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1 Introduction

We consider a real vector bundle £ — M on a differentiable C°°-manifold M of
dimension n > 2 with a linear connection V : C*®(E) — C>*(T*M ® E) and a Lie
group G, acting in the fibers of the bundles T*M ® FE and E. Let Diff(E, T*M ®
E) denote a C*°-module of first order linear differential operators D : C*E —
C>(T*M ® E) on the space C*°(FE) of smooth sections of E.

E. Stein and G. Weiss introduced in [20] the generalized gradient (in short, G-
gradient), as the differential operator D € Diff (E, T*M ® E), which is the projection
of the covariant derivative V s on the pointwise G-irreducible subbundle of the bundle
T*M ® E for any section s € C*°(FE). For example, Maxwell and Dirac equations, are
based on these Stein-Weiss gradients (e.g., [20]). Later on, G-gradients were called
Stein- Weiss operators (see [6]). We will also use this terminology.

Let g be a Riemannian metric on M, then on any real vector bundle £ — M
there exists a Riemannian metric, which we also denote by ¢g. In this case, any Stein-
Weiss differential operator D admits a formal adjoint operator D* defined using g
(see [3, p. 34]). Based on this fact, we are interested in a special class of second
order differential operators D* D, from which many geometric statements can be de-
rived. In [6, 17], they studied ellipticity of second order differential operators D*D.
Our starting point is the following statement: If D is a differential operator of order
k with injective symbol, then D*D is elliptic. We also consider an elliptic differential
operator Ap = A+t R (of the Weitzenbock decomposition form) for a suitable con-
stant ¢, see [9], acting on C®(E), where A = V*V is the rough or Bochner Laplacian,
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V* denotes the formal adjoint of V with respect to g (e.g., [3, p. 53] and [16, p. vii]),
and R is a smooth symmetric endomorphism of E depending linearly in a known way
on the curvature RV of the connection V on E. An example of a bundle to which
the above reasoning applies is the space of differential p-forms, where the role of Ag
is played by the Hodge-De Rham Laplacian Agy. A smooth section s € C*(E) is
called Ag-harmonicif Ag s =0 (see [16, p. 104]). Below, we consider the relationship
between the operators Ag and D*D and give examples of such harmonic sections.
The article has the following structure. In Section 2, we review the properties
of Stein-Weiss operators D defined on differential p-forms (1 < p < n — 1) and
corresponding second order elliptical operators D* D, and also the geometry of tensors
lying in kernels of such operators. In Sections 3 and 4, we extend the results of
[21, 22, 25] for symmetric p-tensors (p > 2). In Sections 5 and 6, we study the global
geometry of traceless symmetric conformal Killing tensors and Codazzi tensors using
second-order elliptic operators based on Stein-Weiss operators and the approach of a
short article [24], where the question was investigated for tensors of order p = 2.

2 Stein-Weiss operators on differential forms

Let a linear group GL(n,R) act in the fibers of tensor bundles over M. Let C*°APM
denote the space of C*°-sections of the bundle of p-forms on M for 1 <p <n —1,
and d : C°APM — C°APT1M the exterior derivative operator (see [3, p. 21]). There
is a pointwise GL(n, R)-irreducible decomposition 7% M @ AP M = AP M @ ker APH!
for the pointwise algebraic alternation operator AP : T*M ® APM — APTIM. As a
consequence, we have the following pointwise GL(n, R)-irreducible decomposition:

(2.1) Vw=Liw+ Lyw

for any w € C*°APM, where Ly = (p+1)~'d and Ly = V— (p+1)~1d (see [21]). Due
to [20, 11], these Ly and Lo are GL(n, R)-gradients, or, Stein-Weiss operators, defined
on C°APM. The kernels Ly and L consist of closed p-forms and Killing p-forms,
respectively, and the last ones, for (pseudo-)Riemannian manifolds, are called Killing-
Yano tensors (see [26, p. 559]). For a Riemannian manifold (M, g), the decomposition
(2.1) is pointwise orthogonal, i.e., g(Liw, Low) = 0 for any w € C°APM.

Note that d : C®APM — C®APT'M has a formally adjoint operator d* :
C®APHIM — C°AP M with respect to Riemannian metric on M, called codifferential
(see [3, c. 54]). Thus, for Ly there exists a formally adjoint operator Ly = p(p+1)~1d*.
Using these operators, we build the second order differential operator

(2.2) LiLy=pp+1)"YA - (p+ 1)~ d*d).

