt_{i_1}\ldots t_{i_p}$. Then the maximum weight with respect to the order of domination $\lambda\geq\mu\Leftrightarrow\forall m:\sum_{i=1}^m\lambda_i\geq\sum_{i=1}^m\mu_i$ has tensor $\phi^{(2,1,\ldots,1)}\neq 0$, since $\phi^{(1,1,\ldots,1)}=0$. The weight of this nonzero vector is $(p,1,0,\ldots,0)$. It follows that $\ker S^{p+1}\cong V((p,1,0,\ldots,0))$. Since the module $S^{p+1}V$ is $\operatorname{GL}(n,\mathbb{R})$ -irreducible, the decomposition (3.1) is also $\operatorname{GL}(n,\mathbb{R})$ -irreducible. Based on the above, we conclude that there are only two Stein-Weiss differential operators defined on the space of sections $C^\infty S^pM$ of S^pM . We define the first-order linear differential operator $\delta^*: C^\infty S^pM \to C^\infty S^{p+1}M$ by means of the equality $\delta^*\varphi=(p+1)\,S^{p+1}(\nabla\varphi)$. It has the following form in local coordinates x^1,\ldots,x^n :

$$(\delta^*\varphi)_{k\,i_1...i_{p-1}\,i_p} := \nabla_k\,\varphi_{\,i_1...i_{p-1}\,i_p} + \ldots + \nabla_{i_p}\,\varphi_{\,i_1...i_{p-1}\,k}$$

where $\nabla_k = \nabla_{\partial/\partial x^k}$, and $\varphi \in C^{\infty}S^pM$. The value on $\xi \in C^{\infty}T_x^*M$ of the symbol $\sigma(\delta^*)$ of the operator δ^* is a homomorphism

$$\sigma(\delta^*)(\xi,x): \varphi_x \in S^p(T_xM) \to (p+1)\,\xi \odot \varphi_x \in S^{p+q}(T_xM),$$

according to the law of symmetric multiplication $\varphi_x \odot \varphi_x' = S^{p+q}(\varphi_x \otimes \varphi_x')$ for the pointwise defined symmetric multiplication $S^{p+q}: S^p(T_xM) \otimes S^q(T_xM) \to S^{p+q}(T_xM)$ and any tensors $\varphi \in C^{\infty}S^pM$ and $\varphi' \in C^{\infty}S^qM$. Therefore, $P_1 = (p+1)^{-1}\delta^*$ is the first Stein-Weiss operator defined as symmetrization of the covariant derivative. \square

Consider further an operator of the form $P_2 = \nabla - (p+1)^{-1}\delta^*$. The value of its symbol $\sigma(P_2)$ on any 1-form $\xi \in C^{\infty}T^*M$ is the homomorphism

$$\sigma(P_2)(\xi, x) : \varphi_x \in S^p(T_x M) \to (\xi \otimes \varphi_x - (p+1) \xi \odot \varphi_x) \in \ker S^{p+1}(T_x M)$$

defined at any point $x \in M$. Thus, the second operator will be P_2 .

Since for any $\varphi \in C^{\infty}S^pM$ there is a pointwise $GL(n,\mathbb{R})$ -irreducible decomposition

$$(3.2) \nabla \varphi = P_1 \varphi + P_2 \varphi,$$

then due to Stein-Weiss approach in [20], the above P_1 and P_2 are Stein-Weiss operators on the space of symmetric p-tensors, because $P_1\varphi$ and $P_2\varphi$ are pointwise $\mathrm{GL}(n,\mathbb{R})$ -irreducible components of the decomposition of $\nabla \varphi$. Thus, we get

Proposition 3.2. Let M be a smooth n-dimensional $(n \ge 2)$ manifold with a linear connection ∇ without torsion. Then there are two Stein-Weiss differential operators $P_1 = \frac{1}{p+1}\delta^*$ and $P_2 = \nabla - \frac{1}{p+1}\delta^*$ on the space of sections $C^{\infty}S^pM$.

The kernel of P_1 consists of symmetric Killing p-tensors, that is, tensor fields $\varphi \in C^{\infty}S^pM$ such that $S^{p+1}(\nabla \varphi) = 0$. The kernel of P_2 consists of Codazzi p-tensors $\varphi \in C^{\infty}S^pM$, for which $\nabla \varphi \in C^{\infty}S^{p+1}M$. According to [3, p. 35], the operator $\delta^*: C^{\infty}S^pM \to C^{\infty}S^{p+1}M$ has the formally adjoint operator $\delta: C^{\infty}S^{p+1}M \to C^{\infty}S^pM$, called divergence and defined by the equality $\delta \varphi = -\text{trace}_g \nabla \varphi$. Here, the traceg is given by the formula $(\text{trace}_g \varphi)(a_3, \ldots, a_p) = \sum_{i=1}^n \varphi(e_i, e_i, a_3, \ldots, a_p)$ for any vectors a_3, \ldots, a_p and orthonormal basis $\{e_1, \ldots, e_n\}$ of T_xM at any point $x \in M$. Therefore, the formally adjoint to P_1 operator has the form $P_1^* = (p+1)^{-1}\delta$. Let us construct a second-order differential operator $P_1^*P_1 = (p+1)^{-2}\delta \delta^*$. The operator $P_1^*P_1: C^{\infty}S^pM \to C^{\infty}S^pM$ is elliptic, since its principal symbol satisfies

$$-g(\sigma(P_1^*P_1)(\xi, x)\varphi_x, \varphi_x) = g(\xi, \xi)g(\varphi_x, \varphi_x) - (p+1)g(\xi \odot \varphi_x(\xi, \cdot), \varphi_x)$$

