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Abstract. In the present paper we study 3-dimensional C;o-manifolds ad-
mitting Ricci solitons and generalized Ricci solitons and then we introduce
a new generalization of n-Ricci soliton. We give a class of examples.
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1 Introduction

In the classification of D. Chinea and C. Gonzalez [4] of almost contact metric man-
ifolds there is a class Cio-manifolds which can be integrable but never normal. Re-
cently, in [7], The authors have developed a systematic study of the curvature of the
Chinea-Gonzalez class C5 & C12 and obtain some classification theorems for those
manifolds that satisfy suitable curvature conditions. This class is defined by using a
certain function v and when this function vanishes the class Cs @ C1o reduces to class
Cia.

Recently, in [2], the authors have study some properties of three dimensional C»-
manifolds and construct some relations between class C'1o and other classes as Cg and
Cy & Cy or |C‘

Here, we investigate these manifolds to construct Ricci soliton and generalized
Ricci soliton. It is shown that if in a 3-dimensional C1s-manifolds the metric is Ricci
soliton, where potential vector field V is collinear with the characteristic vector field
¢, then the manifold is 7-Einstein. We also prove that an 7-Einstein 3-dimensional
C12-manifold with

S=pg+on®@n p+o=—divy V =p and gradf = py —c&

admits a Ricci soliton. On the other hand, it is shown that any 3-dimensional Co-

manifold with [¢)|* — 2dive) — 5 = 0 satisfies the generalized Ricci soliton equation.
This paper is organized in the following way:

Section 2, is devoted to some basic definitions for 3-dimensional Cjo-manifold. In

Section 3, we obtain some results for a 3-dimensional C1o-manifold admitting Ricci

soliton. In the last section, we present a study on 3-dimensional Cj3-manifold which
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satisfies the generalized Ricci soliton equation and we give concrete examples. Finally,
we introduce a generalization of n-Ricci soliton and we prove the existence through
several examples.

2 Preliminaries

The notion of Ricci soliton was introduced by Hamilton [10] in 1982. A Ricci soliton is
a natural generalization of an Einstein metric. A pseudo-Riemannian manifold (M, g)
is called a Ricci soliton if it admits a smooth vector field V' (potential vector field) on
M such that

(2.1) (Lyvg)(X,Y)+25(X,Y) 4+ 2)\g(X,Y) =0,
where Lx g is the Lie-derivative of g along X given by:

A is a constant and X,Y are arbitrary vector fields on M.
A Ricci soliton is said to be shrinking, steady or expanding according to A being
negative, zero or positive, respectively. It is obvious that a trivial Ricci soliton is an
Einstein manifold with V' zero or Killing.

The generalized Ricci soliton equation in Riemannian manifold (M, g) is defined
by (see [12]):

(2.3) Lxg=—2c1X"® X"+ 2¢, S +2)g,

where X*(Y) = g(X,Y) and ¢y, 2, A € R.

Equation (2.3), is a generalization of Killing’s equation (¢; = ¢3 = A = 0), Equation
for homotheties (¢; = ¢z = 0), Ricci soliton (¢; = 0, ¢ = —1), Cases of Einstein-Weyl
(c1=1,c0 = n;jz)v Metric projective structures with skew-symmetric Ricci tensor in
projective class (c; = 1, cg = ﬁ, A = 0), Vacuum near-horzion geometry equation

(c1 =1, c2 = 3), and is also a generalization of Einstein manifolds (For more details,
see [1], [5], [8], [9], [12]).

An odd-dimensional Riemannian manifold (M?"*1 g) is said to be an almost
contact metric manifold if there exist on M a (1,1)-tensor field ¢, a vector field &
(called the structure vector field) and a 1-form n such that

(24) ) =1, X)=-X+n(X)¢ and g(eX,eY)=g(X,Y)—n(X)n(Y),

for any vector fields X, Y on M. In particular, in an almost contact metric manifold
we also have o€ =0 and no ¢ =0.

The fundamental 2-form ¢ is defined by ¢(X,Y) = g(X,Y). It is known that
the almost contact structure (p,&,n) is said to be normal if and only if

(2.5) ND(X,Y) = Ny(X,Y) + 2dn(X,Y)E =0,
for any X, Y on M, where N, denotes the Nijenhuis torsion of ¢, given by

(2.6) No(X,Y) = @*[X,Y] + [0X,0Y] — ¢[pX,Y] — ¢[X, pY].
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Given an almost contact structure, one can associate in a natural manner an
almost CR-structure (D, ¢|p), where D := Ker(n) = Im(p) is the distribution of
rank 2n transversal to the characteristic vector field £. If this almost CR-structure is
integrable (i.e., N, = 0) the manifold M?"*! is said to be CR-integrable. It is known
that normal almost contact manifolds are CR-manifolds.

