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Abstract. This research article attempts to examine the attribute of per-
fect fluid spacetime in f(R, T ) gravity with a Killing velocity vector field
ρ in terms of Ricci soliton, gradient Ricci soliton, Yamabe soliton, and
gradient Yamabe soliton. Besides this, we evaluate a specific situation
when the potential vector field ρ is of the form of gradient, we extract
a modified Poisson equation, and modified Liouville equation from the
Ricci soliton equation in f(R, T )-gravity stuffing with perfect fluids. In
addition, we explore some harmonic significance of Ricci soliton on perfect
fluid spacetime in f(R, T ) gravity with a harmonic potential function Ψ.
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1 Introduction

General Relativity (GR) is the best way to study the large-scale structure of the
Universe theoretically. It is observed that GR without taking into account the dark
energy can not describe the acceleration of the early and late Universe. GR does not
explain precisely gravity and it is quite reasonable to modify in order to get theories
that admit inflation and imitate the Dark Energy (DE). To explain the observed
cosmological dynamics, the standard approach is given by the modification of the
Einstein gravitational field equations, introduced by Einstein [28, 23]. The Einstein
field equations provide the best fit to the observed data, with a further assumption
of another hypothetical component of the Universe know as Dark Matter[19].

The Universe is filled with the mysterious component called DE which is consid-
ered to be the main reason for the accelerated expansion of the Universe and balances
the matter-energy ratio. This scenario inspired several mathematician and physicists
to developed more mature gravity theories that flourished by the Einstein-Hilbert
action and by using modified gravity theories for example f(R)-gravity [26], Gauss-
Bonnet, f(G)-gravity [21], and f(T ) theory [7] etc. These theory are different from
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the standard Einstein gravity theory. These modified gravity theories may also pro-
vide the effective approximation to quantum gravity [24].

Extending the Einstein-Hilbert Lagrangian density to a function f(R), where R
is the Ricci scalar, allows one to extend GR to the f(R) gravity. The equations of
motion of f(R) gravity have higher degrees and solved the issue of massive neutron
stars by higher order curvature, for references see [3, 4, 5]. However, the f(R) gravity
also has some limitations as regards consistency with solar system and also fails to
justify the existence of some cosmic models like stable stellar configuration ( for more
details see [6, 18]), which raises questions about its validity. Further investigation led
to a more generalized gravity models, whose Lagrangian is an arbitrary function of
the trace of the energy-momentum tensor T and Ricci scalar R, known as f(R, T )-
gravity theory proposed by Harko et al. [15]. This theory was successfully applied for
a description of the late time accelerated expansion of the Universe.

On other hand, a spacetime can be designed as a 4-dimensional time orientated
Lorentzian manifold M which is a particular category of pseudo-Riemannian man-
ifolds with Lorentzian metric g. The geometry of Lorentzian manifold begins with
the study of nature of vectors on the manifold. Therefore, Lorentzian manifold M
becomes most fitting alternative for the study of cosmological model. In typical cos-
mological models, the material content of the universe is known to behave like a
perfect fluid spacetime [22].

The energy-momentum tensor T of a perfect fluid spacetime is in the following
form ([22], [20])

(1.1) Tαβ = pgαβ + (σ + p)ηαηβ

where σ, p indicates the energy density and isotropic pressure, respectively for the
perfect fluid. In modern cosmology, it is assumed as a candidate for dark energy, the
acceleration of the universe expansion.

On the other hand, physical matters symmetry is specially relating to the space-
times geometry. More specifically, the metric of symmetry usually simplifies for the
classification of solutions of Einstein’s field equations. An important symmetry is
soliton that connected to geometrical flow of spacetimes geometry. In fact Ricci flow
and Yamabe flow are used to understand the idea of kinematics.

Hamilton introduced the notions of Ricci flow and Yamabe flow [16, 17]. These
are intrinsic geometric flows on a (semi) Riemnnian manifold, whose fixed points are
solitons. Ricci solitons and Yamabe solitons, which are generate self-similar solutions
of Ricci flow and Yamabe flow are give by

(1.2)
∂

∂t
g(t) = −2Ric, ∂

∂t
g(t) = −Rg(t).