$$= g(\xi, \xi) \cdot g(\varphi_x, \varphi_x) + p \cdot g(i_{\xi}\varphi_x, i_{\xi}\varphi_x) > 0$$
(3.3)

for any $\xi \in T_x^*M \setminus \{0\}$ and nonzero φ_x at any point $x \in M$. Thus, on a compact (M,g) the kernel of $P_1^*P_1$ is a finite-dimensional vector space over \mathbb{R} . A local estimate for the dimension of this space was found in [2]:

$$\dim_{\mathbb{R}} \ker P_1^* P_1 \le C_p^{n+p} C_p^{n+p-1} - C_{p+1}^{n+p} C_{p-1}^{n+p-1},$$

where the equality is attained on the Euclidean sphere. Since $\int_M g(P_1^*P_1\varphi,\varphi)\,d\,\mathbf{V}_g=\int_M g(P_1\varphi,P_1\varphi)\,d\,\mathbf{V}_g\geq 0$, the kernel of $P_1^*P_1$ consists of symmetric Killing tensors $\varphi\in C^\infty\mathrm{S}^pM$. By [3, p. 464], the following orthogonal decomposition is valid:

$$(3.4) C^{\infty} S^{p+1} M = \ker P_1^* \oplus \operatorname{Im} P_1$$

for the L^2 -global scalar product on a compact (M, g). Summing up, we formulate

Proposition 3.3. For any tensor field $\varphi \in C^{\infty}S^pM$ there is a pointwise orthogonal decomposition (3.2), where $P_1 = \frac{1}{p+1}\delta^*$ and $P_2 = \nabla - \frac{1}{p+1}\delta^*$. On a compact manifold (M,g), the second-order differential operator $P_1^*P_1 = (p+1)^{-2}\delta\delta^*$ is a nonnegative elliptic operator, whose kernel is a finite-dimensional vector space of symmetric Killing p-tensors. Moreover, the orthogonal decomposition (3.4) is valid.

If (M,g) is a compact Riemannian manifold of nonpositive sectional curvature, then $\ker P_1^*P_1$ consists of parallel symmetric p-tensors, that is, tensors φ obeying the condition $\nabla \varphi = 0$ (see [7]). If, in addition, M is connected and there is a point at which all sectional curvatures are negative, then $\ker P_1^*P_1$ consists of symmetric p-tensors of the form $C \cdot g^k$ for some real constant C (see also [7]).

4 The Stein-Weiss operators on traceless symmetric tensors

Bourguignon studied first order natural differential operators on the spaces of C^{∞} sections of the bundle S_0^2M of symmetric traceless 2-tensors on (M,g), e.g., [6].
The symbols of such operators are projectors onto pointwise $O(n,\mathbb{R})$ -irreducible subbundles of $T^*M \otimes S_0^2M$. The following decomposition is valid:

$$T^*M \otimes S_0^2 M = \operatorname{Pr}_{S_0^3 M}(T^*M \otimes S_0^2 M) \oplus \operatorname{Pr}_{T^*M}(T^*M \otimes S_0^2 M) \oplus \\ \oplus \operatorname{Pr}_{\ker S^3 \bigcap \ker \operatorname{trace}_q}(T^*M \otimes S_0^2 M).$$

As a consequence, we have the pointwise $O(n, \mathbb{R})$ -irreducible decomposition

$$(4.1) \qquad \nabla \varphi = D_1 \, \varphi + D_2 \, \varphi + D_3 \, \varphi$$

for any traceless symmetric 2-form, or, the field of 2-tensors $\varphi \in C^{\infty}S_0^2M$. Based on this fact, Bourguignon defined all three operators D_1 , D_2 and D_3 and proved that the kernel of the operator D_1 consists of the divergence-free 2-tensors $\varphi \in C^{\infty}S_0^2M$. He argued that the kernels of D_2 and D_3 do not have a simple geometric interpretation. In [25], these arguments were applied to a pseudo-Riemannian manifold (M, g), all three Stein-Weiss operators were redefined on C^{∞} -sections of S_0^2M , and a geometric interpretation of traceless symmetric 2-tensors lying in the kernel of each of them was given. It was proved that the kernel of D_1 consists of (traceless) symmetric conformal Killing 2-tensors (see [26, p. 559]), and the kernel of D_2 consists of traceless conformal

Codazzi 2-tensors defined in [24]. The main difference of these tensors from well-known Codazzi 2-tensors (e.g., [3, pp. 434; 436–440]) is their conformal invariance.

Consider a bundle $S_0^p M$ $(p \ge 2)$ of traceless symmetric *p*-tensors on M. For each $\varphi \in S_0^p M$, the equality trace $\varphi = 0$ is valid.