In the classification of D. Chinea and C. Gonzalez [4], the almost contact metric
structures have been completely classifled. The C5 @ C15 class was recently discussed
by S. de Candia and M. Falcitelli [7]. We just recall the defining relations of C5 @ C12
class, which will be used in this study.

The C5 & C12-manifolds can be characterized by:

(Vxe)Y = a(g(eX,Y){—n(Y)eX)
(2.7) —n(X)((Ven) (@Y )€ +n(Y)pVek).

It is known that any almost contact metric manifold (¢, &, n,g) from Cs & C1o class
satisfies (see [7])

Vx¢&=—ap?X +n(X)Ve,
(2.8) dn=nAVen,
d(Ven) = —(aVen + Ve(Ve)n) A,

where dim M =2n+1 and o = —ﬁén. Furthermore, if dim M > 5, the Lee form of
M is w = —am and it is closed. Applying (2.8), one has

(2.9) da = &(a)n+ aVen.

In this paper, we will focus on the class Ci5. So, putting a =0, w = f(ng)b =
—Ven and if 9 is the vector field given by w(X) = ¢g(X, ) for all X vector field on
M, from formula (2.7) M is of class C2 if and only if

(2.10) (Vx@)Y = n(X)(w(eY ) +n(Y)ey).

Moreover, from (2.8) it follow,

(2.11) dn=wAn,
dw = 0.

Notice that V¢& = —1.
In [2], we have given a characterization of class Ci2 as follows:

Theorem 2.1. An almost contact metric manifold is of class C1o if and only if there
exists a 1-form w such that

(2.12) dn=wAn d¢=0 and N, =0.

Now, we denote by R, S, r the curvature tensor, the Ricci curvature and the scalar
curvature respectively, which are defined for all X,Y, Z € X(M) by

(2.13) R(X, Y)Z =VxVyZ -VyVxZ2Z— V[X’y]Z,
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2n+1
(2.14) S(X,Y) = Z g(R(eiaX)K ei),
i=1
2n+1
(2.15) r=>Y_ S(e,e),
i=1

with {ey,...,ean41} is a local orthonormal basis . The divergence of a vector field X
on M is defined by:

2n+1

(2.16) divep) = Z (Ve,1b, ).

(For more details of previous definitions, see for example [11]).
Then, from Corollary 3.1 of [7] we have,

(2.17) R(X,Y)€ = =2dn(X, Y)Y —n(Y)Vx¢ +n(X)Vy e,

(2.18) S(X,€) = —n(X)divp.

Proposition 2.2. In a 3-dimensional Ci2-manifold, Ricci tensor and curvature ten-
sor are given respectively by

S(X,Y) = (g + div) g(X,Y) + (j]2 — 2divy — g)n(X)n(Y)
and
RX,Y)Z = (|Y|* - 2divy — *) (Z)(n(Y)X —n(X)Y)

— (v, 2)(@(X)6 + Vi - (2divg + 1) X)
(2.20) + 9(X,2)(w(V)e + Vyv = (2dive + L)Y
+ (W + 2divy = 5) (9(V. Z)n(X >—g<X,Z>n<Y>)s
- w(2) (w(Y)X — w(X)Y) +9(Vx, Z2)Y — g(Vy, Z)X

Proof. Suppose that (M, p,&,1,n,w,g) is a 3-dimensional C1a-manifold.
Setting Y = Z = £ in the well known formula (which holds for any 3-dimensional
Riemannian manifold [3]):

RIX.Y)Z = g¢(Y.2)QX — ¢(X,Z2)QY + S(Y,Z)X — 8(X, Z)Y
(2.21) — g(g(Y, 7)X — g(X, 2)Y),

where @ is the Ricci operator defined by
(2.22) S(X,Y) = g(QX,Y).
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We get
(2.23) R(X,8)¢ =QX — (divey) X + 2(divep)n(X)€ + 2@2X.

Again, Setting Y = ¢ in formula (2.17), we obtain

(2.24) R(X,8)¢§ = —9(Ve&, X)b — Vi +n(X) Ve

On the other hand, we have

2dw(é, X) =0 & g(Ve, X) = g(Vx, )

= —9(¢,VxE)
= w(®)n(X),
which gives
(2.25) Ve = w(®)é.
So, using (2.11) and (2.25) in formula (2.24) we get
(226) R(X, )¢ = —w(X ) — Vxtb + [P n(X)E.

In view of (2.23) and (2.26), we obtain
(227) QX = —w(X)¥ = Vixth + (divep + 5)X + (] — 2divep — Sn(X)e.