Moreover, a metric of M is said to be Ricci soliton if it satisfies [16]

(1.3)
1

2
LV g +Ric+ λg = 0,

and is said to be Yamabe soliton if it satisfies[17]

(1.4)
1

2
LV g = (R− λ)g
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for some vector filed V and a real scalar λ. Here LV indicates the Lie derivative
operator along the soliton vector field V , Ric is Ricci curvature and R is the scalar
curvature of M . The data (g, V, λ) known as Ricci soliton and Yamabe soliton follow
by the (1.3) and (1.4), respectively. A Ricci soliton and Yamabe soliton on M is said
to be shrinking, expanding or steady if λ is negative, positive or zero, respectively.

Ricci soliton and Yamabe soliton with V = Dψ gives the gradient Ricci soliton
and gradient Yamabe soliton on semi-Riemannian manifold M , where D denotes the
gradient operator and ψ is some smooth function on M . Thus, equation (1.3) and
(1.4 reduces to the following form

(1.5) Hessψ −Ric = λg,

(1.6) Hessψ = (R− λ)g,

where Hess denotes the Hessian, D is the gradient operator of g and the smooth func-
tion ψ is called potential function of the gradient Ricci soliton and gradient Yamabe
soliton, respectively.

In f(R, T )-gravity theory scalar fields are supposed to play a fundamental role in
physics and cosmology. However, obtaining more general gravitational models with
scalar fields as a source may give a better insight in the general properties of the grav-
itational field. In [27] Singh and Singh have reconstructed flat scalar and exponential
model of f(R, T ) gravity in scalar field cosmology

In [9, 10] Capozziello et al. discussed the perpoties of Cosmological perfect fluid in
f(R) gravity. Chaubey [11] is also determine some important results about f(R, T )-
gravity theory, which is closely related with this study.

Recently, Siddiqi et al. [33] studied f(R, T )-gravity model with perfect fluid in
terms of Einstein solitons. Moreover, many authors also studied perfect fluid space-
time with various solitons for more details see [1, 2, 29, 31, 30, 32, 33, 34].

The above studies inspire the author, to study f(R, T )-gravity with perfect fluids
in terms of with Ricci soliton, gradient Ricci soliton, Yamabe soliton and gradient
Yamabe soliton.

2 Perfect fluid spacetime stuffing in f(R, T )-gravity

Perfect fluid spacetime (M4, g) satisfying f(R, T )-gravity, depends on the physical
nature of the matter field and therefore we get a theoretical model [15], we choose

(2.1) f(R, T ) = R+ 2f(T ),

where f(T ) is an arbitrary function on the trace T of the energy-momentum tensor,
and the term 2f(T ) in the gravitational action modifies the gravitational interaction
between matter and curvature.

We assume a modified Einstein-Hilbert action term

(2.2) H =
1

16π

∫
[f(R, T ) + Lm]

√
(−g)d4x,
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where f(R, T ) is an arbitrary function of Ricci scalar R and the trace T of the energy-
momentum tensor, and Lφ is the matter Lagrangian of the scalar field. The stress
energy tensor of the matter is given by

(2.3) Tαβ =
−2δ(

√
−g)Lm√

−gδαβ
.

Let us consider that the matter Lagrangian of the scalar field depends only on the
metric tensor gαβ , and not on its derivatives.
The variation of action (2.2) with respect to the metric tensor gab yields the field
equations of f(R, T ) gravity

(2.4) fR(R, T )Ricαβ − 1

2
f(R, T )gαβ + (gαβ∇c∇c −∇α∇β)fR(R, T )

8πTαβ − fT (R, T )Tαβ − fT (R, T )ψαβ ,

where fR and fT denote the partial derivatives of f(R, T ) with respect to R and T ,
respectively. As per usual notation, ∇a is the covariant derivative, □ ≡ ∇c∇c is the
d’Alembert operator and Ωαβ is defined by

(2.5) Ωαβ = −2Tαβ + gαβLm − 2glk
∂2Lm

∂gαβ∂glk
.

If we consider f(R, T ) = f(R), then (2.2) and (2.3) provide the field equations of
f(R)-gravity.