Lemma 4.1. Let (M,g) be a Riemannian manifold of dimension $n \geq 2$. Then the following pointwise $O(n,\mathbb{R})$ -irreducible decomposition is valid:

$$T^*M \otimes S_0^p M = \operatorname{Pr}_{S_0^{p+1}M}(T^*M \otimes S_0^p M) \oplus \operatorname{Pr}_{S_0^{p-1}V}(T^*M \otimes S_0^p M) \oplus$$
$$\oplus \operatorname{Pr}_{\ker S^{p+1} \bigcap \ker \operatorname{trace}_q}(T^*M \otimes S_0^p M).$$

Proof. The fiber of $T_x^*M \otimes \mathrm{S}_0^p(T_x^*M)$ at any point $x \in M$ is an n-dimensional (n > 1) cotangent vector space T_x^*M . We will consider this tensor space as the space of representations $V^* \otimes \mathrm{S}_0^p V$ of $\mathrm{O}(n,\mathbb{R})$. There are three orthogonal subspaces $\ker S^{p+1} \cap \ker \operatorname{trace}_g, \mathrm{S}_0^{p+1} V$ and $\mathrm{S}_0^{p-1} V$ of $V^* \otimes \mathrm{S}_0^p V$ such that (see [1])

$$V^* \otimes \mathcal{S}_0^p V = \operatorname{Pr}_{\mathcal{S}_0^{p+1} V} (V^* \otimes \mathcal{S}_0^p V) \oplus \operatorname{Pr}_{\mathcal{S}_0^{p-1} V} (V^* \otimes \mathcal{S}_0^p V) \oplus \\ \oplus \operatorname{Pr}_{\ker S^{p+1} \bigcap \ker \operatorname{trace}_q} (V^* \otimes \mathcal{S}_0^p V).$$

The irreducibility of the components of the decomposition of $V^* \otimes S_0^p V$ under the action of $O(n, \mathbb{R})$ follows from Theorem by G. Weyl on quadratic $O(n, \mathbb{R})$ -invariant forms (see [6, pp. 313–314]). There are three such independent invariant quadratic forms, which are specified using components $\phi_{i_0 i_1 \dots i_p} = \phi(e_{i_0}, e_{i_1}, \dots, e_{i_p})$ of $\phi \in V^* \otimes S_0^p V$ in the orthonormal basis e_1, \dots, e_n of V, and have the form

$$\begin{split} &\Psi_1(\phi) &=& \sum\nolimits_{i_0,i_1,...,i_p=1}^n (\phi_{i_0i_1...i_p})^2, \quad \Psi_2(\phi) = \sum\nolimits_{i,i_2,...,i_p=1}^n (\phi_{ii\,i_2...i_p})^2, \\ &\Psi_3(\phi) &=& \sum\nolimits_{i_0,i_1,i_2,...,i_p=1}^n \phi_{i_0i_1i_2...i_p}\phi_{i_1i_0i_2...i_p}. \end{split}$$

They represent all possible traces of the $\phi \otimes \phi$ -form. Since there are three such forms, the decomposition $V^* \otimes S_0^p V$, which also has three tensor components, is $O(n, \mathbb{R})$ -irreducible according to result of H. Weil (see [6, pp. 313–314]).

Let $\operatorname{Diff}(S_0^pM,\ T^*M\otimes S_0^pM)$ denote the $C^\infty M$ -module of first-order linear differential operators $D:C^\infty S_0^pM\to C^\infty(T^*M\otimes S_0^pM)$ on the space of smooth sections $C^\infty S_0^pM$ of the bundle S_0^pM . Due to the pointwise orthogonal decomposition of the bundle $T^*M\otimes S_0^pM$ from [1], we get the pointwise $O(n,\mathbb{R})$ -irreducible decomposition (4.1) of the covariant derivative of any tensor field $\varphi\in C^\infty S_0^pM$. Then certain D_1,D_2 and D_3 are Stein-Weiss operators on $C^\infty S_0^pM$. The Stein-Weiss operator D_1 , whose symbol is the projector onto the pointwise irreducible component S_0^pM , is

(4.2)
$$D_1 \varphi = \frac{1}{p+1} \left(\delta^* \varphi + \frac{p(p+1)}{n+2(p-1)} g \odot \delta \varphi \right)$$

for any $\varphi \in C^{\infty}S_0^pM$ and an algebraic operator $g\odot: S^{p-1}M \to S^{p+1}M$ defined pointwise by $g\odot:=(2p-1)S^{p+1}(g\otimes)$ (see [1]). In local coordinates x^1,\ldots,x^n on (M,g), the expression (4.2) appears as

$$(4.3) (D_1\varphi)_{i_0i_1i_2...i_p} = \frac{1}{p+1} \Big(\delta^*\varphi_{i_0i_1i_2...i_p} + \frac{p(p+1)}{n+2(p-1)} g_{(i_0i_1}\delta\varphi_{i_2...i_p)} \Big).$$

Using the identity $g_{(i_0i_1} \delta \varphi_{i_2...i_p)} = g_{(i_0(i_1} \delta \varphi_{i_2...i_p))}$ for the pointwise symmetrization operator $S^{p+1} \left(g \otimes \delta \varphi\right)_{i_0i_1...i_p} = g_{(i_0i_1} \delta \varphi_{i_2...i_p)}$, we rewrite (4.3) in the form

$$(D_{1}\varphi)_{i_{0}i_{1}i_{2}...i_{p}} = \frac{1}{p+1} \left(\delta^{*}\varphi_{i_{0}i_{1}i_{2}i_{3}...i_{p-1}i_{p}} + \frac{1}{n+2(p-1)} \left(g_{i_{0}i_{1}}\delta\varphi_{i_{2}i_{3}...i_{p-1}i_{p}} + g_{i_{0}i_{2}}\delta\varphi_{i_{3}...i_{p-1}i_{p}i_{1}} + ... + g_{i_{0}i_{p-1}}\delta\varphi_{i_{p}i_{1}i_{2}...i_{p-2}} + g_{i_{0}i_{p}}\delta\varphi_{i_{1}i_{2}i_{3}...i_{p-1}} + g_{i_{1}i_{2}}\delta\varphi_{i_{3}i_{4}...i_{p-1}i_{p}i_{0}} + g_{i_{1}i_{3}}\delta\varphi_{i_{4}...i_{p-1}i_{p}i_{0}i_{2}} + ... + g_{i_{1}i_{p}}\delta\varphi_{i_{0}i_{2}i_{3}...i_{p-1}} + g_{i_{1}i_{0}}\delta\varphi_{i_{2}i_{3}i_{4}...i_{p-1}i_{p}} + g_{i_{2}i_{3}}\delta\varphi_{i_{4}i_{5}...i_{p}i_{0}i_{1}} + g_{i_{2}i_{4}}\delta\varphi_{i_{5}...i_{p}i_{0}i_{1}i_{3}} + ... + g_{i_{2}i_{0}}\delta\varphi_{i_{1}i_{3}i_{4}...i_{p}} + g_{i_{2}i_{1}}\delta\varphi_{i_{3}i_{4}...i_{p}i_{0}} + ... + g_{i_{p}i_{0}}\delta\varphi_{i_{1}i_{2}i_{3}...i_{p-1}}$$