The main symbol o(L5Ls)(§,w,) of the operator (2.2) has the form

. - P D 1
(23)  o(3L) (6wa) = T (T NelPwe + g € e

according to the following formulas (see [3, p. 461]):

o(V)(§ we) =E@ws,  o(V)(§ we) = —tebs,
O'(d) (f?ww) = 5 N Wy, a(d*)(f,wx) = —lgWy
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for all £ € REM \ {0}, w, € A"(TFM) and 6, € Ty M @ A"(T M) at each point
x € M. From (2.3) we obtain the following inequality:

_g(U(L§L2)<§7 WI), wa:) = ﬁ(pg(fv 5) Wy +g<L5 Wz, Lg ng)) >0

for any nonzero £ and w,. Thus, (2.2) is an elliptic operator (see [3, p. 462]). On a
compact manifold M, the kernel of L3 Ly consists of Killing-Yano p-tensors (see [23]),
because of the inequality [,, g(LsLow,w)dVy = [,, g(Low, Low)dVy > 0, where
dV, is the volume form of g; moreover, according to [3, p. 464], as a consequence
of ellipticity of L3Lo : C*°APM — C*°APM we get the decomposition C*®°APTLM =
ker L3 @ Im Ly with respect to the L2-global scalar product on (M, g), defined by
(w, W) = % fMg(w,w’) dVg, where w,w’ € C*°APM. As the result, we get

Proposition 2.1. For any w € C®APM and its SL(n,R)-gradients Liw = (p +
1)"'dw and Low = Vw — (p+ 1)~ 'dw on APM the orthogonal decomposition (2.1)
holds. If (M, g) is compact, then the orthogonal decomposition C°APTIM = ker L ®
Im Lo holds. Moreover, L; Lo in (2.2) is a nonnegative definite elliptic operator, whose
kernel is a finite-dimensional vector space over R consisting of Killing-Yano p-tensors.

Bourguignon [5] studied first order natural differential operators on the spaces of
C*-sections of bundle of APM on (M, g) with the structural group O(n,R) and the
Levi-Civita connection V (see the theory in [13]). By definition, if the symbols of these
operators are projectors on pointwise O(n, R)-irreducible subbundles of T*M ® AP M,
they are called fundamental. Fundamental differential operators of Bourguignon are
Stein-Weiss operators. Bourguignon proved that T*M ® APM is decomposed into
three pointwise O(n,R)-irreducible subbundles. Based on this fact, Bourguignon de-
fined fundamental operators d and d* and indicated the existence of a third funda-
mental operator. He also noted that apart from the case p = 1, the third fundamental
operator does not have a simple geometric interpretation. As a consequence, this al-
lows for each w € C°°APM to obtain an expansion of Vw € C°°(T*M ® AP M) in the
sum of three pointwise O(n,R)-irreducible components

(2.4) Vw = Giw + Gaw + Gsw.
Then, all three Stein-Weiss operators were found explicitly in [22]:
(2.5) Glz(p—l-l)_ld, GQZ(n—p—l—l)_lg/\d*, G3 =V —G1 — Go,

and it was proved in [27] that the kernel of G5 consists of conformal Killing p-forms.
Further, in [23], the operator G formally conjugated to G3 on (M, g) was found,
the following second order differential operator was constructed and studied:

* p A 1 * 1 *
GiGs =7y (Afmd A=y dd )
For n = 2p we get G5G3 = p’j (A — pﬁAH) for the Hodge-de Rham Laplacian
Apg =d*d+dd* (e.g., [16, p. 260]). The Hodge-de Rham Laplacian Ap admits the
Weitzenbock decomposition (e.g., [3, p. 57]) Ay = A + R, where R depends linearly
in a known way on the curvature tensor and the Ricci tensor Ric of V. Moreover, for
n = 2p we get the equality G5G3 = (ﬁ)%ﬁ - %?R), where Ap = A — p~IR is the
Lichnerovich Laplacian (see [9]). Thus, the following is valid.
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Proposition 2.2. Let for each differential p-form w € C*°APM the expansion of its
covariant derivative Vw € C°(T*M @ AP M) in the sum (2.4) of pointwise O(n,R)-
irreducible components with Stein-Weiss operators (2.5) hold. Then for n = 2p the
operator p~2(p + 1)?G%G3 is the Lichnerovich Laplacian.

The Bochner-Weitzenbick formula (e.g., [16, p. 106]), can be rewritten as
1
S Alwl P = —g(Anw, w) = gRW), W) + | Grw > + || Gow ||* + || Gaw |1*.

The operator G5G5 is elliptic for 2 < p < n — 1 (see [18, 10], where it lacks the
normalizing factor p(p + 1)~! calculated in [23]): on a compact (M, g) the kernel of
G3G3 is formed by conformal Killing p-forms.

