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Abstract. In this paper, first, we give an explicit formula for the flag
curvature of a homogeneous Finsler space with generalized m-Kropina
metric. Then, we show that, under a mild condition, the two definitions
of naturally reductive homogeneous Finsler space are equivalent for afore-
said metric. Finally, we study the flag curvature of naturally reductive
homogeneous Finsler spaces with generalized m-Kropina metric.
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1 Introduction

Finsler geometry is one of the important reasearch area in differential geometry which
has been developed very rapidly in recent years. One reason for this development is
its application in many areas of natural science such as biology and physics [1, 2].
Finsler geometry is just Riemannian geometry without quadratic restriction [5]. In
1972, M. Matsumoto [17] introduced the notion of (α, β)-metrics in Finsler geometry.
Some important (α, β)-metrics are Randers metric, Matsumoto metric, Kropina met-
ric, generalized m-Kropina metric, square metric, etc. Many authors [18, 11, 8, 25, 26]
have studied various properties of (α, β)-metrics. Generalized m-Kropina metric be-
longs to the large class of (α, β)-metrics. Kropina metric and generalized m-Kropina
metric, both have a lot of applications in other branches of science such as physics,
irreversible thermodynamics, electron optics with a magnetic field, etc [14, 27]. An
(α, β)-metric on a connected smooth n-manifold M is a Finsler metric which can be
written in the form

F = αϕ(s); s =
β

α
,

where α := α(x, y) =
√

aij(x)yiyj is a Riemannian metric and β := β(y) = bi(x)y
i is
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a 1-form on M . In particular, if ϕ(s) =
1

sm
(m ̸= 0,−1), then the Finsler metric

F =
αm+1

βm

is called generalized m-Kropina metric.

Flag curvature is the most important quantity in Finsler geometry because it is a
generalization of the sectional curvature of Riemannian metric. In general, the com-
putation of the flag curvature of a Finsler metric is difficult, therefore it is very
important to find an explicit and applicable formula for the flag curvature. Many
authors [13, 12, 20, 19, 24] have worked in this area.
The notion of naturally reductive Riemannian metric was first introduced by Kobayashi
and Namizu [15]. The naturally reductive spaces have been investigated by several
authors as a natural generalization of Riemannian symmetric spaces. In literature,
there are two versions of the definition of naturally reductive spaces. The first defini-
tion was given by Deng and Hou [10]. In this definition, authors have supposed that
the metric should be Berwaldian. The second one was given by Latifi [16]. Deng and
Hou, in [8] have proved that if a homogeneous Finsler space is naturally reductive by
Latifi’s definition, then it must be naturally reductive by Deng and Hou’s definition
and Berwaldian. Parhizkar and Moghaddam [22] prove that both the definitions of
naturally reductive homogeneous Finsler spaces are equivalent under the considera-
tion of a mild condition.

This paper is organized as follows:
Section 2 includes basic information on homogeneous Finsler spaces needed in this
paper. In section 3, we obtain the formula for flag curvature of a homogeneous
Finsler space with generalized Kropina metric under certain conditions. In section 4,
we show that, under a mild condition, two definitions of naturally reductive homoge-
neous Finsler space are equivalent for aforesaid metric. Finally, in section 5, we derive
an explicit formula for flag curvature of a naturally reductive homogeneous Finsler
space with generalized m-Kropina metric.

2 Preliminaries

In this section, we give some basic definitions and results of Finsler spaces and natu-
rally reductive homogeneous spaces. We refer [3, 6, 7] for notations and symbols.

Definition 2.1. Let V be a real vector space of dimension n. A smooth function
F : V → [0,∞) is called a Minkowski norm if

(i) F (λy) = λF (y) ∀ λ > 0, y ∈ V \ {0}, i.e., F is positively homogeneous.

(ii) For each fixed y ∈ V \ {0}, the bilinear function g
Y
: V × V → R defined by

g
Y
(u, v) =

1

2

∂2

∂s∂t
F 2(y + su+ tv)

∣∣∣
s=t=0

is positive-definite at every point of V \ {0}.
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Minkoswki space is a linear vector space V equipped with a Minkowski norm F ,
denoted by (V, F ).
For any basis {u1, u2, ..., un} of V and y = yiui ∈ V , the Minkowski norm F can be

written as F (y) = F (y1, y2, ..., yn) and the Hessian matrix is (gij) =

[
1

2
F 2

]
yiyj

.