Let consider the matter is a perfect fluid spacetime M with isotropic pressure p,
energy density σ and velocity vector ηα. Also, we know that there is no unique value
of Lagrangian, therefore we assume that Lm = −p and using (1.1) we turn up

(2.6) Tαβ = −pgαβ + (σ + p)ηαηβ ,

where

(2.7) ηα∇βηα = 0, ηα.η
α = 1.

Infer (2.6), we can easily obtain the variation of stress energy in the following form

(2.8) Ωαβ = −pgαβ − 2Tαβ .

After adopting (2.1) and (2.4) we get the form

(2.9) Ricαβ =
1

2
gαβ − 2f

′
(T )Tαβ − 2f

′
(T )Ωαβ + f(T )gαβ + 8πTαβ .

In view of (2.6), (2.7) and (2.8), (2.9) becomes

(2.10) Ricαβ =

{
1

2
R+ f(T )− 8pπ

}
gαβ +

{
(σ + p)(8π + 2f

′
(T ))

}
ηαηβ .

Contracting (2.10), we get

(2.11) R = −4[f(T )− 8pπ] + (σ + p)(8π + 2f
′
(T )).
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Thus for the perfect fluid spacetime in f(R, T )-gravity the Ricci tensor is of the form

(2.12) Ricαβ = agαβ + bηαηβ ,

where

(2.13) a = −1

2
R+ f(T )− 8pπ and b = (σ + p)(4π + f

′
(T )).

Now with the help of (2.11) we get a = −[f(T )− 8pπ] and b = (σ + p)(4π + f
′
(T )).

Thus we have the following conclusion:

Theorem 2.1. The Ricci tensor for the perfect fluid spacetime in f(R, T )-gravity is
of the form

Ricαβ =

{
1

2
R+ f(T )− 8pπ

}
gαβ +

{
(σ + p)(8π + 2f

′
(T ))

}
ηαηβ .

Corollary 2.2. The scalar curvature tensor for the perfect fluid spacetime in f(R, T )-
gravity is given by R = −4[f(T )− 8pπ] + (σ + p)(8π + 2f

′
(T )).

Now, equation (2.10) can be written in the index free notation equation as

(2.14) Ric(U, V ) = ag(U, V ) + bη(U)η(V )

and

(2.15) QU = aU + bη(U)ρ, ∀U ∈ χ(M),

where a = −[f(T ) − 8pπ] and b = (σ + p)(4π + f
′
(T )). Now, in light of (2.11), we

have

(2.16) p+ σ =
R+ 4[f(T )− 8pπ]

[8π + 2f ′(T )]
.

Thus, we can observe that the scalar curvature R is non vanishing in PFST in
f(R, T )-gravity, it follows from (2.16) that (p + σ) ̸= 0. Therefore, we turn up the
following result.

Theorem 2.3. The PFST in f(R, T )-gravity with non-zero scalar curvature R can-
not concede the dark matter fluid.

Since, if f(T ) = 0 then f(R, T ) gravity recover f(R)-gravity. Thus we have the
following corollary.

Corollary 2.4. The PFST in f(R)-gravity with non-zero scalar curvature R cannot
concede the dark matter fluid and the equation of state is 5p+ σ = R

8π .

3 Ricci soliton on perfect fluid spacetime in f(R, T )-
gravity

Consider the equation (1.3)

(3.1) Ric(U, V ) = −λg(U, V )− 1

2
(Lρg)(U, V ).
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Use explicit form the Lie derivative in (1.3), we get

(3.2) Ric(U, V ) = −λg(U, V )− 1

2
[g(∇Uρ, V ) + g(U,∇V ρ)],

for any U, V ∈ χ(M).
Contracting (3.2) we get

(3.3) R = −4λ− divρ.

In view of (2.11) and (3.3), we turn up

(3.4) 4a+ b = −4λ− divρ.

Using (2.14)and (3.1) together, and putting U = V = ρ, we obtain

(3.5) a+ b = −λ.

and

(3.6) a = −λ− divρ

3
.

Let us assume that ρ is Killing, which implies λ = −a and b = 0. Thus we have the
following result.