3 The Stein-Weiss operator on symmetric tensors

Let C*>°SPM be the space of C'"*°-sections of the bundle SP M of symmetric p-tensors
on M. Consider T, M at any point x € M as an n-dimensional vector space V
with the structure group GL(n,R). Let SPV denote the p-th symmetric power of the
space V* dual to V. The fiber of T*M ® SPM is the tensor space V* ® SPV | which
will be regarded as the representation space of GL(n,R). Define an endomorphism
SPHL . V* @ SPV — SPHLV € V* @ SPV, called the Young symmetrizer, see [1], by

(SPTHD)igis.ip—riy = Dligir...iy 1 iy)
1

= p4+ 1 (¢i0i1“.ip,1ip + ¢i1‘“7,'p71ip7;0 + e + ¢ipi0i1“Aipip—l)
for components ¢;,4,..i,_, i, = #(€iys €iy,---,€;,) of any ¢ € V* ® SPV in any basis
e1,...,en of V. The endomorphism SP*! is GL(n, R)-invariant and SP+1(SP*1(p)) =
SPHL(p), ie., SPF! is an idempotent in V* @ SPV. Thus, the GL(n,R)-invariant
decomposition of V* ® SPV into a direct sum V* ® SPV = Im SP+! @ ker SPT! of two
subspaces V* ® SPV holds, where Im SP™! = SPT1V and ker SP*! := Im(id — SPT1)
consists of tensors of the form ¢ — SPH1(¢).

Lemma 3.1. Let GL(n,R) act on fibers of tensor bundles on M. Then the following
pointwise GL(n, R)-irreducible decomposition holds:

(3.1) T*M ®@ SPM = SPT M @ ker SPT

Proof. The first component of the expansion SP™V for V = T, M and any point
x € M is irreducible GL(n,R) — a module. To find GL(n, R)-irreducible subspaces in
SPHIV | we need a list of all correctly filled (n,p + 1)-Young schemes, which in this
case contains only one simple scheme ’ 1 \ 2 \ e \ P \ p+1 ‘ .

Thus, there are no other GL(n, R)-irreducible subspaces in SP*1V other than SPT1V/,
To determine what weights with respect to the maximal tori (diagonal matrices) have
elements of ker SP*! we decompose V* ®SPV into weighted spaces, where the weight
vectors are tensors of the form

(Ld1sedt) { 1, ifl=k andiy,...,4 is a permutation of ji,...,J,
4 0, otherwise.



142 V. Rovenski, S. Stepanov and I. Tsyganok

The above tensor has weight diag(t1,...,tn) — txt;, ...ty,. Then the maximum
weight with respect to the order of domination A > p < Vm : 327" A\ > Y0
has tensor ¢ £ 0, since ¢(1:11) = 0. The weight of this nonzero vector
is (p,1,0,...,0). It follows that ker SP*!' = V((p,1,0,...,0)). Since the module
SPHLV is GL(n, R)-irreducible, the decomposition (3.1) is also GL(n, R)-irreducible.
Based on the above, we conclude that there are only two Stein-Weiss differential
operators defined on the space of sections C*°SPM of SPM. We define the first-
order linear differential operator 6* : C®°SPM — C>®SPT1M by means of the equality

n

5*o = (p+1)SPTL (V). It has the following form in local coordinates z?, ..., x™:

(0" @) kiy.ciprip = VEPiyip_yip + oo+ Vi, Qi iy 1k

where Vi = Vj,9,x, and ¢ € C*°SPM. The value on § € C*T; M of the symbol
o(6*) of the operator ¢* is a homomorphism

a(0")(&x) 0 €SI M) = (p+1)§O @, € Serq(Ta:M);

according to the law of symmetric multiplication ¢, ® ¢}, = SPT(p, @ ) for the
pointwise defined symmetric multiplication SP*4 : SP(T, M)® SY(T, M) — SPT4(T, M)
and any tensors ¢ € C®°SPM and ¢’ € C*°SYM. Therefore, P, = (p+ 1)~1* is the
first Stein-Weiss operator defined as symmetrization of the covariant derivative. [

Consider further an operator of the form P, = V — (p + 1)71§*. The value of its
symbol o(P,) on any 1-form & € C°T*M is the homomorphism

a(P2)(&,2) : o € SP(TeM) = (€@ o — (P+1) £ © pa) € ker STHTL M)

defined at any point x € M. Thus, the second operator will be Ps.
Since for any ¢ € C°°SP M there is a pointwise GL(n, R)-irreducible decomposition

(3.2) Vo = Pip+ P,

then due to Stein-Weiss approach in [20], the above P; and P, are Stein-Weiss ope-
rators on the space of symmetric p-tensors, because Pip and Pyp are pointwise
GL(n, R)-irreducible components of the decomposition of V. Thus, we get

Proposition 3.2. Let M be a smooth n-dimensional (n > 2) manifold with a linear
connection V without torsion. Then there are two Stein-Weiss differential operators

P = pjllé* and P, =V — p—il 0* on the space of sections C°SPM.

