Generalized Wintgen-type inequality for
submanifolds in S-space-forms

M. Kouamou

Abstract. In this paper, we obtain the generalized Wintgen inequality
for C-totally real submanifolds in S-space form. The advantage with this
result is that we have two inequalities in only one. We introduce bi-slant
submanifolds in S-space form. We give a non trivial example. Further,
we discuss the Wintgen inequality for bi-slant submanifolds in the same
ambient space and derive its applications in various slant cases.
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1 Introduction

The Wintgen inequality (1979) is the sharp geometric inequality for surfaces in the
Euclidian space, E*, involving the Gauss curvature (intrinsic invariant), the normal
curvature and squared mean curvature (extrinsic invariant), respectively. De Smet
et al [23] conjectured a generalized Wintgen inequality for submanifolds of arbitrary
dimension and codimension in Riemannian space form. This conjecture was proved
by [16] and Ge and Tang [14], independently. Later, this conjecture was been proved
in different space forms, in complex and Sasakian space forms ([18], [19]), Golden
Riemannian space form [12], Bochner Kahler space form [1]. Recently, Mohd et al
derived a generalized Wintgen-type inequality for submanifolds in generalized space
forms, they extended this inequality to the case of bi-slant submanifolds in generalized
space forms and derived some applications in various slant cases [3].

On the other hand, Yano, [24], introduced the notion of f-structure on a (2n + s)-
dimensional manifold as a tensor field of type (1,1) and rank 2n satisfying f3 +
f = 0. Almost complex, in even dimension (s = 0) and almost contact, in odd
dimension (s = 1) structures are well known examples of f-structure. The existence
of such structure is equivalent to a reduction of the structural group of the tangent
bundle to U(n) x O(s), [4]. Recently, Najma [21] established new results of squared
mean curvature and Ricci curvature for the submanifolds of S-space form that is the
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generalization of complex and contact structure. Kim, [15], obtained a basic inequality
for submanifolds of an S-space form tangent to structure vector fields. The notion of
bi-slant submanifolds of an almost hermitian manifold or almost contact manifold was
introduced as a natural generalisation of CR-submanifold, hemi-slant submanifold,
semi-slant submanifold, [6]. In [17], [20], the authors have studied CR-submanifolds
of S-manifolds. Motivated by the work above, we establish the generalized Wintgen-
type inequality for submanifolds in S-space form that is the genaralization of Sasakian
space form and Kahler space form, ([18], [19]). This paper is organized as follows. In
section 2, we recall some necessary background on f-structures, S-manifolds and S-
space forms. In section 3, we established the generalized Wintgen-type inequality for
submanifolds of S-space form. In section 4, we give a non trivial example of bi-slant
submanifolds of S-space forms, the generalized Wintgen-type inequality for the same
ambient space and derive its applications in various slant cases.

2 Preliminaries

Yano showed that almost complex and almost contact structures can be generalized as
f-structures on a smooth manifold of dimension 2n + s. The idea for the f-structure
is to consider a tensor field with condition f3 + f = 0, of type (1,1) and rank 2n.

Let M?"*% be a smooth manifold along an f-structure of rank 2n. We take s
structural vectors fields &1, &, ..., & on M such as

(21) ffa:()v naof:Oa f2:_I+Z£a®77aa
a=1

where 7, and &, are dual forms to each other, therefore, complemented frames exist
on f-structures. For an f-manifold, we define a Riemannian metric as

(2.2) 9(X,Y) =g(fX, fY)+ Zna(X)na(Y)v X, Y e I(TM).

a=1

A consequence of (2.1) and (2.2) is
(2.3) 9(f X, X) =0, g(fX,Y)=—g(X, [Y).

An f-structure is normal, if there exist complemented frames and [f, f]+2 > &, ®

a=1
dn, = 0, where [f, f] is the Nijenhuis torsion of f. Counsider the fundamental 2-
form B defined as B(X,Y) = g(X, fY). A metric f- structure which is normal and
dm =dns = --- =dns = B is know as an S-structure. A smooth manifold along with
an S-structure is known as an S-manifold. Blair described such types of manifolds in
[4]. In the case s = 1, an S—manifold is a Sasakian manifold. In the case s =0, an
S—manifold is a Kahler manifold. For s > 2 examples of S—manifold are given in [1]
For the Riemannian connection V of g of an S—manifold M?"+*, the following were
also proved in [4]

(2.4) Vxéa=—fX, Xel(TM), a=1,...,s.
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(2.5) (Vx )Y =D [9(f X, fY)éa +na(Y)f2X], X, Y eT(TM).

a=1

Let L denote the distribution determined by —f2 and M the complementary distribu-
tion. M is determined by f?+ I and spanned by &1,...,&. If X € L, then 1,(X) =0
for any « and if If X € M, then fX = 0.