Theorem 3.1. If a perfect fluid spacetimeM in f(R, T ) gravity admits a Ricci soliton

(g, λ, ρ) with Killing velocity vector field ρ, then M is steady if p = f(T )
8π , expanding

if p > f(T )
8π , and shrinking if p < f(T )

8π .

In particular, if f(T ) = 0 then f(R, T ) gravity recover f(R)-gravity. Thus we
have the following corollary.

Corollary 3.2. If a perfect fluid spacetime M in f(R) gravity admits a Ricci soli-
ton (g, λ, ρ) with Killing velocity vector field ρ, then its represents a dust era with
expanding Ricci soliton.

4 Ricci soliton on perfect fluid spacetime in f(R, T )-
gravity with velocity vector field ρ = gradΨ

In this segment, we study a particular case when the velocity vector field ρ of Ricci
soliton is of gradient type, ρ =: gradΨ in perfect fluid spacetimeM in f(R, T )-gravity.

Let ρ = gradΨ, where Ψ is a smooth function on M . Now, from equation (3.4),
we can conclude the following results as

Theorem 4.1. Let M be a perfect fluid sapectime in f(R, T )-gravity admits Ricci
soliton and the velocity vector field ρ of the Ricci soliton is of gradient type, then the
modified Poisson equation of the f(R, T )-gravity satisfying by Ψ is

(4.1) ∇2Ψ = 3[λ+ 8pπ − f(T )].
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Corollary 4.2. Let M be a perfect fluid sapectime in f(R)-gravity admits Ricci
soliton and the velocity vector field ρ of the Ricci soliton is of gradient type, then the
modified Poisson equation of the f(R)-gravity satisfying by Ψ is

(4.2) ∇2Ψ = 3[λ+ 8pπ].

The above equations (4.1) and (4.2) could be taken as general relativistic analog
of Poisson’s equation in stationary spacetime.

Remark 4.1. Also, for Ψ ∈ C∞(M) and the vector field ρ a straight forward calcu-
lation gives

(4.3) div(Ψρ) = ρ(dΨ) + Ψdivρ.

The function Ψ ∈ C∞(M) is a last multiplier of vector field ρ with respect to g if
div(Ψρ) = 0. The corresponding equation

(4.4) ρ(d lnρ) = −div(ρ)

is called the Liouville equation of the vector field ζ with respect to g (for more
details see [25]).

Now, infer the above remark and equation (3.4), we obtain the following result:

Theorem 4.3. Let M be a perfect fluid sapectime in f(R, T )-gravity admits Ricci
soliton and the velocity vector field ρ of the Ricci soliton is of gradient type, then the
modified Liouville equation of f(R, T )-gravity satisfying by Ψ and ρ is,

(4.5) ρ(d lnΨ) = −3[λ+ 8pπ − f(T )].

Again, using the fact that, if f(T ) = 0 then f(R, T ) gravity recover f(R)-gravity.
Thus we have the following corollary.

Corollary 4.4. Let M be a perfect fluid sapectime in f(R)-gravity admits Ricci
soliton and the velocity vector field ρ of the Ricci soliton is of gradient type, then the
modified Liouville equation of f(R)-gravity satisfying by Ψ and ρ is,

(4.6) ρ(d lnΨ) = −3[λ+ 8pπ].

5 Harmonic aspect of Ricci soliton on perfect fluid
sapectime in f(R, T )-gravity

This section is based on the situation that a function f : M −→ R is said to be
harmonic if ∇2f = 0, where ∇2 is the Laplacian operator on M [35], we turn up the
following results:

Theorem 5.1. Let M be a perfect fluid sapectime in f(R, T )-gravity admits Ricci
soliton and the velocity vector field ρ of the Ricci soliton is of gradient type and if
ψ is a harmonic function on M , then M in f(R, T )-gravity admits Ricci soliton is
expanding, steady and shrinking according as
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1. f(T ) > 8pπ,

2. f(T ) = 8pπ and

3. f(T ) < 8pπ respectively.