The kernel of P; consists of symmetric Killing p-tensors, that is, tensor fields
¢ € C*°SPM such that SP*1(Vp) = 0. The kernel of P, consists of Codazzi p-tensors
@ € C®°SPM, for which Vo € C*°SPH1M. According to [3, p. 35], the operator §* :
C>®SPM — C*®SPTLM has the formally adjoint operator § : C*®°SPHIM — C°SPM,
called divergence and defined by the equality 6 ¢ = —trace,V ¢. Here, the trace,
is given by the formula (traceq ) (as,...,ap) = >0y ¢ (e, €, as, ..., a,) for any
vectors as, ..., a, and orthonormal basis {e1,...,e,} of T, M at any point z € M.
Therefore, the formally adjoint to P; operator has the form P; = (p + 1)716. Let
us construct a second-order differential operator Py Py = (p+1)72§ §*. The operator
PPy : C*SPM — C*°SPM is elliptic, since its principal symbol satisfies

—g(a (P} P1)(§, )0z, pz) = 9(§,£)9(Pa, 0z) — (P + 1) 9(§ © 92 (&, ), ¥z)
(3.3) = 9(§,€) - 9(pa, pz) +p - glicpr icpz) > 0
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for any £ € TxM \ {0} and nonzero ¢, at any point © € M. Thus, on a compact
(M, g) the kernel of PP, is a finite-dimensional vector space over R. A local estimate
for the dimension of this space was found in [2]:

dimg ker Py Py < CptP Cpte=t — citP Co Pt
where the equality is attained on the Euclidean sphere. Since fM g(PfPrp,)dV, =

fM g(Pip, Pip)dV, > 0, the kernel of PPy consists of symmetric Killing tensors
© € C>*°SPM. By [3, p. 464], the following orthogonal decomposition is valid:

(3.4) C®SPT M =ker P} @ Im P
for the L2-global scalar product on a compact (M, g). Summing up, we formulate

Proposition 3.3. For any tensor field ¢ € C*°SPM there is a pointwise orthogonal
decomposition (3.2), where P, = ﬁé* and Po =V — ﬁ 6*. On a compact manifold
(M, g), the second-order differential operator Py Py = (p + 1)7206* is a nonnegative
elliptic operator, whose kernel is a finite-dimensional vector space of symmetric Killing
p-tensors. Moreover, the orthogonal decomposition (3.4) is valid.

If (M,g) is a compact Riemannian manifold of nonpositive sectional curvature,
then ker P;"P; consists of parallel symmetric p-tensors, that is, tensors ¢ obeying
the condition Vi = 0 (see [7]). If, in addition, M is connected and there is a point
at which all sectional curvatures are negative, then ker PP, consists of symmetric
p-tensors of the form C - g* for some real constant C' (see also [7]).

4 The Stein-Weiss operators on traceless symmetric tensors

Bourguignon studied first order natural differential operators on the spaces of C'°°-
sections of the bundle S2M of symmetric traceless 2-tensors on (M,g), e.g., [6].
The symbols of such operators are projectors onto pointwise O(n, R)-irreducible sub-
bundles of T*M ® S3M. The following decomposition is valid:

T*M®S§M = Pregpy(T"M @ SEM) @ Pro-py(T"M @ S§M) @
® Pryer g3 M ker traceg (T*M ® SgM)

As a consequence, we have the pointwise O(n, R)-irreducible decomposition
(4.1) Vo=Dip+Dyp+Dsgp

for any traceless symmetric 2-form, or, the field of 2-tensors ¢ € C*°S3M. Based on
this fact, Bourguignon defined all three operators D1, Do and D3 and proved that the
kernel of the operator D; consists of the divergence-free 2-tensors ¢ € C*°SZM. He
argued that the kernels of Dy and D3 do not have a simple geometric interpretation.
In [25], these arguments were applied to a pseudo-Riemannian manifold (M, g), all
three Stein-Weiss operators were redefined on C°°-sections of S3M, and a geometric
interpretation of traceless symmetric 2-tensors lying in the kernel of each of them was
given. It was proved that the kernel of D; consists of (traceless) symmetric conformal
Killing 2-tensors (see [26, p. 559]), and the kernel of D consists of traceless conformal



144 V. Rovenski, S. Stepanov and I. Tsyganok

Codazzi 2-tensors defined in [24]. The main difference of these tensors from well-known
Codazzi 2-tensors (e.g., [3, pp. 434; 436-440]) is their conformal invariance.

Consider a bundle SEM (p > 2) of traceless symmetric p-tensors on M. For each
¢ € S§M, the equality traceg p = 0 is valid.