Definition 2.2. A Finsler metric on a smooth manifold M is a real valued function
F : TM → [0,∞) such that

(i) F is smooth on the slit tangent bundle TM \ {0}.

(ii) The restriction of F to each tangent space TxM, x ∈ M , is a Minkowski norm.

Definition 2.3. A Finsler space (M,F ) is called a Berwald space if Chern connection
of (M,F ) is a linear connection on TM . Equivalently, if each of the Chern connection
coefficient Γi

jk, in natural standard coordinate system, have no y dependence, then
Finsler space (M,F ) becomes a Berwald space.

Definition 2.4. Let (M,F ) be a Finsler space. The flag curvature K = K(P, Y ) is
a function of tangent planes P = span{Y, U} ⊂ TxM and directions Y ∈ TxM \ {0}.
The pair (P, Y ) is called a flag and Y is called the flag pole. The flag curvature is
defined by

(2.1) K(P, Y ) =
g
Y
(U,R(U, Y )Y )

g
Y
(Y, Y )g

Y
(U,U)− g2

Y
(Y, U)

.

If F is Riemannian, K = K(P ) is independent of Y ∈ P \ {0} and is called the
sectional curvature in Riemannian geometry. If K = K(x, Y ) is a scalar function
on the slit tangent bundle TM \ {0}, then Finsler metric F is said to be of scalar
curvature.

Lemma 2.1. Let F = αϕ(s); s =
β

α
, where α is a Riemannian metric, β is a 1-form

with ||β||α < b0 and ϕ is a smooth function on an open interval (−b0, b0). Then F is
Finsler metric if and only if ϕ satisfies the following condition :

ϕ(s) > 0, ϕ(s)− sϕ′(s) + (b2 − s2)ϕ′′(s) > 0 ∀ |s| ≤ b < b0.

Definition 2.5. Let G be a smooth manifold with structure of an abstract group. If
the map φ : G × G → G, defined by φ(g1, g2) = g1g

−1
2 is smooth, then G is called a

Lie group.

If G is a Lie group and M , a smooth manifold, then smooth action of G on M
is a smooth map φ : G ×M → M satisfying φ(g2, φ(g1, x)) = φ(g2g1, x) ∀ g1, g2 ∈
G, x ∈ M .
If a Lie group acts smoothly on a smooth manifold M , then G is called a Lie trans-
formation group of M .

Definition 2.6. A Finsler space (M,F ) is called homogeneous if the group I(M,F ) of
isometries acts transitively on M . It can be naturally identified with the homogeneous
space G/H, where H is the isotropy group at p ∈ M .
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Definition 2.7. [15] Let G/H be a homogeneous space with an invariant Riemannian
metric g̃ and g and h are the Lie algebras of G and H respectively. Then G/H is
called naturally reductive if there exists an Ad(H)-invariant decomposition g = h+m
such that

⟨[X,Y ]m, Z⟩+ ⟨X, [Y,Z]m⟩ = 0 ∀ X,Y, Z ∈ m,

where m is subspace of g such that Ad(h)m ⊂ m ∀h ∈ H and ⟨ , ⟩ is bilinear form on
m induced by g̃ and [ , ]m is projection of [ , ] to m.

Definition 2.8. [10] A homogeneous Finsler space G/H with an invariant Finsler
metric F is said to be naturally reductive if there exists an invariant Riemannian
metric g̃ on G/H such that (G/H, g̃) is naturally reductive and the Chern connection
of F coincides with the Levi-Civita connection of g̃.

Definition 2.9. [16] A homogeneous space G/H with an invariant Finsler metric is
called naturally reductive if there exists an Ad(H)-invariant decomposition g = h+m
such that

g
Y
([x, u]m, v) + g

Y
(x, [u, v]m) + 2Cy([x, y]m, u, v) = 0,

where y( ̸= 0), x, u, v ∈ m.