Proof. Form equation (4.1) we can easily obtain the desired result. □

Theorem 5.2. Let M be a perfect fluid sapectime in f(R, T )-gravity admits Ricci
soliton and the velocity vector field ρ of the Ricci soliton is of gradient type and ψ is

a harmonic function on M in f(R, T ) , then the isotropic pressure is p = f(T )−λ
8π .

Since f(T ) = 0 in f(R) gravity theory. Thus we have

Corollary 5.3. Let M be a perfect fluid sapectime in f(R)-gravity admits Ricci
soliton and the velocity vector field ρ of the Ricci soliton is of gradient type and if
ψ is a harmonic function on M , then M in f(R)-gravity admits a shrinking Ricci
soliton.

Corollary 5.4. Let M be a perfect fluid sapectime in f(R)-gravity admits Ricci
soliton and the velocity vector field ρ of the Ricci soliton is of gradient type and ψ is
a harmonic function on M in f(R) gravity , then the isotropic pressure is p = −λ

8π .

6 Gradient Ricci soliton on perfect fluid spacetime
in f(R, T )-gravity

Let us consider that vector field V of the Ricci soliton in n-dimensional perfect fluid
spacetime M of f(R, T )-gravity.
From (1.5), we can write

(6.1) ∇UDψ +QU + λU = 0

for all U ∈ χ(M). The equation (6.1) along with the relation

(6.2) R(U, V )Dψ = ∇U∇V Dψ −∇V ∇UDψ −∇[U,V ]Dψ

give

(6.3) R(U, V )Dψ = (∇UQ)V − (∇VQ)U.

The covariant derivative of (6.1) along vector field V gives

(6.4) ∇V ∇UDψ = −((∇VQ)(U)−Q(∇V )U − λ∇V U

Interchanging U and V in (6.4) and then using the foregoing equation together with
(1.3) and (6.4) in (6.2), we get
(6.5)
R(U, V )Dψ = (∇UQ)V−(∇VQ)U+µ[(∇V η)(U)ρ+η(U)∇V ρ−(∇Uη)(V )ρ−η(V )∇Uρ]

Now, differentiating equation (2.15) covariantly along vector field U , we turn up

(6.6) (∇UQ)(V ) = U(a)V + U(b)η(V )ρ+ b(∇Uη)(V )ρ+ bη(V )∇Uρ.
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In view of (6.5) and (6.6), we lead

(6.7) R(U, V )Dψ = U(a)V − V (a)U + [U(b)η(V )− V (b)η(U) + b(∇Uη)(V )

−b(∇V η)(U)]ρ+ b[η(V )∇Uρ− η(U)∇V ρ].

Taking a set of orthonormal frame field and contracting (6.7) along the vector field
U , we have
(6.8)
Ric(V,Dψ) = (1− n)V (a) + V (b) + ρ(b)η(V ) + b[(∇ρη)(V )− (∇V η)(ρ) + η(V )divρ].

Again, from (2.12) we have

(6.9) Ric(V,Dψ) = aV (ψ) + bη(V )ρ(ψ).

Setting V = ρ in (6.8) and (6.9) and then equating the values of Ric(ρ,Dψ), we get

(6.10) (a− b)ρ(ψ) = (1− n)ρ(a)− bdivρ.

Let the velocity vector field ρ of the perfect fluid spacetime is Killing, that is Lρg = 0
and scalar a remains invariant under the velocity vector field ρ that is ρ(a) = 0. Then
we get divρ = 0. Thus, from equations (2.13) and (6.10) we get

(6.11) (a− b)ρ(ψ) = 0,

which shows that either a = b or ρ(ψ) = 0 on a perfect fluid spacetime in f(R, T )
gravity with the gradient Ricci soliton. Now, we classify our study into two cases as:
Case I. We consider that a = b and ρ(ψ) ̸= 0 and therefore from (2.13), we conclude
that

(6.12) p =
1

(4π − f ′(T ))

{
4π + f

′
(T )− f(T )

}
σ.

this gives the equation of state in a perfect fluid spacetime in f(R, T ) gravity. Also,
λ = b− a = 0 and hence the gradient Ricci soliton is steady.
Case II. Now, consider that ρ(ψ) = 0 and a ̸= b. The covariant derivative of
g(ρ,Dψ) = 0 along the vector field U gives