Lemma 4.1. Let (M, g) be a Riemannian manifold of dimension n > 2. Then the
following pointwise O(n, R)-irreducible decomposition is valid:

T*M@SEM = Prgp,  (T"M & SEM) © Prgp—1y, (T M @ SEM) &
@ Prier sp+1 M ker traceg (T*M ® SgM)

Proof. The fiber of T:M @ SH(T;M) at any point x € M is an n-dimensional
(n > 1) cotangent vector space TxM. We will consider this tensor space as the
space of representations V* ® S{V of O(n,R). There are three orthogonal subspaces
ker SP*1 M ker tracey, Sh™'V and SE™'V of V* @ SBV such that (see [1])

VI@SEV = Prywy (V'@ SiV) @ Prg, (VF @ S{V) @
&Pr ker SP+1 (M ker tracey (V* ® ng)

The irreducibility of the components of the decomposition of V* ® SHV under the
action of O(n,R) follows from Theorem by G. Weyl on quadratic O(n,R)-invariant
forms (see [6, pp. 313-314]). There are three such independent invariant quadratic

forms, which are specified using components ¢;,i,..;, = ¢(€iy, €i,,---, €i,) of ¢ €
V* @ S§V in the orthonormal basis ey, ..., e, of V, and have the form
\Ifl(d)) - Zim“ _____ l.pzl(ﬁﬁzml...lp) ’ \1’2(¢) - Zi,ig,...,ipzl(qsn 7,2...zp) )

\:[13(¢) = Zimh,iz,.wip:l ¢ioi1i2...ip¢i1ioi2...ip.
They represent all possible traces of the ¢ ® ¢ -form. Since there are three such forms,
the decomposition V* @ S5V, which also has three tensor components, is O(n,R)-
irreducible according to result of H. Weil (see [6, pp. 313-314]). O

Let Diff(SEM, T*M @ S§M) denote the C°° M-module of first-order linear diffe-
rential operators D : C°S{M — C°(T*M ® S M) on the space of smooth sections
C>°SHM of the bundle SEM. Due to the pointwise orthogonal decomposition of the
bundle T*M ® S{ M from [1], we get the pointwise O(n, R)-irreducible decomposition
(4.1) of the covariant derivative of any tensor field ¢ € C°°SjM. Then certain Dy, Do
and D3 are Stein-Weiss operators on C*°SJM. The Stein-Weiss operator Dy, whose
symbol is the projector onto the pointwise irreducible component ShM, is

e plp+1)
(4.2) Dy = > (5

1 )QQ‘W)

n+2(p-1

for any ¢ € C°SEM and an algebraic operator g® : SP~'M — SPTIM defined

pointwise by g ® = (2p — 1)SPT(g®) (see [1]). In local coordinates z?,..., " on

(M, g), the expression (4.2) appears as
1

(43) (D1§0)i0i1i2...ip = ﬁ(é*wioiligu.ip +

p(p+1)

n—|—2(p—l)g(01 302‘..1,)
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Using the identity g(iyi, 0 ¢ 4y...i,) = Y(io (i1 O Pis...i,)) fOr the pointwise symmetrization
operator SPT! (g ® & ¢) = G(igiy 0 Pis...i,)> We rewrite (4.3) in the form

G081 ip
1 . 1
(D19)igiris...i, = ﬁ (5 Pigirigis...ip_1ip T m (gioi15sﬁi2i3...z’p_1ip

F Gi0ia0Pis..iy_vipis T -+ Ginip_10Pipivia...ip_o + JioiyOPirinis...ip_1
+ Girin0Pisia..ip_ripio T JirizOPis...ip_yipioia T -+ T Jiriy0Piginis...ip_1
+ GirioOPinigia...ip_1ip T JinizOPisis..ipiois T JiniaOPis. . ipigizis T - - -
+ GinioOPirigia...ip T Jinir OPisia...ipio T * F GipioOPirinis...ip_1
(44) 4 Gipir 0Pigis...ip_rio T - -+ Gipip_20Pip_rigiviseip_s T Gipip_10Pigiriais...ip_2))-

Based on (4.4), we get Dy € C®SET M. We call ¢ € C®SEM a symmetric con-
formal Killing p-tensor, if D1 = 0, which coincides with the notion of a conformal
Killing p-tensor, e.g., [7, 8]. For p = 1 condition D1 = 0 takes the form of well-
known equations of a conformal Killing vector (see [26, pp. 559]). Formally conjugate
to (4.2) operator D} : C°SET M — C°°SP M is given for any ¢ € C°SET M by

4. Dig=—— = 1)

S p+1

because (g ®)* = trace,. Therefore, (¢ ©® 6)*¢ = (2p — 1)0*(tracey ¢) = 0 for any
traceless tensor ¢ € COOSSHM. Based on the operators D; and D7, we define a
second-order differential operator of the form DiD; : C*°SEM — C°°S{M, which
according to (4.4) and (4.5) is given by the following equality:

(4.6) DiDip= (—2$5w+p@—ﬂJg®65@)~

(p+1)2 7 n—+2(p-1)
For the Sampson Laplacian operator Ag = 6 §* — §*9, (4.6) can be rewritten as
T
(p+1)?(n+2(p — 1))
Let us prove the ellipticity of the operator D} D;. First, note that at each point x € M
for any ¢ € C°SHM and & € T M \ {0} the equality g(o(g ® §8)(&,2) s, pz) =0
holds, which is a consequence of the tracelessness of the tensor field . Second, for

any nonzero ¢ € CSEM the inequality —g(o(As) (€, 02), 9a) = 9(6 E)g(e ) > 0
holds (see [15]). By (3.3), —g(c(60*)(&, ¢z), ) > 0 holds. Thus, the inequal-
ity —g(a(86%)(&, px), ) > 0 takes place; hence, DiD; is elliptic. Then its ker-
nel on a compact (M,g) is finite-dimensional. Moreover, fM g(DiD1 o, p)dVy =
/ 1 9(D1p, Dip)d Vg > 0, thus, this vector space consists of symmetric conformal
Killing p-tensors ¢ € C°°SEM. The following orthogonal decomposition takes place:

(4.8) C>®SP™ M = ker D} @ Im D,

(4.7) DiDip=

2A5 o+ (n+2(p—2)) 6" p+p(p—1) g©dd ).

for the L2-global scalar product on the compact (M, g). Summing up, we formulate

Proposition 4.2. The pointwise O(n, R)-irreducible decomposition (4.1) of the co-
variant derivative of any tensor field ¢ € C°SEM holds. On a compact (M,g), a
second-order differential operator DDy for the Stein- Weiss operator

Dig=(p+1)"" (0'e+(n+2(p—1)) (g0 dyp)),
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and its formally conjugate D7, is a nonnegative elliptic operator, whose kernel is a
finite-dimensional vector space over R and consists of symmetric conformal Killing
p-tensors. Moreover, the orthogonal decomposition (4.8) is valid.

The second Stein-Weiss differential operator Dy, whose symbol is the projector
onto the second pointwise irreducible component of the decomposition TM* @ SHM is

(D2 Q)i irin.iy_siy 1y = —PM+p—1)""gi (3,0 Diy..ip)

(see [1]), and its kernel consists of traceless divergence-free p-tensors.
The third Stein-Weiss differential operator D3, whose symbol is the projector onto
the third pointwise irreducible component of the decomposition TM* @ S{M, is

p
(D3 )iy i, Qo.ip_2ip_1ip — Vz'o%liz...ip + T To— 1910(11 5901'2...1‘,])
1 pp+1)
PN ( Pigiriz...ip T n+ 2(p — 1) Y(igiy O Pia..ip)

for any ¢ € C*°S{M (see [1]). For any ¢ € ker D3, the following equations hold:

(4.9) viOSDilig...ip - vilwioig...ip = (gio(il 5%2..4',,) — Gi1 (o 5<Pi2...ip)) .

n+p—1

5 Global Riemannian geometry of conformal Killing tensors
The kernel of D; consists of p-tensors ¢ € C°°SEM for p > 2 that satisfy

p(p+1)

(5.1) T

©dp.
Each such p-tensor is a symmetric conformal Killing p-tensor (e.g., [7, 8]). Note that
the requirement of tracelessness is included here in the definition of the conformal
Killing p-tensor (p > 2) as well as in [26, p. 559] for the case p = 2. The condition
¢ € ker Dy ker § defines a symmetric Killing p-tensor ¢ € C*°SHM, because (5.1)
implies that §*p = 0. Taking into account (4.7), we find

(5.2) 9(As e, ©) = =2""(n+2(p—2))g(6 5% ¢, ¢)

for Sampson Laplacian Ag = §6* — %0 and conformal Killing tensors ¢ € C*°SEM.
From (5.2) we conclude that the symmetric divergence-free (traceless) conformal
Killing tensor, or, equivalently, the symmetric traceless p-Killing tensor belongs to
the kernel of Ag. For a compact manifold (M, g), it follows from (5.2) that

/g(Asw, w)dVg:*2’1(n+2(p*2))/ g(0p, 6p)dV,.
M M

Thus, any traceless conformal Killing p-tensor belonging to the kernel of the Sampson
Laplacian is divergence-free, thus it is a Killing p-tensor. We get the following

Proposition 5.1. On a compact Riemannian manifold, a symmetric (traceless) con-
formal Killing p-tensor belongs to the kernel of the Sampson Laplacian if and only if
it is a traceless p-Killing tensor.
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For any Killing p-tensor (p > 2), direct calculations lead to the following formula:
20 ¢ = 0*(tracey ). Thus, on a compact Riemannian manifold of negative Ricci cur-
vature, every symmetric Killing tensor of rank 3 is traceless. The Sampson Laplacian
Ag: C®SPM — C>®°SPM admits the Weitzenbock decomposition (see [15])

(5.3) Asp=Ap—R(p).