Finally, equation (2.19) follows from (2.27) and (2.22). Using (2.22) and (2.27) in
(2.21), the curvature tensor in a 3-dimensional Ciz-manifold is given by (2.20). O

Example 2.1. We denote the Cartesian coordinates in a 3-dimensional Euclidean
space R3 by (,y, z) and define a symmetric tensor field g by

p2 +72 0 -7
g=e 0o 0 |,
—T 0 1

where f = f(y), 7 = 7(x) and p = p(x,y) are functions on R?® with f’ = g—i. Further,
we define an almost contact metric (¢,&,n) on R? by

0 -1 0 0
=1 0 0], ¢=e/[ 0], n=ef(-701).
0 —7 0 1

The fundamental 1-form n and the 2-form ¢ have the forms,
n=el(dz — 7dx) and & = —2p%e* dx A dy,

and hence
dn = f'e’ (de Ady +dy A dz),
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d¢ = 0.
By a direct computation the non trivial components of NV, ,g;) " are given by
1) 3 1)3
N1(2) =7f, N2(3) =f
But, Vi, 5,k € {1,2,3}

(NLP)}CJ = 07

implying that the structure (¢,&,n,g) is CR-integrable.
Therefore, to continue studying this example, it suffices to take f’ # 0 to ensure that
the structure is CR-integrable not normal.

In order to define the closed 1-form w, putting w = adx + bdy + cdz where a,b
and c are functions on R3, and using formulas dn = w An and w(€) = 0, we can check
that is very simply as follows:

(2.28) w=f"dy,

notice that dw = 0.
Knowing that w is the g-dual of 9 i.e. w(X) = g(X, ), we have immediately that

_ S ey O
(2.29) p=geg

Thus, (¢,&,%,1,w, g) becomes a Cjo structure on R3.
Now we have

el /0 0 el 0 0
= — | — —_— = —_———— — = _fi
{el p (6x+Taz)’ 2 p Oy’ ca=g=e 82}

form an orthonormal basis. To verify result in formula (2.10), the non zero components
of the Levi-Civita connection corresponding to g are given by:

(f'p+ p2) (f'p+ p2)
V6161 = —pgTezy veleQ = ,OQTeh
P1

Vezel = @627 VezeZ = _Plﬁeh

/ /!

v6362 = p?efh Ve,e2 = _P of

€9.
Then, one can easily check that for all 4,5 € {1,2,3}

(veﬁa)ej = Vi Pe; — ‘Pveiej
n(e:) (w(pe; )& +nle;)pt).
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3 Ricci soliton

In this section, we consider a 3-dimensional Cs-manifold M admitting a Ricci soliton
defined by (2.1). Let V be a pointwise collinear vector field with the structure vector
field &, that is V = B¢, where 8 is a function on M. From (2.1) we write

(3.1) 9(Vx B8, Y) +g(VypE, X) +25(X,Y) + 209(X,Y) = 0,
for all X and Y vector fields on M. Then, we have

X(B)n(Y)+ Bg(VxEY) +Y(B)n(X)
+89(Vy &, X)4+25(X,Y) +20g(X,Y) =0,

which implies

X(B)n(Y) = Bn(X)w(Y) + Y (B)n(X)
(3.2) —Bn(Y)w(X) + 2S(X,Y) + 22g(X,Y) = 0,

by virtue of (2.11). By putting ¥ = ¢ in (3.2) and using (2.18) we obtain
(3.3) X(B) = Bw(X) + (£(8) — 2divy) + 2X\)n(X) = 0.

Taking X = ¢ in the previous equation gives

(3.4) &(B) =divy — A

If we replace (3.4) in (3.3), we get

(3.5) X(B) = Bw(X) + (divi) — A)n(X),

again, if we replace (3.5) in (3.2), we obtain

(3.6) S(X,Y) = =Xg(X,Y) 4+ (A = dive)n(X)n(Y),

for all X and Y vector fields on M. Hence we have

Theorem 3.1. Let (M, p,&,1,1,w, g) be a 3-dimensional Ci2-manifold. If M admits
a Ricci soliton and V' is pointwise collinear with the structure vector field €, then M
is an n-Finstein manifold.

In addition, if A\ = divy) = constant then M is an Einstein manifold.

Let assume the converse, that is, let M be a 3-dimensional n-Einstein C75-manifold
with V = €. Then we can write

(3.7) S(X,Y) = ag(X,Y) + bn(X)n(Y),
where a and b are scalars and X, Y are vector fields on M. From (2.2) we have

(Lvg)VY) = g(VxV,Y)+g(VyV, X)
X(BnY) +Y(B)n(X) - Bn(X)w(Y) — Bn(Y)w(X),
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which implies that

(Lyvg)(X,Y)+25(X,Y)+2)g(X,)Y) = (a—l—)\)g(X,Y)
+ (X)) (n(Y) = Bw(Y) +Y(B))
+ n(Y)(bn(X) — Bw(X) + X(B)).