(6.13) g(∇Uρ,Dψ) = −[λ+ (a− b)]η(U),

where (2.14) and and (6.1) are used. Since the velocity vector field ρ is Killing in
a perfect fluid spacetime in f(R, T ) gravity, that is g(∇Uρ, V ) + g(U,∇Y ρ, ρ) = 0.
Putting V = ρ in this equation, we get that g(U,∇ρρ) = 0 because g(∇Uρ, ρ) = 0.
Thus we conclude that ∇ρρ = 0. Changing U with ρ in equation (6.13) and using the
last equation, we infer that

(6.14) λ = b− a.

(6.15) λ = [f
′
(T ) + f(T ) + 4π]− 8pπ

(p+ σ)
.
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This reflects that the gradient Ricci soliton in a perfect fluid spacetime of f(R, T )
gravity is expanding or shrinking if [f

′
(T ) + f(T ) + 4π] > 8pπ

(p+σ) ,

[f
′
(T ) + f(T ) + 4π] < 8pπ

(p+σ) , respectively.

Next, the equations (6.8) and (6.9) together with the hypothesis take the form

(6.16) Ric(V,Dψ) = aV (ψ)

and

(6.17) Ric(V,Dψ) = (1− n)V (a) + V (b).

In view of (6.14)-(6.17), we conclude

(6.18) aV (ψ) + (n− 2)V (a) = 0 ⇔ Dψ + (n− 2)Da = 0.

Considering a set of orthonormal frame and contracting equation (6.2) along vector
field U and using the fact that trace

{
V −→ 1

2 (∇VQ)U
}
= 1

2∇UR, we lead

(6.19) Ric(V,Dψ) = −1

2
V (R) = aV (ψ),

where (6.16) has been used. Again from (2.15) and (6.14), we infer that

(6.20) V (R) = (n− 1)V (a).

In consequence of equations (6.18)-(6.20), we conclude that

(6.21) (n− 3)V (a) = 0.

Since the dimension of the perfect fluid spacetime ≥ 4. therefore equation (6.21)
shows that a = constant. Consequently, b = constant and the scalar curvature of the
perfect fluid spacetime in f(R, T ) gravity is constant. Now, using (6.21) in (6.18) we
have

(6.22) aV (ψ) = 0,

which implies that either a = 0 or V (ψ) = 0 ⇓ ψ = constant. If a = 0 and ψ is a
non-zero constant function on a perfect fluid spacetime of f(R, T ) gravity, then from
(6.7) we have

(6.23) Ric = −Rη ⊗ η,

where R = −b = constant ̸= 0. From (6.23), we observe that the perfect fluid
spacetime in f(R, T ) gravity is Ricci simple [12]. Next, we consider that a ̸= 0 and
Dψ = 0 and therefore ψ = constant. Thus the gradient Ricci soliton on a perfect
fluid spacetime in f(R, T ) gravity is trivial. Thus by concluding the above facts, we
can write our results as:

Theorem 6.1. Let the perfect fluid spacetimeM in f(R, T ) gravity admits a gradient
Ricci soliton and its velocity vector field ρ is Killing. Then either
(i) the equation of state of the perfect fluid in f(R, T ) gravity is governed by p =

1
(4π−f ′ (T ))

{
4π + f

′
(T )− f(T )

}
σ and the soliton is steady,or

(ii) the perfect fluid spacetime in f(R, T ) gravity is Ricci simple or the gradient
Ricci soliton is trivial.
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Let M be a perfect fluid spacetime in f(R, T ) gravity with a ̸= b. If M admits
a gradient Ricci soliton and ρ is Killing, then from Theorem (6.1), we can state the
following corollary

Corollary 6.2. Let a perfect fluid spacetime M in f(R, T ) gravity admits a gradient
Ricci soliton with a ̸= b. If the velocity vector field of M is Killing, then M possesses
a constant scalar curvature.