Lemma 2.2. [16] Let G/H be a naturally reductive homogeneous space with an
Ad(H)-invariant decomposition g = h + m and a G-invariant indefinite Riemannian
metric g̃. Then the curvature tensor R of the Riemannian connection satisfies

R(X,Y )Y =
1

4

[
Y, [X,Y ]m

]
m
+

[
Y, [X,Y ]h

]
∀ X,Y ∈ m.

3 Flag curvature of a homogeneous Finsler spaces

In this section, we derive an explicit formula for the flag curvature of a homogeneous
Finsler space with generalized m-Kropina metric. For this purpose, we use Püttann’s
[23] formula for curvature tensor of invariant metric ⟨ , ⟩ on compact homogeneous
space.

Let G be a compact Lie group, H be a closed subgroup of G with Lie algebras g and
h respectively and g̃ be a bi-invariant Riemannian metric on G. The tangent space of
the homogeneous space is given by orthogonal complement m of h in g. Each invariant
metric g̃ on G/H is determined by its restriction to m. Ad(H)-invariant inner product
on m can be extended to an Ad(H)-invariant inner product on g by taking g̃0 for the
components of m. In this way, the metric on G/H determines a unique left invariant
metric g̃ on G. Also, at the identity e of G, the value of g̃0 and g̃ are inner products
on g, we denote them by ⟨⟨ , ⟩⟩ and ⟨ , ⟩ respectively. Moreover, ⟨ , ⟩ determines a
positive definite endomorphism φ of g such that ⟨X,Z⟩ = ⟨⟨φ(X), Z⟩⟩ ∀ X,Z ∈ g.
Püttann’s formula for curvature tensor of invariant metric ⟨ , ⟩ on compact homoge-
neous space G/H is given by

⟨R(X,Y )Z,W ⟩ = 1

2

{
⟨⟨B−(X,Y ), [Z,W ]⟩⟩+ ⟨⟨[X,Y ], B−(Z,W )⟩⟩

}
+

1

4

{
⟨[X,W ], [Y, Z]m⟩ − ⟨[X,Z], [Y,W ]m⟩ − 2⟨[X,Y ], [Z,W ]m⟩

}
+ ⟨⟨B+(X,W ), φ−1B+(Y, Z)⟩⟩ − ⟨⟨B+(X,Z), φ−1B+(Y,W )⟩⟩,
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where

B+(X,Y ) =
1

2

(
[X,φY ] + [Y, φX]

)
,

and

B−(X,Y ) =
1

2

(
[φX, Y ] + [X,φY ]

)
are the bilinear symmetric and skew-symmetric maps respectively.

Theorem 3.1. Let H be closed subgroup of compact Lie group G with g and h, Lie
algebras of G and H respectively. Further, let g̃0 be a bi-invariant metric on Lie group
G, g̃ be invariant Riemannian metric on homogeneous space G/H and X̃, an invariant

vector field on G/H, which is parallel with respect to g̃ such that
√

g̃(X̃, X̃) < 1 and

X̃H = X. Let F =
αm+1

βm
(m ̸= 0,−1) be a generalized m-Kropina metric arising by

g̃ and X̃. Let (P, Y ) be a flag in TH(G/H) such that {U, Y } is an orthonormal basis
of P with respect to ⟨ , ⟩. Then the flag curvature of the flag (P, Y ) in TH(G/H) is
given by

(3.1) K(P, Y ) =

⟨X,Y ⟩2m
[
(m+ 1)⟨X,Y ⟩2⟨U,R(U, Y )Y ⟩

+m(2m+ 1)⟨X,U⟩⟨X,R(U, Y )Y ⟩
]