A plane section 7 is called an invariant f—section if it is determined by a vector
X € L(p), p € M, such that {X, fX} is an orthonormal pair spanning the sec-
tion. The sectional curvature K (X, fX) called an invariant f-sectional curvature is
a constant ¢, then its curvature tensor has the form

R(Xv Y)Z = Z {na(X)nﬁ(Z)fQY - na(Y)nﬁ(Z)f2X
a,f=1

—9(f X, F2)na(Y)Ep + g(fY, fZ)na(X)Ep}

I GV IDPX 4 X 12)57Y )

+ X DY = g(Y F2)FX +29(X, fY)F 2},

+

for any X,Y,Z € T(TM).

Then the S-manifold will be denoted by M?"*+*(c) and it is said to be S-space
form. As example of S-space form, we mention the euclidian space and hyperbolic
space [4].

Let N be a submanifold with an induced metric g of a real dimension m in an
S-space form, M?"*%(c). If V and V are the Levi-Civita connections on M?"+(c)
and N, respectively, then the fundamental formulas of Gauss and Weingarten are

VxY =VxY + h(X,Y),

Vxé=—AcX + V¢,

where X,Y € ['(TN), ¢ € T(TN)* and V- represents the normal connection. Recall
that, in the above basic formulas, h denotes the second fundamental form and Ag is
the shape operator, they are connected by

g(h(X,Y),§) = g(AcX,Y).
Let R be the Riemannian curvature tensor of N™. We will use the convention
R(X,Y,Z, W) = g(R(X, Y)W, Z), for all XY, Z W & T'(T'N). Then the Gauss
equation is given by
(2.7) R(X,Y,Z,W)=R(X,Y,Z, W)+ g(h(X,W),h(Y, Z)) — g(h(X, Z), h(Y,W)),
for all X,Y,Z,W € I'(T'N), and the Ricci equation by
(2.8) R(X,Y,n,8) = R*(X,Y,n,8) + g([A¢, 4] X, Y),

for all X,Y € I(TN) and &, 7 € D(TN)*.
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A submanifold N of an S-space form M (c) is called C-totally real submanifold if
€n, a=1,2,...,sis normal to N, and a consequence of this is that f(T,N) C T,N=,
for all p € N [22].

For a vector field X € T,N, p € N, it can be written as fX = PX + QX,
where PX is tangent component of fX and QX is a normal component of fX. If
P = 0, then the submanifold is said to be an anti-invariant submanifold and if Q = 0,
the submanifold is said to be an invariant submanifold. Let {ej,es,..., e} and
{€m+1,€m+2,---,€ant+st be a tangent orthonormal frame and normal orthonormal
frame respectively on V.

The mean curvature vector field is given by

1 m
(2.9) H=—> hlee).

m <
1=1

The norm of the squared mean curvature of the submanifolds is defined by

2n-+s m
1

(2.10) IH |*= —5 Yo Qon*

r=m+41 i=1
Further,
(2.11) I h?= f: g(h(ei, €5), h(ei, €5)),
i,j=1
and
(2.12) I P *= i 9*(Pei, ;).
i,j=1

3 Generalized Wintgen inequality for C-totally real
submanifolds in S-space form

We denote by K and R the sectional curvature function and the normal curvature
tensor on N. Then the normalized scalar p is given by

2T 2
p= = > Kleiey),

m(m—1) m(m—1) < em

where T is a scalar curvature, and the normalized normal scalar curvature is given by
(16]

I 3 3 Rl(e;. e 2
P _m(m—l)_m(m—l) (R 05,8, D)%

1<i<j<m 1<r<s<2n+s—m

Following [16], we put
1 2n+s—m
Ky = 1 Z trace[A,, A%,

r,s=1
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and call it the scalar normal curvature of N. The normalized scalar normal curvature

is given by
PN = m(m#_l)\/KiN
Obviously
| 2ngsom
Ky = 1 Z tv"ace[Ar,AS]2
(3.1) o=t

= > S gl An Ades, ;).