$$(4.4) + g_{i_{p}i_{1}}\delta\varphi_{i_{2}i_{3}...i_{p-1}i_{0}} + ... + g_{i_{p}i_{p-2}}\delta\varphi_{i_{p-1}i_{0}i_{1}i_{3}...i_{p-3}} + g_{i_{p}i_{p-1}}\delta\varphi_{i_{0}i_{1}i_{2}i_{3}...i_{p-2}} \right) \right).$$

Based on (4.4), we get $D_1\varphi \in C^{\infty}S_0^{p+1}M$. We call $\varphi \in C^{\infty}S_0^pM$ a symmetric conformal Killing p-tensor, if $D_1\varphi = 0$, which coincides with the notion of a conformal Killing p-tensor, e.g., [7, 8]. For p = 1 condition $D_1\varphi = 0$ takes the form of well-known equations of a conformal Killing vector (see [26, pp. 559]). Formally conjugate to (4.2) operator $D_1^* : C^{\infty}S_0^{p+1}M \to C^{\infty}S_0^pM$ is given for any $\bar{\varphi} \in C^{\infty}S_0^{p+1}M$ by

$$(4.5) D_1^*\bar{\varphi} = \frac{1}{p+1} \left(\delta \,\bar{\varphi} + \frac{p(p+1)}{n+2(p-1)} \,(g\odot\delta)^*\bar{\varphi} \right) = \frac{1}{p+1} \,\delta \,\bar{\varphi},$$

because $(g \otimes)^* = \operatorname{trace}_g$. Therefore, $(g \odot \delta)^* \bar{\varphi} = (2p-1)\delta^*(\operatorname{trace}_g \bar{\varphi}) = 0$ for any traceless tensor $\bar{\varphi} \in C^{\infty} S_0^{p+1} M$. Based on the operators D_1 and D_1^* , we define a second-order differential operator of the form $D_1^* D_1 : C^{\infty} S_0^p M \to C^{\infty} S_0^p M$, which according to (4.4) and (4.5) is given by the following equality:

$$(4.6) \quad D_1^* D_1 \varphi = \frac{1}{(p+1)^2} \left(\delta \, \delta^* \varphi + \frac{1}{n+2(p-1)} \, \left(-2 \, \delta^* \delta \, \varphi + p(p-1) \, g \odot \delta \, \delta \, \varphi \right) \right).$$

For the Sampson Laplacian operator $\Delta_S = \delta \delta^* - \delta^* \delta$, (4.6) can be rewritten as

$$(4.7) \ D_1^*D_1\varphi = \frac{1}{(p+1)^2(n+2(p-1))} \left(2\Delta_S \varphi + (n+2(p-2))\delta \delta^*\varphi + p(p-1) g \odot \delta \delta \varphi\right).$$

Let us prove the ellipticity of the operator $D_1^*D_1$. First, note that at each point $x \in M$ for any $\varphi \in C^\infty S_0^p M$ and $\xi \in T_x^*M \setminus \{0\}$ the equality $g(\sigma(g \odot \delta \delta)(\xi, x)\varphi_x, \varphi_x) = 0$ holds, which is a consequence of the tracelessness of the tensor field φ . Second, for any nonzero $\varphi \in C^\infty S_0^p M$ the inequality $-g(\sigma(\Delta_S)(\xi,\varphi_x),\varphi_x) = g(\xi,\xi)g(\varphi_x\varphi_x) > 0$ holds (see [15]). By (3.3), $-g(\sigma(\delta \delta^*)(\xi,\varphi_x),\varphi_x) > 0$ holds. Thus, the inequality $-g(\sigma(\delta \delta^*)(\xi,\varphi_x),\varphi_x) > 0$ takes place; hence, $D_1^*D_1$ is elliptic. Then its kernel on a compact (M,g) is finite-dimensional. Moreover, $\int_M g(D_1^*D_1\varphi,\varphi) dV_g = \int_M g(D_1\varphi,D_1\varphi) dV_g \geq 0$, thus, this vector space consists of symmetric conformal Killing p-tensors $\varphi \in C^\infty S_0^p M$. The following orthogonal decomposition takes place:

$$(4.8) C^{\infty} S^{p+1} M = \ker D_1^* \oplus \operatorname{Im} D_1$$

for the L^2 -global scalar product on the compact (M,q). Summing up, we formulate

Proposition 4.2. The pointwise $O(n,\mathbb{R})$ -irreducible decomposition (4.1) of the covariant derivative of any tensor field $\varphi \in C^{\infty}S_0^pM$ holds. On a compact (M,g), a second-order differential operator $D_1^*D_1$ for the Stein-Weiss operator

$$D_1 \varphi = (p+1)^{-1} \left(\delta^* \varphi + (n+2(p-1))^{-1} (g \odot \delta \varphi) \right),$$

and its formally conjugate D_1^* , is a nonnegative elliptic operator, whose kernel is a finite-dimensional vector space over \mathbb{R} and consists of symmetric conformal Killing p-tensors. Moreover, the orthogonal decomposition (4.8) is valid.