Corollary 6.3. Let a perfect fluid spacetime M in f(R) gravity admits a gradient
Ricci soliton and its velocity vector field ρ is Killing. Then either
(i) the equation of state of the perfect fluid in f(R) gravity is governed by p

σ =
4π+f

′
(T )

(4π−f ′ (T ))
and the soliton is steady,or

(ii) the perfect fluid spacetime in f(R) gravity is Ricci simple or the gradient Ricci
soliton is trivial.

As a consequences of Theorem (6.1) and equation (6.10) we have following obser-
vation.

Theorem 6.4. If a perfect fluid spacetime M in f(R, T ) gravity admits a gradient
Ricci soliton and its velocity vector field ρ is Killing. Then evolution of the universe
is given in the following table through equation of state of the perfect fluid in f(R, T )
gravity

Equation of state (EoS) p
σ
= ω Restrictions of f

′
(T ) and f(T ) Evolution of the universe

ω = 1 f
′
= f(T )

2
Ultra relativistic era

ω > −1 f(T ) < 8π Quintessence era

ω < −1 f(T ) > 8π Phantom era

ω = 0 f
′
(T ) = f(T )− 4π dust era

7 Yamabe soliton on a perfect fluid spacetime in
f(R, T )-gravity

Let the Lorentzian metric of the perfect fluid spacetime of perfect fluid spacetime M
in f(R, T )-gravity be a Yamabe soliton. Then we have

(7.1) LW g = 2(R− λ)g,

which is equivalent to

g(∇UW,V ) + g(U,∇VW ) = 2(R− λ)g(E,F ).

Taking an orthonormal frame field on M and contracting the above equation over U
and V , we infer

(7.2) divW = (R− λ)n.

Using equation (7.2) in equation (7.1), we find

LW g =
2 divW

n
g.
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This shows that the vector field W is Killing if and only if divW = 0.
Let us assume that the potential vector field V = ρ. Then equation (7.1) can be
written as

(7.3) (Lρg)(U, V ) = g(∇Uρ, V ) + g(U,∇V ρ) = 2(R− λ)g(U, V ).

Now replacing V by ρ and using equations (2.10) and the fact g(∇Uρ, ρ) = 0 and
(∇Uη)(ρ) = 0 in the above equation, we infer

(7.4) ∇ρρ = 2(R− λ)ρ.

Again setting U = V = ρ in equation (7.3) we obtain

(7.5) λ = R.

Thus, we have

Theorem 7.1. Let (g, λ, ρ) be a Yamabe soliton on a perfect fluid spacetime M in
f(R, T ) gravity with Killing velocity vector field ρ, then Yamabe soliton is expanding,
steady and shrinking according as

1. (σ + p)(8π + 2f
′
(T )) > 4[f(T )− 8pπ],

2. (σ + p)(8π + 2f
′
(T )) = 4[f(T )− 8pπ] and

3. (σ + p)(8π + 2f
′
(T )) < 4[f(T )− 8pπ] respectively.

Corollary 7.2. Let (g, λ, ρ) be a Yamabe soliton on a perfect fluid spacetime M in
f(R) gravity with Killing velocity vector field ρ, then Yamabe soliton is expanding,
steady and shrinking according as

1. (σ + p)(8π + 2f
′
(T )) > 32pπ,

2. (σ + p)(8π + 2f
′
(T )) = 32pπ and

3. (σ + p)(8π + 2f
′
(T )) < 32pπ respectively.

8 Gradient Yamabe soliton on perfect fluid space-
times in f(R, T ) gravity

From equation (1.6), we have

(8.1) ∇V Dψ = (R− λ)V.

Differentiating (8.1) covariantly along the vector field V , we have

(8.2) ∇U∇V Dψ = U(R)V + (R− λ)∇UV.
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Interchanging U and V in the above equation and then using the foregoing equation,
(8.1) and (8.2) in R(U, V )Dψ = ∇U∇V Dψ −∇V ∇UDψ −∇[U,V ]Dψ, we infer

R(U, V )Dψ = U(R)V − V (R)U.

Considering an orthonormal frame field and contracting the above equation over U ,
we find

Ric(V,Dψ) = −(n− 1)V (R).

From equation (2.14) we have

Ric(V,Dψ) = aV (ρ) + bρ(ψ)η(V ).