1<r<s<2n+s—m 1<i<j<m

In terms of the component of the second fundamental form, we can express Ky by
the formula

(3.2) > Yo O M — high)
1<r<s<2n+s—-m 1<i<j<m k=1

Lemma 3.1. Let N be a C-totally real submanifold in S—space form M(c). Then

c+3s
(3.3) pn < H P =p+ ——
The equality case holds identically if and only if, with respect to suitable orthonormal
frames {e1,...,em} and {emi1,...,€2n+s} the shape operators of N in M take the
form
i b 0 ... 0
b fi 0 ... 0
10 0 fi ... O
€m41 b)
0 0 0 ... f
fo+0 0 0O ... O
0 fa—0 0 0
Aeerz — O 0 f2 e 0 ,
0 0 0 fa
fs 0 0 0
0 f3 O 0
Ay = 0 0 fs 0 7
0 0 0 ... fs
where f1, fa, f3 and b are real functions, and A., ., =+ = Ae,, ., = 0.

Proof. Let N be a C-totally real submanifold in S-space form M(c). We choose
{e1,€2,...,em} and {€m41,Em+t2,-..,€2n1s} as orthonormal frame and orthonormal
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normal frame on N. respectively. From (2.6), we put X =e¢;, Y =¢;, Z = ¢; and
W =e;, i < j, we have

_ 1

R(e;,ej,e5,e;) = §(C + 3s).m(m — 1)
Using Gauss equation, we infer
1
g(c—|—3s)m(m— D=r-m?|H|*+||h]|*.

On the other hand, we have

2n+s m

m? [H =Y (Q_ hip)?

r=m+1 i=1
(3.4)
2n—+s m 2 2n+s

e D DR BIU o S SR

r=m-+11=i<j r=m+11=i<j

Furthermore, from [13], we have

(2n5—23 m 2n+s m 2n+s m
D 2 =kt am Yy (Y b= )0 Y (i — Rkt
r=m-+11=i<j r=m-+1 1=i<j r=m+411=i1<j

Combining (3.2), (3.4) (3.5), we have

2n+s m

Z Z h:%h;na th)Q'

r=m-+11=i<j

(3.6) m? | H |]> =m*py >

From the relation (2.7) and (3.6), we get

2 1
(3.7) m? || H |2 —m2px > ’fl (7 — 5 e+ 3s)m(m — 1)).
Then
(3.8) | H > —pn = p— Z( ¢+ 3s).

Finally, analysing the case of equality in (3.5), we deduce that the equality holds in
the inequality (3.3), at some point p € N if and only if there exist an orthonormal
basis of T, N and an orthonormal basis of T, N+ such that the shape operators take
the form desired. ]

As an immediate consequence of Lemma 1, we deduce the following results of [18],
(19]

Corollary 3.2. Let N be a totally real submanifold of Kahler space form M?"(c).
Then

C
(3.9) pn S| H [P =p+ 5.
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Corollary 3.3. Let N be a totally real submanifold of Sasakian space form M?*"+1(c).
Then

3
(3.10) ov I H P —p+ 2

The main result of this section is the following

Theorem 3.4. Let N be a totally real submanifold of S-space M. Then

c+ 3s

4 c+3s, c—s (c—s)?
(P < H P =p+ =)+ -

e Ry o &

m(m — 1)

Proof. Let N be a totally real submanifold of S-space form M. We choose {ey, ..., en}
an orthonormal frame on N. From (2.6), we put X =e;, Y =¢;, Z=¢ and W =1,
we have

Rlei,e;,&m) = “{g(ei, FE)g(fes.n) = gles. Fg(Ferm)},

without loss of generality, we can suppose that n = fex and £ = fe;.
Then

cC— S
(3.11) R(ei,ej,6,m) = T{%Wg‘z — YilVik )

where v;; is the Kronecker symbol.
From (3.11) and (2.8),

CcC— S
(3.12) g(R*(ei,e5)m, &) = T{’Yik’}/jl —vavie} — 9([Ar, Aslei, ;).

From this, we get

(3.13)
- c—s
(rh)? = g(R*(es,e5)n, €)% = (——{vikvjt — Yavin})?
4
ij=1
c—s
-2 1 {%m’jz — 'Yil'ij}g([ArvAS]eiv ej) + (9([Ar, Agles, ej))2
m2(m —1)2 mm—1) ¢c—s,5 ,c—3s 5 5 5
= e T T X R P | H P,
On other hand (2.7) give us
3 -1
(3.14) m | H |~ | b |P= 2 - EE3IMOR D)
or equivalently,
c+ 3s
(3.15) m? [ H|I* = | b [[*= m(m = 1)(p = — ).
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By substituting (3.15) in (3.13) we obtain

4 c+3s, c—s (c—s)?
e R e o K

(p)? < (p™) + Y

Taking account of lemma 3.1, it follows that

c+ 3s 4 c+3s. c—s c—s)?
(M < (1 H P —p+ e )

4 )2+m(m—1)(p_ 4 ) 4 8m(m —1)° =

Remark 3.1. For integral submanifolds with N normal to the structure vector fields,
we have the same inequality.