The second Stein-Weiss differential operator D_2 , whose symbol is the projector onto the second pointwise irreducible component of the decomposition $TM^* \otimes S_0^p M$ is

$$(D_2 \varphi)_{i_0 i_1 i_2 \dots i_{p-2} i_{p-1} i_p} = -p(n+p-1)^{-1} g_{i_0 (i_1} \delta \varphi_{i_2 \dots i_p)}$$

(see [1]), and its kernel consists of traceless divergence-free p-tensors.

The third Stein-Weiss differential operator D_3 , whose symbol is the projector onto the third pointwise irreducible component of the decomposition $TM^* \otimes S_0^p M$, is

$$(D_3 \varphi)_{i_0 i_1 i_2 \dots i_{p-2} i_{p-1} i_p} = \nabla_{i_0} \varphi_{i_1 i_2 \dots i_p} + \frac{p}{n+p-1} g_{i_0 (i_1} \delta \varphi_{i_2 \dots i_p)}$$
$$-\frac{1}{p+1} \left(\delta^* \varphi_{i_0 i_1 i_2 \dots i_p} + \frac{p(p+1)}{n+2(p-1)} g_{(i_0 i_1} \delta \varphi_{i_2 \dots i_p)} \right)$$

for any $\varphi \in C^{\infty}S_0^pM$ (see [1]). For any $\varphi \in \ker D_3$, the following equations hold:

$$(4.9) \quad \nabla_{i_0} \varphi_{i_1 i_2 \dots i_p} - \nabla_{i_1} \varphi_{i_0 i_2 \dots i_p} = \frac{p}{n+p-1} \left(g_{i_0 (i_1)} \delta \varphi_{i_2 \dots i_p)} - g_{i_1 (i_0)} \delta \varphi_{i_2 \dots i_p)} \right).$$

5 Global Riemannian geometry of conformal Killing tensors

The kernel of D_1 consists of p-tensors $\varphi \in C^{\infty}S_0^pM$ for $p \geq 2$ that satisfy

(5.1)
$$\delta^* \varphi = -\frac{p(p+1)}{n-2(p-1)} g \odot \delta \varphi.$$

Each such p-tensor is a symmetric conformal Killing p-tensor (e.g., [7, 8]). Note that the requirement of tracelessness is included here in the definition of the conformal Killing p-tensor $(p \geq 2)$ as well as in [26, p. 559] for the case p = 2. The condition $\varphi \in \ker D_1 \cap \ker \delta$ defines a symmetric Killing p-tensor $\varphi \in C^{\infty}S_0^pM$, because (5.1) implies that $\delta^*\varphi = 0$. Taking into account (4.7), we find

(5.2)
$$g(\Delta_S \varphi, \varphi) = -2^{-1}(n + 2(p-2)) g(\delta \delta^* \varphi, \varphi)$$

for Sampson Laplacian $\Delta_S = \delta \delta^* - \delta^* \delta$ and conformal Killing tensors $\varphi \in C^{\infty}S_0^p M$. From (5.2) we conclude that the symmetric divergence-free (traceless) conformal Killing tensor, or, equivalently, the symmetric traceless p-Killing tensor belongs to the kernel of Δ_S . For a compact manifold (M, g), it follows from (5.2) that

$$\int_{M} g(\Delta_{S} \varphi, \varphi) dV_{g} = -2^{-1} (n + 2(p - 2)) \int_{M} g(\delta \varphi, \delta \varphi) dV_{g}.$$

Thus, any traceless conformal Killing p-tensor belonging to the kernel of the Sampson Laplacian is divergence-free, thus it is a Killing p-tensor. We get the following

Proposition 5.1. On a compact Riemannian manifold, a symmetric (traceless) conformal Killing p-tensor belongs to the kernel of the Sampson Laplacian if and only if it is a traceless p-Killing tensor.

For any Killing p-tensor ($p \geq 2$), direct calculations lead to the following formula: $2 \delta \varphi = \delta^*(\operatorname{trace}_g \varphi)$. Thus, on a compact Riemannian manifold of negative Ricci curvature, every symmetric Killing tensor of rank 3 is traceless. The Sampson Laplacian $\Delta_S: C^{\infty}S^pM \to C^{\infty}S^pM$ admits the Weitzenböck decomposition (see [15])

(5.3)
$$\Delta_S \varphi = \bar{\Delta} \varphi - \Re(\varphi).$$

The formula (5.3) indicates that Δ_S is a particular form of Lichnerovich's Laplacian (see [3, p. 79] and [9]). Here, \Re is linearly expressed in terms of the Riemannian curvature tensor and the Ricci tensor of the Levi-Civita connection and satisfies $g(\Re(\varphi), \varphi') = g(\Re(\varphi'), \varphi)$ for any $\varphi, \varphi' \in C^{\infty}S^pM$ (see [15]). Thus, $\Phi_p(\varphi_x, \varphi_x) = g(\Re(\varphi_x), \varphi_x)$ is a quadratic form for any $\varphi_x \in S^p(T_x^*M)$ and $x \in M$. Since Δ_S is an elliptic operator, by [3, p. 632], the $L^2(M)$ -orthogonal decomposition $C^{\infty}S^pM = \ker \Delta_S \oplus \operatorname{Im} \Delta_S$ is valid. The symmetric tensor $\varphi \in C^{\infty}S^pM$ such that $\varphi \in \ker \Delta_S$ is called Δ_S -harmonic section (see [16, p. 104]), and the space of such tensors on a compact Riemannian manifold (M, g) is finite-dimensional. The following is valid.