The last two equations give

(8.3) aV (ψ) + bρ(ψ)η(V ) = −(n− 1)V (R).

Setting V = ρ in the above equation, we get

(8.4) (a− b)ρ(ψ) = −(n− 1)ρ(R).

Let us assume that the velocity vector field ρ of the perfect fluid spacetime is Killing
and scalars a and b remains invariant under the velocity vector field ρ. These facts
together with equations (2.11) and (2.13) reveal that ρ(a) = 0 = ρ(b) =⇒ ρ(R) = 0.
Using this fact in equation (8.4), we find

(a− b)ρ(ψ) = 0,

which entails that either a = b or ρ(ψ) = 0. If a = b, then from equation (2.13), we
infer that

(8.5) p =
1

(4π − f ′(T ))

{
4π + f

′
(T )− f(T )

}
σ,

which gives the equation of state.
Next, we suppose that a ̸= b and ρ(ψ) = 0 =⇒ g(ρ,Dψ) = 0. The covariant

derivative of this equation gives

g(∇Uρ,Dψ) + (R− λ)η(U) = 0,

where equation (8.1) is used. Since ρ (by hypothesis) is Killing and therefore ∇ρρ = 0.
Setting U = ρ in the above equation and making use of ∇ρρ = 0, we find

(8.6) λ = R.

This shows that the scalar curvature of the manifold is constant. By considering
the hypothesis ρ(ψ) = 0 and equation (8.6), we can infer from equation (8.3) that
either a = 0 or Dψ = 0. The equation Dψ = 0 implies that f is constant and thus
the gradient Yamabe soliton is trivial. Since we are interested in non-trivial gradient
Yamabe soliton, therefore we consider a = 0 and thus from equation (2.12), we lead
to

Ric = −Rη ⊗ η,

where b = −R. Thus, we articulate our result as:



Solitons and gradient solitons on perfect fluid spacetime in f(R, T )-gravity 175

Theorem 8.1. Let a perfect fluid spacetime M in f(R, T )-gravity admits gradient
Yamabe soliton with a velocity vector field of M is Killing, then either the equation of
state is given by (8.5) or the perfect fluid spacetime in f(R) gravity is Ricci simple.

Corollary 8.2. Let a perfect fluid spacetime M in f(R)-gravity admits gradient
Yamabe soliton with a velocity vector field of M is Killing, then the equation of state
is of the form

(8.7)
p

σ
=

4π + f
′
(T )

4π − f ′(T )
,

or the perfect fluid spacetime in f(R) gravity is Ricci simple.

Let a = b and ρ(ψ) ̸= 0. Then from equation (2.11) and Theorem 8.1 we conclude
that

Ric = a(g + η ⊗ η).

The Lie derivative of the above equation along ρ gives

(8.8) (LρRic)(U, V ) = a{(Lρη)(U)η(V ) + η(U)(Lρη)(V )},

since ρ is Killing. The Lie derivative of η(U) = g(U, ρ) along the vector field ρ together
with the assumption that ρ is Kiiling infer that

Lρη = 0.

In view of last equation, equation (8.8) becomes LρRic = 0. This shows that the veloc-
ity vector field ρ of the perfect fluid spacetimes of f(R, T ) gravity is Ricci inheritance.
Hence, we can state the following:

Corollary 8.3. Let a perfect fluid spacetimes M in f(R, T ) gravity M admit a gra-
dient Yamabe soliton with the Killing velocity vector field ρ of M and ρ(ψ) ̸= 0, then
ρ is Ricci inheritance.

Now, we assume that a ̸= b on a perfect fluid spacetimes M in f(R, T ) gravity
admitting a gradient Yamabe soliton. If the velocity vector field of M is Killing,
then equation (8.6) is satisfied. Thus, we conclude that the nature of the flow vary
according to the scalar curvature of M . Thus we write the following.

Corollary 8.4. Let a perfect fluid spacetime M in f(R, T ) gravity of dimension n.
If the metric of M is a gradient Yamabe soliton, velocity vector field of M is Killing
and a ̸= b, then M possesses the constant scalar curvature.
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