From the previous equation it is obvious that M admits a Ricci soliton (g, V, A) if
a+A=0 and (YY) - pw(Y)+Y(B)=0.
Equating the right hand sides of (3.7) and (2.18) and taking X =Y = £ gives
a+ b= —divy,
Thus, we get

Theorem 3.2. Let (M, p,&,1,n,w,g) be a 3-dimensional Cro-manifold with divi) is
constant. If M is an n-Einstein manifold with S = ag+ b ®n and a +b = —dive) |
then the manifold admits a Ricci soliton (g, BE, a) with gradf = B — bE.

4 Generalized Ricci soliton

In this section we will study the generalized Ricci soliton equation (2.3) on a Cia-
manifold of dimension three. let’s start with our main result

Theorem 4.1. Any three-dimensional Cio-manifold satisfies the generalized Ricci
soliton equation (2.3) with X =1, ¢y = 1, cg = —1 and X\ = |[¢|*> — divy if and only
if

(4.1) |2 — 2dive) — g =0

Proof. Suppose that (M, ¢, &, 1, n,w,g) is a Cre-manifold of dimension three which
satisfies the generalized Ricci soliton equation (2.3) with X = ¢, that is, for all
Y,Z eT(TM)

(4.2) (Lyg) (Y, Z) = —2c1w(Y)w(Z) 4 2¢25(Y, Z) + 20g(Y, Z).

Since w is closed then ¢(Vy ), Z) = g(Vz9,Y). Therefore, we can express the gen-
eralized soliton equation as

(4.3) Vv = —aw(Y )Y + QY + \Y.

Now, from (2.27) we get

(4.4) Vyt = —w(Y)y — QY + (dive) + )Y + ([9f? — 2dive) — *) (Y)E.

In view of (4.4) and (4.3) the proof is complete. O

Proposition 4.2. Let (M, p, &1, n,w,g) be a Cra-manifold of dimension three which
satisfies the generalized Ricci soliton equation (2.3) with X = . If |¢| = 1 then
r = constant.
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Proof. The proof is direct, it suffices to use Theorem 4.1. O

Example 4.1. Let’s go back to the class of the previous examples . With simple but
long calculations, we can get the following:

2 1"a—2f
=L g e, =L
p? p
_ 2e~2f 9 2 9 f11 2 22
r= 7(%’1 — pp11+ p3 — pp22 — 2f"p” — [p7),
where p; = 2. Then, the condition (4.1) gives the following differential equation
(4.5) pi — pp11 + p3 — ppaz = 0.

Henceforth, we can construct a non-trivial generalized Ricci soliton.
For example:

(D: p=1, A= fre ?,

Ve, ¥ = e 2/ f2ey, Qer = —e (" + ey,

Ve, = e 21 (= f2 + f")es, Qes = —2e7 2/ ey,

Ve, = e 2 f2eg, Qes = —e 2 (f2 4 f")es

(2): p=e¥, A= fle 2Wth),

Ve, b = o2uts J(f(f + 1)61, Qer = —e2WEN(f7 4 f2 4 fey,
veg7/1 _ 672(y+ )( f/2 f// o f/)e% Q62 _ 72672(y+f)(f” + f'2)62,
Vet = o201 f2¢ Qes = —e 2D (2 4 f)es.

Vellff = Oa Qel - Oa
Ve, = f"ea, Qez = —(f?+ [")ea,
Ve, b = e, Qes = —(f"+ f")es

Of course, we must choose f so that A is constant. We can construct further
examples of generalized Ricci soliton on a 3-dimensional C}s-manifold by the similar
way.

At the end of this section, we present the concept of the generalized n-Ricci soliton
as a generalization of the n-Ricci soliton given by Cho-Kimura in [6] by the following
equation:

(4.6) Lyg+2S+2\g+un@n =0,

where the tensor product notation (n ® n)(X,Y) = n(X)n(Y) is used and A,y are
real constants.
The generalized n-Ricci soliton equation in Riemannian manifold (M, g) is defined

by:
(4.7) Lxg=—-20X"OX"+2c,S+2 g+ un @1,

where c1,c9, A\, 4 € R.
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With the same reasoning above, we can express formula (4.7) as follows
(4.8) Vxtp = —cw(X) + QX + A\ X + un ® £.
Now, based on equation (4.4), we declare the following result

Theorem 4.3. Any 3-dimensional C12-manifold satisfies the generalized n-Ricci soli-
ton equation with

=1 ca=-1 A= [P —divy and u:|¢|2—2divw—g.

Example 4.2. From Example 4.1, we can construct several non-trivial cases, namely:

1) If f =y and p = —— with ¢ € R, then we get

e2y —c

cg=1 c=-1, A=0, and p=c

sin? y

2) If f zln( L ) and p = csiny, then we get

1
C1:1, 02:_1, )\:—g, MZ_?

Of course, while taking into account the necessary conditions on f and p.
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