(m+ 1)
[
m⟨X,U⟩2 + ⟨X,Y ⟩2

] ,

where

⟨X,R(U, Y )Y ⟩ = −1

4

(
⟨[φU, Y ] + [U,φY ], [Y,X]⟩+ ⟨[U, Y ], [φY,X] + [Y, φX]⟩

)
− 3

4
⟨[Y,U ], [Y,X]m⟩ −

1

2
⟨[U,φX] + [X,φU ], φ−1([Y, φY ])⟩

+
1

4
⟨[U,φY ] + [Y, φU ], φ−1([Y, φX] + [X,φY ])⟩,

(3.2)

and

⟨U,R(U, Y )Y ⟩ = 1

2

(
⟨[φU, Y ] + [U,φY ], [Y, U ]⟩

)
+

3

4
⟨[Y,U ], [Y,U ]m⟩+ ⟨[U,φU ], φ−1([Y, φY ])⟩

− 1

4
⟨[U,φY ] + [Y, φU ], φ−1([Y, φU ] + [U,φY ])⟩.

(3.3)

Proof. Since X̃ is parallel with respect to g̃, β is parallel with respect to g̃.
Therefore, the Chern connection of F coincide with the Levi-Civita connection of g̃.
Thus the Finsler metric F and the Riemannian metric g̃ have same curvature tensor
and we denote it by R. Therefore, we have

F (Y ) =
(
√

⟨Y, Y ⟩)m+1

⟨X,Y ⟩m
.
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By using the definition of g
Y
(U, V ), after some computations, we get

g
Y
(U, V ) =

⟨Y, Y ⟩m−1

⟨X,Y ⟩2m+2

[
2m(m+ 1)⟨X,Y ⟩2⟨U, Y ⟩⟨Y, V ⟩ − 2m(m+ 1)⟨X,Y ⟩⟨Y, Y ⟩

⟨Y,U⟩⟨X,V ⟩ − 2m(m+ 1)⟨X,Y ⟩⟨Y, Y ⟩⟨X,U⟩⟨Y, V ⟩+ (m+ 1)⟨X,Y ⟩2

⟨Y, Y ⟩⟨U, V ⟩+m(2m+ 1)⟨Y, Y ⟩2⟨X,U⟩⟨X,V ⟩
]
.

(3.4)

As {U, Y } is an orthonormal basis for P with respect to ⟨ , ⟩, the equation (3.4) can
be written as:

g
Y
(U, V ) =

1

⟨X,Y ⟩2m+2

[
(m+ 1)⟨X,Y ⟩2⟨U, V ⟩ − 2m(m+ 1)⟨X,Y ⟩⟨X,U⟩⟨Y, V ⟩

+m(2m+ 1)⟨X,U⟩⟨X,V ⟩
]
.

(3.5)

Therefore,

g
Y
(U,R(U, Y )Y ) =

1

⟨X,Y ⟩2m+2

[
(m+ 1)⟨X,Y ⟩2⟨U,R(U, Y )Y ⟩

− 2m(m+ 1)⟨X,Y ⟩⟨X,U⟩⟨Y,R(U, Y )Y ⟩

+m(2m+ 1)⟨X,U⟩⟨X,R(U, Y )Y ⟩
]
.

(3.6)

From equation (3.5), we get following three equations:

g
Y
(Y, Y ) =

1

⟨X,Y ⟩2m
,

g
Y
(U, Y ) = − m⟨X,U⟩

⟨X,Y ⟩2m+1
,

and

g
Y
(U,U) =

1

⟨X,Y ⟩2m+2

[
(m+ 1)⟨X,Y ⟩2 +m(2m+ 1)⟨X,U⟩2

]
.

From above three equations, we get

(3.7) g
Y
(Y, Y )g

Y
(U,U)− g2

Y
(U, Y ) =

(m+ 1)

⟨X,Y ⟩4m+2

[
m⟨X,U⟩2 + ⟨X,Y ⟩2

]
.

Finally, using equations (3.2), (3.3), (3.6) and (3.7) in equation (2.1), we get the
required proof. □

4 Naturally reductive homogeneous Finsler space

In this section, we prove that if a homogeneous Finsler space with generalized m-
Kropina metric is naturally reductive in the sense of Latifi, under a mild condition,
then it is naturally reductive in the sense of Deng and Hou and vice-versa.
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Theorem 4.1. Let G be a compact Lie group and H be its closed subgroup with Lie
algebras g and h respectively. Also, let (G/H,F ) be a homogeneous Finsler space of
Berwald type with an invariant Riemannian metric ⟨ , ⟩ and an invariant vector field
X such that X̃(H) = X. Then (G/H,F ) is naturally reductive if and only if the
Riemannian space (G/H, ⟨ , ⟩) is naturally reductive.