Proposition 5.2. On a compact Riemannian manifold (M,g) the space of Δ_S -harmonic sections is finite-dimensional.

Using Proposition 5.2 and (5.3), we can formulate the following

Corollary 5.3. On a Riemannian manifold (M, g), any divergence-free or, e.g., traceless Killing p-tensor is a Δ_S -harmonic section.

From (5.3) we deduce the Bochner-Weitzenböck formula (e.g., [15] and [16, p. 106])

$$\frac{1}{2} \Delta \|\varphi\|^2 = -g(\Delta_S \varphi, \varphi) - g(\Re(\varphi), \varphi) + \|\nabla \varphi\|^2,$$

where for $\nabla \varphi$ the pointwise $O(n, \mathbb{R})$ -irreducible decomposition (4.1) holds. Thus,

$$(5.4) \quad \frac{1}{2} \Delta \|\varphi\|^{2} = -g(\Delta_{S} \varphi, \varphi) - g(\Re(\varphi), \varphi) + \|D_{1}\varphi\|^{2} + \|D_{2}\varphi\|^{2} + \|D_{3}\varphi\|^{2}.$$

For a symmetric conformal Killing p-tensor, the formula (5.4) takes the form

$$(5.5) \quad \frac{1}{2} \Delta \|\varphi\|^2 = 2^{-1} (n + 2(p - 2)) g(\delta \delta^* \varphi, \varphi) - g(\Re(\varphi), \varphi) + \|D_2 \varphi\|^2 + \|D_3 \varphi\|^2.$$

Suppose that M is compact, then integrating (5.5) we obtain

$$\int_{M} g(\Re(\varphi),\varphi) \, d \operatorname{V}_g = 2^{-1} (n + 2p - 4) \int_{M} \|\delta^*\varphi\|^2 d \operatorname{V}_g + \int_{M} (\|D_2\varphi\|^2 + \|D_3\varphi\|^2) \, d \operatorname{V}_g \geq 0,$$

because $\int_M g(\delta \delta^* \varphi, \varphi) dV_g = \int_M \|\delta^* \varphi\|^2 dV_g \ge 0$. On (M, g) of nonpositive curvature $\Phi_p(\varphi, \varphi) = g(\Re(\varphi), \varphi) \le 0$ holds for any $\varphi \in S_0^p M$ (see [8, 7]). If there is a point at which the sectional curvature is negative, then $\Phi_p(\varphi, \varphi) = g(\Re(\varphi), \varphi) < 0$ for any symmetric p-form $\varphi \in S_0^p M$. Based on the above equality, we get the following

Proposition 5.4. On a compact Riemannian manifold (M,g) of nonpositive sectional curvature sec, each symmetric conformal Killing tensor $\varphi \in C^{\infty}S_0^pM$ is parallel, i.e., $\nabla \varphi = 0$. Moreover, if there is a point at which sec < 0, then on (M,g) there are no nonzero symmetric conformal Killing p-tensors $\varphi \in C^{\infty}S_0^pM$.

One can show $\frac{1}{2}\Delta \|\varphi\|^2 = \|\varphi\|\Delta \|\varphi\| + \|d\|\varphi\|\|^2$, where $\|\nabla\varphi\|^2 \ge \|d\|\varphi\|\|^2$ by *Kato's inequality* (e.g., [16, p. 105]). Thus, the above equality takes the following form:

$$\parallel\varphi\parallel\Delta\parallel\varphi\parallel=\frac{1}{2}\,\Delta\parallel\varphi\parallel^2-\parallel\,d\parallel\varphi\parallel\parallel^2\geq\frac{1}{2}\,\Delta\parallel\varphi\parallel^2-\parallel\nabla\,\varphi\parallel^2,$$

where $\Delta \parallel \varphi \parallel^2$ due to (5.4) satisfies the inequality

$$\frac{1}{2}\Delta \|\varphi\|^2 \ge -g(\Delta_S \varphi, \varphi) - g(\Re(\varphi), \varphi).$$

Summing up, we get the following inequality:

(5.6)
$$\|\varphi\|\Delta\|\varphi\| \ge -g(\Delta_S\varphi,\varphi) - \Phi_p(\varphi,\varphi).$$

Let further $\varphi \in C^{\infty}S_0^p M$ be a Killing *p*-tensor, for which, as was proved above, $\Delta_S \varphi = 0$, then the inequality (5.6) can be rewritten as

(5.7)
$$\|\varphi\|\Delta\|\varphi\| \ge -\Phi_p(\varphi,\varphi).$$

For (M,g) of nonpositive curvature, from (5.7) we find $\Delta \| \varphi \| \geq 0$, thus, $\| \varphi \|$ is a nonnegative subharmonic function for any Killing p-tensor $\varphi \in \mathrm{S}_0^p M$. There is a well-known theorem (see [14, p. 288]): On a complete simply connected Riemannian manifold (M,g) of nonpositive curvature, any nonnegative subharmonic function $f \in C^2(M)$ satisfying $\int_M f^q dV_g < \infty$ for some $q \in (0,\infty)$, is constant. Setting $f = \| \varphi \|$, we find $\| \varphi \| = C$ for some real constant C, thus, $\nabla \varphi = 0$. On the other hand, in this case

$$\int_{M} \|\varphi\|^{q} dV_{g} = C^{q} \int_{M} dV_{g} = C^{q} \operatorname{Vol}(M, g).$$

Since we assume $\|\varphi\| \in L^q(M)$ for some $0 < q < \infty$, then for $C \neq 0$ the volume of (M,g) must be finite. If the volume of (M,g) is infinite, then necessarily $\varphi \equiv 0$. The following has been proven.