The formula (5.3) indicates that Ag is a particular form of Lichnerovich’s Lapla-
cian (see [3, p. 79] and [9]). Here, R is linearly expressed in terms of the Rieman-
nian curvature tensor and the Ricci tensor of the Levi-Civita connection and satisfies

IR(p), ¢') = gR(¥"), p) for any ¢, ¢' € C*SPM (see [15]). Thus, ®p(pz, pz) =
g(R(pz), vz) is a quadratic form for any ¢, € SP(T;M) and x € M. Since Ag is
an elliptic operator, by [3, p. 632], the L?(M)-orthogonal decomposition C°°SPM =
ker Ag @ Im Ag is valid. The symmetric tensor ¢ € C*°SPM such that ¢ € ker Ag
is called Ag-harmonic section (see [16, p. 104]), and the space of such tensors on a
compact Riemannian manifold (M, g) is finite-dimensional. The following is valid.

Proposition 5.2. On a compact Riemannian manifold (M,g) the space of Ag-
harmonic sections is finite-dimensional.

Using Proposition 5.2 and (5.3), we can formulate the following

Corollary 5.3. On a Riemannian manifold (M, g), any divergence-free or, e.g., trace-
less Killing p-tensor is a Ag-harmonic section.

From (5.3) we deduce the Bochner-Weitzenbock formula (e.g., [15] and [16, p. 106])

1
ol olI* = —9(As ¢, ©) = g(R(9), 0) + | Vo |17,

where for Vo the pointwise O(n, R)-irreducible decomposition (4.1) holds. Thus,

1
(5-4) S Alel?=-9(As ¢, ) = g(R(¢), @) + [ Dy I* + 1| Dao||* + | Dag |

For a symmetric conformal Killing p-tensor, the formula (5.4) takes the form

1 .
(5:5) 5 Allgl* =27 (n+2(p = 2)) 9(05" 0, ¢) = g(R(p), @) + | Dael* + || Dal|*.

Suppose that M is compact, then integrating (5.5) we obtain
| o))V, = 2 ar2p=4) [ 157 elPaVt [ (1Dl 1Dl av, >0,

because [,, g(66%¢, ) dVy = [,, [|6*¢[?dVy > 0. On (M, g) of nonpositive curva-
ture ®,(p, ¢) = g(R(¢), ¢) < 0 holds for any ¢ € SEM (see [8, 7]). If there is a point
at which the sectional curvature is negative, then ®,(¢, ¢) = g(R(v), ) < 0 for any
symmetric p-form ¢ € S§M. Based on the above equality, we get the following

Proposition 5.4. On a compact Riemannian manifold (M, g) of nonpositive sectional
curvature sec, each symmetric conformal Killing tensor ¢ € C*°SEM is parallel, i.e.,
V ¢ = 0. Moreover, if there is a point at which sec < 0, then on (M,g) there are no
nonzero symmetric conformal Killing p-tensors o € C*°SHM.
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One can show 3 A [[]* = [lpll Allgll + || d |||l |7, where [ Vo [|> > [[d[| ¢ | [|* by
Kato’s inequality (e.g., [16, p. 105]). Thus, the above equality takes the following form:

Allell? = 1IVel?,

N =

1
lellallel =5 Alel*=lldlell*>

where A || ¢]|? due to (5.4) satisfies the inequality

1
5 APl = —g(As e, ) — g(R(p), ).
Summing up, we get the following inequality:

(5.6) [ellAllell > —g9(As e, ) = Pp(p, p).

Let further ¢ € C*°SHM be a Killing p-tensor, for which, as was proved above,
Ag ¢ =0, then the inequality (5.6) can be rewritten as

(5.7) lellAllell > =P, (0,¢).

For (M,g) of nonpositive curvature, from (5.7) we find Al ¢| > 0, thus, || ¢] is
a nonnegative subharmonic function for any Killing p-tensor ¢ € SHM. There is a
well-known theorem (see [14, p. 288]): On a complete simply connected Riemannian
manifold (M, g) of nonpositive curvature, any nonnegative subharmonic function f €
C?(M) satistying [,, f9dV, < oo for some ¢ € (0,00), is constant. Setting f = || ¢,
we find ||| = C for some real constant C, thus, V¢ = 0. On the other hand, in
this case

/||<p||qug:Cq/ 4V, = CTVol(M, g).
M M

Since we assume || ¢ || € LY(M) for some 0 < g < oo, then for C' # 0 the volume
of (M, g) must be finite. If the volume of (M, g) is infinite, then necessarily ¢ = 0.
The following has been proven.