Proof. Let Y (̸= 0), Z ∈ m. From equation (3.4), we have

g
Y
(Y, [Y,Z]m) =

⟨Y, Y ⟩m−1

⟨X,Y ⟩2m+2

[
2m(m+ 1)⟨X,Y ⟩2⟨Y, Y ⟩⟨Y, [Y, Z]m⟩ − 2m(m+ 1)

⟨X,Y ⟩⟨Y, Y ⟩2⟨X, [Y,Z]m⟩ − 2m(m+ 1)⟨X,Y ⟩2⟨Y, Y ⟩⟨Y, [Y,Z]m⟩
+ (m+ 1)⟨X,Y ⟩2⟨Y, Y ⟩⟨Y, [Y,Z]m⟩+m(2m+ 1)⟨Y, Y ⟩2⟨X,Y ⟩

⟨X, [Y,Z]m⟩
]
,

i.e.,
(4.1)

g
Y
(Y, [Y,Z]m) =

⟨Y, Y ⟩m

⟨X,Y ⟩2m+1

[
(m+ 1)⟨X,Y ⟩⟨Y, [Y,Z]m⟩ −m⟨Y, Y ⟩⟨X, [Y, Z]m⟩

]
.

Since Chern connection of (G/H,F ) coincide with the Levi-Civita connection of
(G/H, ⟨ , ⟩). From equation (4.1), we get

(4.2) ⟨X, [Y,Z]m⟩ = 0 ∀ Z ∈ m.

Now, suppose (G/H,F ) is naturally reductive, then we have

g
Y
([Z,U ]m, V ) + g

Y
([Z, V ]m, U) + 2CY ([Z, Y ]m, U, V ) = 0 ∀ Y ̸= 0, Z, U, V ∈ m.

Therefore, we can write

g
Y
([Y, U ]m, V ) + g

Y
([Y, V ]m, U) + 2CY ([Y, Y ]m, U, V ) = 0 ∀ Y ̸= 0,

i.e.,

(4.3) g
Y
([Y,U ]m, V ) + g

Y
([Y, V ]m, U) = 0,

i.e.,

(4.4) g
Y
([Y,Z]m, Y ) = 0.

Using equations (4.2), (4.4) in (4.1), we get

(4.5) ⟨[Y,Z]m, Y ⟩ = 0.

Also, from the equation (3.4), we can write

g
Y
([Y, U ]m, V ) =

⟨Y, Y ⟩m−1

⟨X,Y ⟩2m+2

[
2m(m+ 1)⟨X,Y ⟩2⟨Y, V ⟩⟨[Y, U ]m, Y ⟩

− 2m(m+ 1)⟨X,Y ⟩⟨Y, Y ⟩⟨Y, [Y,U ]m⟩⟨X,V ⟩ − 2m(m+ 1)

⟨X,Y ⟩⟨Y, Y ⟩⟨X, [Y, U ]m⟩⟨Y, V ⟩+ (m+ 1)⟨X,Y ⟩2⟨Y, Y ⟩

⟨[Y, U ]m, V ⟩+m(2m+ 1)⟨Y, Y ⟩2⟨X,V ⟩⟨X, [Y,U ]m⟩
]
.

(4.6)
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Using equations (4.6), (4.2) and (4.4), we get

(4.7) g
Y
([Y, U ]m, V ) =

(m+ 1)⟨Y, Y ⟩m

⟨X,Y ⟩2m
⟨[Y, U ]m, V ⟩.

Similary, we get

(4.8) g
Y
([Y, V ]m, U) =

(m+ 1)⟨Y, Y ⟩m

⟨X,Y ⟩2m
⟨[Y, V ]m, U⟩.

From equations (4.3), (4.7) and (4.8), we have

⟨[Y,U ]m, V ⟩+ ⟨[Y, V ]m, U⟩ = 0.