Theorem 5.5. If a simply connected complete (M,g) has nonpositive sectional curvature, then the symmetric Killing p-tensor $(p \ge 2)$ $\varphi \in S_0^p M$ such that

$$(5.8) \qquad \int_{M} \|\varphi\|^{q} dV_{g} < \infty$$

for some $q \in (0, \infty)$ is parallel; and if (M, q) has infinite volume, then $\varphi \equiv 0$.

A Riemannian manifold (M, g) with $\delta^* \text{Ric} = 0$ was popular [3, pp. 450-451]. In this case, $\Delta_S \text{Ric} = 0$, thus, by Theorem 5.5, Ric = 0 (for a compact M, see [3, p. 451]).

Let M = G/H be a Riemannian symmetric space of noncompact type with a G-invariant metric g. Then (M,g) is a complete Riemannian manifold of nonpositive sectional curvature and negative definite Ricci tensor, thus, it is irreducible (see [12, pp. 226, 236]). Therefore, it is true the following

Corollary 5.6. On a Riemannian symmetric space (M,g) of noncompact type, each symmetric Killing p-tensor $(p \geq 2)$ $\varphi \in S_0^p M$ such that (5.8) holds for some $q \in (0,\infty)$, is parallel. Moreover, if p=2, then $\varphi \equiv 0$.

6 Global Riemannian geometry of rank $p \ge 2$ Codazzi tensors

For a Codazzi p-tensor (p > 3) $\varphi \in C^{\infty}S^{p}M$, from $\nabla \varphi \in C^{\infty}S^{p+1}M$ we conclude that $\nabla(\operatorname{trace}_{g}\varphi) \in C^{\infty}S^{p-2}M$. From the condition (also defining the Codazzi p-tensor)

(6.1)
$$P_2\varphi = \nabla \varphi - \frac{1}{p+1} \delta^* \varphi = 0,$$

it follows that $\delta \varphi = -\nabla (\operatorname{trace}_q \varphi)$ for any $p \geq 2$. Therefore, the following is true.

Proposition 6.1. For any Codazzi p-tensor $\varphi \in S^pM$, where p > 3, on the Riemannian manifold (M,g) the symmetric form trace_g φ is a Codazzi (p-2)-tensor. For $p \geq 2$, each traceless Codazzi p-tensor φ has zero divergence.

Based on (6.1) for the divergence-free Codazzi tensor $\varphi \in S^p M$, we obtain

$$\bar{\Delta}\,\varphi = \frac{1}{p+1}\,P_1^*P_1\,\varphi = \frac{1}{p+1}\,\Delta_S\,\varphi.$$

Thus, it follows from the Weitzenböck expansion (5.3) that

(6.2)
$$\bar{\Delta}\,\varphi = -\frac{1}{p+1}\,\Re(\varphi).$$

Therefore, we can formulate the following

Proposition 6.2. Any divergence-free Codazzi p-tensor φ on a Riemannian manifold (M,g) belongs to the kernel of the Lichnerovich Laplacian $\Delta_L = \bar{\Delta} + \frac{1}{p+1} \Re$.

From (6.2) we get the Bochner-Weitzenböck formula

(6.3)
$$\frac{1}{2}\Delta \|\varphi\|^2 = \frac{1}{p+1}\Phi_p(\varphi,\varphi) + \|\nabla P_1\|^2.$$

Using (6.3), we obtain the inequality

(6.4)
$$\|\varphi\|\Delta\|\varphi\| \ge \frac{1}{p+1}\Phi_p(\varphi,\varphi).$$

On (M,g) of nonnegative sectional curvature, we have the inequality $\Phi_p(\varphi,\varphi) \geq 0$ for any $\varphi \in S^pM$ (see [4]). If this assumption is true, then from (6.4) we get $\Delta \parallel \varphi \parallel \geq 0$. As a result, $\parallel \varphi \parallel$ becomes a nonnegative subharmonic function for any divergence-free Codazzi p-tensor $\varphi \in S^pM$. Due to S.T. Yau (see [16, p. 262] and [28]), on a complete (M,g) of infinite volume the only nonnegative subharmonic function f satisfying $f \in L^q(M)$ for some $1 < q < \infty$, is $f \equiv 0$. Since a complete noncompact Riemannian manifold of nonnegative sectional curvature has infinite volume (see [14]), we get $\varphi \equiv 0$. The following theorem is proved.

Theorem 6.3. On a complete noncompact Riemannian manifold (M,g) of nonnegative sectional curvature there is no nonzero divergence-free Codazzi tensor $\varphi \in S^pM$ $(p \geq 2)$ such that (5.8) holds for some q > 1.

Remark 6.1. There are no complete noncompact conformally flat (M, g) of nonnegative sectional curvature and constant scalar curvature such that Ric satisfies (5.8) for some q > 1, since, in this case, Ric is a Codazzi divergence-free tensor, [3, p. 432].

Let M = G/H be a Riemannian symmetric space of compact type with a G-invariant metric g. Then (M, g) is compact with nonnegative sectional curvature and positive definite Ricci tensor, thus, it is irreducible (see [12, p. 256]).