Theorem 5.5. If a simply connected complete (M, g) has nonpositive sectional cur-
vature, then the symmetric Killing p-tensor (p > 2) ¢ € SSM such that

(5.8) / lel?dV, < oo
M

for some q € (0,00) is parallel; and if (M, g) has infinite volume, then ¢ = 0.

A Riemannian manifold (M, g) with 6*Ric = 0 was popular [3, pp. 450-451]. In this
case, Ag Ric = 0, thus, by Theorem 5.5, Ric = 0 (for a compact M, see [3, p. 451]).

Let M = G/H be a Riemannian symmetric space of noncompact type with a
G-invariant metric g. Then (M, g) is a complete Riemannian manifold of nonpositive
sectional curvature and negative definite Ricci tensor, thus, it is irreducible (see [12,
pp- 226, 236]). Therefore, it is true the following

Corollary 5.6. On a Riemannian symmetric space (M,g) of noncompact type, each
symmetric Killing p-tensor (p > 2) ¢ € S§M such that (5.8) holds for some q €
(0,00), is parallel. Moreover, if p =2, then ¢ = 0.



On kernels of second-order elliptic operators 149

6 Global Riemannian geometry of rank p > 2 Codazzi tensors

For a Codazzi p-tensor (p > 3) p € C°SPM, from Vi € C°SPT1M we conclude that
V(trace, o) € C°SP~2M. From the condition (also defining the Codazzi p-tensor)

1
1 Prap=Vp— —— 5=
(6.1) 2=V P 0 =0,

it follows that § p = —V (trace, ¢) for any p > 2. Therefore, the following is true.

Proposition 6.1. For any Codazzi p-tensor ¢ € SPM, where p > 3, on the Rieman-
nian manifold (M, g) the symmetric form traceg ¢ is a Codazzi (p — 2)-tensor. For
p > 2, each traceless Codazzi p-tensor @ has zero divergence.

Based on (6.1) for the divergence-free Codazzi tensor ¢ € SPM, we obtain

1
Cop+1

*

1
PP =——Ago.
1419 P+ 1 S ¥

>

14

Thus, it follows from the Weitzenbock expansion (5.3) that

1

(6.2) Ap= o1 R(e).

Therefore, we can formulate the following

Proposition 6.2. Any divergence-free Codazzi p-tensor ¢ on a Riemannian manifold

(M, g) belongs to the kernel of the Lichnerovich Laplacian A = A + p% R.

From (6.2) we get the Bochner-Weitzenbdck formula

1
Allgl?

1
ALl = —= (0, 0) + | VPP,

(6.3) o

Using (6.3), we obtain the inequality

1
(6.4) lel Allell = = ®ple, @)

On (M, g) of nonnegative sectional curvature, we have the inequality ®,(¢, ¢) > 0 for
any ¢ € SPM (see [4]). If this assumption is true, then from (6.4) we get A | > 0.
As a result, || ¢ || becomes a nonnegative subharmonic function for any divergence-
free Codazzi p-tensor ¢ € SPM. Due to S.T. Yau (see [16, p. 262] and [28]), on
a complete (M, g) of infinite volume the only nonnegative subharmonic function f
satisfying f € L9(M) for some 1 < ¢ < oo, is f = 0. Since a complete noncompact
Riemannian manifold of nonnegative sectional curvature has infinite volume (see [14]),
we get ¢ = 0. The following theorem is proved.

Theorem 6.3. On a complete noncompact Riemannian manifold (M, g) of nonne-
gative sectional curvature there is no nonzero divergence-free Codazzi tensor ¢ €
SPM (p > 2) such that (5.8) holds for some q > 1.
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Remark 6.1. There are no complete noncompact conformally flat (M, g) of nonneg-
ative sectional curvature and constant scalar curvature such that Ric satisfies (5.8)
for some ¢ > 1, since, in this case, Ric is a Codazzi divergence-free tensor, [3, p. 432].

Let M = G/H be a Riemannian symmetric space of compact type with a G-
invariant metric g. Then (M, g) is compact with nonnegative sectional curvature and
positive definite Ricci tensor, thus, it is irreducible (see [12, p. 256]).

The following theorem generalizes the result from [10].

Corollary 6.4. On a Riemannian symmetric space (M,g) of compact type, any
divergence-free Codazzi p-tensor o € SPM for p > 2 has a constant length. In partic-
ular, if p =2, then ¢ = C' g for some real constant C.
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