Hence (G/H, ⟨ , ⟩) is naturally reductive.
Conversely, let (G/H, ⟨ , ⟩) be naturally reductive. From equations (3.4) and (4.2),
we can write

g
Y
(⟨[Z,U ]m, V ) =

⟨Y, Y ⟩m−1

⟨X,Y ⟩2m+1

[
2m(m+ 1)⟨[Z,U ]m, Y ⟩

(
⟨X,Y ⟩⟨Y, V ⟩ − 2m(m+ 1)

⟨X,V ⟩⟨Y, Y ⟩
)
+ (m+ 1)⟨X,Y ⟩⟨Y, Y ⟩⟨[Z,U ]m, V ⟩

]
.

(4.9)

Similary, we have

g
Y
(⟨[Z, V ]m, U) =

⟨Y, Y ⟩m−1

⟨X,Y ⟩2m+1

[
⟨[Z, V ]m, Y ⟩

(
2m(m+ 1)⟨X,Y ⟩⟨Y,U⟩

− ⟨X,U⟩⟨Y, Y ⟩
)
+ (m+ 1)⟨X,Y ⟩⟨Y, Y ⟩⟨[Z, V ]m, U⟩

]
.

(4.10)

Also, Cartan tensor is given by

CY (Z,U, V ) =
1

2

d

dt

[
g
Y +tV (Z,U)

]∣∣∣∣
t=0

.

After some calculation, we get

2CY ([Z, Y ]m, U, V ) =
2m(m+ 1)⟨Y, Y ⟩m−1

⟨X,Y ⟩2m+2

[
⟨[Z, Y ]m, V ⟩

(
⟨X,Y ⟩2⟨Y, U⟩

− ⟨X,Y ⟩⟨X,U⟩⟨Y, Y ⟩
)
+ ⟨[Z, Y ]m, U⟩

(
⟨X,Y ⟩2⟨Y, V ⟩

− ⟨X,Y ⟩⟨X,V ⟩⟨Y, Y ⟩
)]

.

(4.11)

Adding equations (4.9), (4.10) and (4.11), we get

g
Y
(⟨[Z,U ]m, V ) + g

Y
(⟨[Z, V ]m, U) + 2CY ([Z, Y ]m, U, V )

=
⟨Y, Y ⟩m−1

⟨X,Y ⟩2m+2

[
(m+ 1)⟨X,Y ⟩2⟨Y, Y ⟩

(
⟨[Z, V ]m, U⟩+ ⟨[Z,U ]m, V ⟩

)
+ 2m(m+ 1)⟨X,Y ⟩

(
⟨X,Y ⟩⟨Y,U⟩ − ⟨Y, Y ⟩⟨X,U⟩

)(
⟨[Z, Y ]m, V ⟩+ ⟨[Z, V ]m, Y ⟩

)
+ 2m(m+ 1)⟨X,Y ⟩

(
⟨X,Y ⟩⟨Y, V ⟩ − Y, Y ⟩⟨X,V ⟩

)(
⟨[Z, Y ]m, U⟩+ ⟨[Z,U ]m, Y ⟩

)]
.
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As (G/H, ⟨ , ⟩) is naturally reductive, we get

g
Y
([Z,U ]m, V ) + g

Y
([Z, V ]m, U) + 2CY ([Z, Y ]m, U, V ) = 0.

Hence (G/H,F ) is naturally reductive. □

5 Flag curvature of a naturally reductive
homogeneous Finsler space with generalized m-
Kropina metric

In this section, we derive an explicit formula for the flag curvature of a naturally
reductive homogeneous Finsler space with generalized m-Kropina metric in the sense
of Deng and Hou.