The following theorem generalizes the result from [10].

Corollary 6.4. On a Riemannian symmetric space (M, g) of compact type, any divergence-free Codazzi p-tensor $\varphi \in S^pM$ for $p \geq 2$ has a constant length. In particular, if p = 2, then $\varphi = C$ g for some real constant C.

Acknowledgements. The authors thank to Professor N.K. Smolentsev for useful discussions on the proof of the ellipticity of operators.

References

- [1] B. Balcerzak, A. Pierzchalski, Generalized gradients on Lie algebroids, Ann. Glob. Anal. Geom. 44 (2013), 319–337.
- [2] C. Barbance, Sur les tenseurs symétriques, C. R. Acad. Sci. Paris Sér. A-B, 276 (1973), A387-A389.
- [3] A.L. Besse, Einstein manifolds, Springer Verlag, Berlin, 2008.
- [4] R.G. Bettiol, R.A.E. Mendes, Sectional curvature and Weitzenböck formulae, arXiv:1708.09033v3 [math.DG], 25 pp. Indiana Univ. Math. J., to appear.
- [5] J.-P. Bourguignon, Formules de Weitzenböck en dimension 4. Géométrie riemannienne en dimension 4, CEDIC, Paris, (1981), 308–333.
- [6] T. Branson, Stein-Weiss operators and ellipticity, Journal of functional analysis, 151 (1997), 334–383.
- [7] N.S. Dairbekov, V.A. Sharafutdinov, On conformal Killing symmetric tensor fields on Riemannian manifolds, Siberian Adv. Math., 21:1 (2011), 1–41.
- [8] K. Heil, A. Moroianu, U. Semmelmann, Killing and conformal Killing tensors, J. Geom. Phys. 106 (2016), 383–400.
- [9] N. Hitchin, A note on vanishing theorems, Geometry and analysis on manifolds, 373–382, Progr. Math., 308, Springer, Switzerland, 2015.
- [10] Y. Homma, Bochner-Weitzenböck formulas and curvature actions on Riemannian manifolds, Trans. Amer. Math. Soc., 358:1 (2005), 87–114.
- [11] J. Kalina, A. Pierzchalski, P. Walczak, Only one of generalized gradients can be elliptic, Annales Polonici Mathematici, LXVII:2 (1997), 111–120.
- [12] S. Kobayashi, K. Nomizu, Foundations of differential geometry, Vol. II, USA, Interscience Publishers, 1969.
- [13] I. Kolář, P.W. Michor, J. Slovák, Natural operations in differential geometry, Springer-Verlag, Berlin, 1993.
- [14] P. Li, R. Schoen, L^p and mean value properties of subharmonic functions on Riemannian manifolds, Acta Math., 153:1 (1984), 279–301.
- [15] J. Mikeš, V. Rovenski, S.E. Stepanov, An example of Lichnerowicz-type Laplacian, Ann. Glob. Anal. Geom., 58 (2020), 19–34.

- [16] S. Pigola, M. Rigoli, A.G. Setti, Vanishing and Finiteness Results in Geometric Analysis: A Generalization of the Bochner Technique. Progress in Mathematics, Vol. 266; Birkhäuser Verlag AG: Basel, Switzerland, 2008.
- [17] M. Pilca, A new proof of Branson's classification of elliptic generalized gradients, Manuscripta Mathematica, 136 (2011), 65–81.
- [18] U. Semmelmann, Conformal Killing forms on Riemannian manifolds, Math. Z., 245:3 (2003), 503–527.
- [19] I.G. Shandra, S.E. Stepanov, J. Mikeš, On higher-order Codazzi tensors on complete Riemannian manifolds, Ann. Global Anal. Geom., 56:3 (2019), 429–442.
- [20] E. Stein, G. Weiss, Generalization of the Cauchy-Riemann equations and representations of the rotation group, Amer. J. Math., 90 (1968), 163–196.
- [21] S.E. Stepanov, Smol'nikova M.V., Affine differential geometry of Killing tensors, Russian Math. (Iz. VUZ), 48:11 (2004), 74–78 (2005).
- [22] S.E. Stepanov, A class of closed forms and special Maxwell's equations, Tensor (N.S.) 58:3 (1997), 233–242.
- [23] S.E. Stepanov, A new strong Laplacian on differential forms. Math. Notes 76:3-4 (2004), 420–425.
- [24] S.E. Stepanov, V.V. Rodionov, Addition to a work of J.-P. Bourguignon, Differ. Geom. Mnogoobr. Figur, 28 (1997), 68–72.
- [25] S.E. Stepanov, I.I. Tsyganok, Conformal Killing L²-forms on complete Riemannian manifolds with nonpositive curvature operator. J. Math. Anal. Appl., 458:1 (2018), 1–8.
- [26] H. Stephani, et el., Exact solutions of Einstein's field equations, Second Edition, Cambridge, Cambridge University Press, 2003.
- [27] S. Tachibana, On conformal Killing tensor in a Riemannian space, Tohoku Math. J., 21 (1969), 56–64.
- [28] S.T. Yau, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Univ. Math. J., 25 (1976), 659–670.

Authors' addresses:

Vladimir Rovenski

Department of Mathematics, University of Haifa,

Mount Carmel, 31905 Haifa, Israel.

E-mail: vrovenski@univ.haifa.ac.il

Sergey Stepanov and Irina Tsyganok

Department of Mathematics, Finance University,

Leningradsky Prospect, 49-55, 125468 Moscow, Russia.

E-mail: s.e.stepanov@mail.ru , i.i.tsyganok@mail.ru