Theorem 5.1. Let (G/H,F ) be a naturally reductive homogeneous Finsler space

with generalized m-Kropina metric F =
αm+1

βm
(m ̸= 0,−1), defined by an invariant

Riemannian metric g̃ and an invariant vector field X̃ which is parallel with respect

to g̃ such that X̃H = X and
√
g̃(X̃, X̃) < 1. Assume that {U, Y } is orthonormal

basis for P with respect to ⟨ , ⟩, where (P, Y ) is a flag on TH(G/H). Then the flag
curvature on the flag (P, Y ) is given by

K(P, Y ) =

⟨X,Y ⟩2m
[
(m+ 1)⟨X,Y ⟩2

(〈
U,

[
Y, [U, Y ]m

]
m

〉
+
〈
U,

[
Y, [U, Y ]h

]〉)
+m(2m+ 1)⟨X,U⟩

(〈
X,

[
Y, [U, Y ]m

]
m

〉
+

〈
X,

[
Y, [U, Y ]h

〉)]
4(m+ 1)

[
m⟨X,U⟩2 + ⟨X,Y ⟩2

] .

(5.1)

Proof. Since (G/H,F ) is naturally reductive homogeneous Finsler space, by
Lemma 2.2, we have

(5.2) R(U, Y )Y =
1

4

[
Y, [U, Y ]m

]
m
+
[
Y, [U, Y ]h

]
∀ U, Y ∈ m.

From equations (3.1) and (5.2), we get

K(P, Y ) =

⟨X,Y ⟩2m
[
(m+ 1)⟨X,Y ⟩2

(〈
U,

1

4

[
Y, [U, Y ]m

]
m
+

[
Y, [U, Y ]h

]〉)
+m(2m+ 1)⟨X,U⟩

(〈
X,

1

4

[
Y, [U, Y ]m

]
m
+
[
X, [U, Y ]h

]〉)]
(m+ 1)

[
m⟨X,U⟩2 + ⟨X,Y ⟩2

] .

After simplification, we get equation (5.1). □
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Theorem 5.2. Let (G/H,F ) be a naturally reductive homogeneous Finsler space

with generalized m-Kropina metric F =
αm+1

βm
(m ̸= 0,−1), defined by an invariant

Riemannian metric g̃ and an invariant vector field X on G such that H = {e} and
Chern connection of F coincides with the Riemannian connection of g̃. Let (P, Y ) be
a flag on Te(G) such that {U, Y } be an orthonormal basis of P with respect to ⟨ , ⟩.
Then flag curvature is given by
(5.3)

K(P, Y ) =
⟨X,Y ⟩2m[(m+ 1)⟨X,Y ⟩2⟨U, [Y, [U, Y ]]⟩+m(2m+ 1)⟨X,U⟩⟨X, [Y, [U, Y ]]⟩]

4(m+ 1)[m⟨X,U⟩2 + ⟨X,Y ⟩2] .

Proof. Since ⟨ , ⟩ is bi-invariant, we have

R(U, Y )Y =
1

4

[
Y, [U, Y ]

]
= R(U, Y )Y = −1

4

[
[U, Y ], Y

]
.

Substituting above value in equation (3.1), we get

K(P, Y ) =
⟨X,Y ⟩2m[(m+ 1)⟨X,Y ⟩2⟨U, 1

4
[Y, [U, Y ]]⟩+m(2m+ 1)⟨X,U⟩

〈
X,

1

4
[Y, [U, Y ]

]
⟩]

(m+ 1)[m⟨X,U⟩2 + ⟨X,Y ⟩2] .

After simplification, we get equation (5.3). □

Acknowledgements. The first author is thankful to UGC for providing financial
assistance in terms of JRF scholarship vide letter with Ref. No.: 961/(CSIR-UGC
NET DEC. 2018). The third author is thankful to UGC for providing financial assis-
tance in terms of JRF scholarship vide letter with Ref. No.: 1010/(CSIR-UGC NET
DEC. 2018).

References

[1] P. L. Antonelli, R. S. Ingarden, M. Matsumoto, The Theory of Sprays and Finsler
Spaces with Applications in Physics and Biology, Kluwer Academic, Dordrecht,
1993.

[2] G. S. Asanov, Finsler Geometry, Relativity and Gauge Theories, D. Reidel Pul.
Comp., Dordrecht, 1985.

[3] D. Bao, S. S. Chern, Z. Shen, An Introduction to Riemann-Finsler Geometry,
Springer-Verlag, 2000.
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