4 Generalized Wintgen inequality for bi-slant
submanifolds in S-space form

In this section, we suppose that the structure vector fields ,, « =1, ..., s, are tangent
to N.

A submanifold N in an almost contact metric manifold M is said to be Slant if
for any differentiable function f on N, and any non zero vector field X on NNV, linearly

independent on £ angle between fX and T,M is a constant 6 € [0, g], called the
slant angle of N in M. Recall that both invariant and anti-invariant submanifolds
are particular examples of slant submanifolds with slant angle 8 = 0 and 0 = g,

respectively, moreover, if 0 < 6 < g, then N is said to be a #-slant submanifold or
proper slant submanifold. A submanifold in an almost hermitian manifold M is said
to be slant if for any differentiable function f on N and any non zero vector field X
on N, linearly independent on £ angle between fX and T, M is a constant § € [0, g]

Combining these two concepts lead us to the introduction of bi-slant submanifolds
for S-space forms

Definition 4.1. A submanifold N tangent to structure vector field of an S-space M
is said to be a bi-slant submanifold, if there exist three orthogonal distribution D1,
Dy and D3 = span{&1,&a,...,&s} such that

1) TN =Dy ® Dy ® D3,
2) D;, is the slant distribution with slant angle 6;, for any i = 1, 2.
3) fD1 1 D2 and f.D2 1 Dl.

4.1 Examples of bi-slant submanifolds of S-space form

As example of bi-slant submanifold in an S-space form, for s = 0, we have the class of
slant submanifold but also the class of semi-slant submanifold, hemi-slant submanifold
and C R-submanifold [2].

Now we give a nontrivial example of proper bi-slant submanifold.

For any 61,05 € [0, g]a

x(u,v,w,t, 21, 22) = (u,0,w,vcosO1,vsin by, tcos by, tsinba, 21, 22),
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defines a 6—dimensional bi-slant submanifold N, with slant angle 61,6, in R'°(—3s)
with its S-structure given by

§a:28i,a:1,2
Za

4
1
Mo = 5 (dza — Eyidma =1,2

P T Y ) ) S
B =1 axl i ay1 i—1 a—1 3Za
g = Z Na @ Na + Z(dxz@dlerdyz@dyz)a
a=1 i=1
where
0 0 2 0
X = X Y 7% —.
;( ox; + 8yi) +az::1 0z
Furthemore, it is easy to see that
e —i = cos @ 9 + sin 6 9 i
R R Yoy, Yoy, @~ oy
e cos 0 9 + sin 6 4 = i e —i
4= 25‘3/ 25‘y 5_6‘,21’ 6_622'

From a local orthonormal frame of T, NV, if we define Dy = {e1, e} and Dy = {e3, es}
then g(fe1,ea) = cosby g(fes,es) = cosBy proving that the distribution D is 61-
slant and the distribution D5 is 65- slant.

4.2 Wintgen inequality

Theorem 4.1. Let N be a bi-slant submanifold in S-space form M, with slant angle
0; and dimD; = d;, i = 1,2. Then

c+3s | s(c+3s—4) 3(c—s)

4.1 HI|?>—pn>p— — 52 % 0,).
1) WHI =py 2p———+ 5 Tm(m — 1)(d1 cos” 01 + da cos® 02)
Proof. Let N be a bi-slant submanifold in S-space form. We choose {e1, e, ..., en},
where m = dy+da+s, and {em41, €m42, - - -, €25 } as orthonormal frame and orthonor-

mal normal frame on N respectively. From (2.6), we take X =¢;, Y =¢;, Z = ¢,
and W =¢;, i < j.

R(ei, ej,ej,€; Z {9(fei, fei)na(ej)ns(e;)) — g(fei, fej)nale;)ms(ei))
o,B=1

+g(fes, fes)nalenns(es) — a(fes, fen)nalems(e;))}
+ < + 55 (g(fen feng(fes. fes) — ol feor fes)a(fey, fer)}
+ T{g(en fei)gle;, fej) —glei, fej)gles, fei) — 2g(es, fej)g(ej, fei)}.
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By using (2.2) and (2.3) in the above equation, we get

R(ei,ej,ej,ei) = glei, ei)na(e;) — na(es)na(e:) + na(ej)ms(ei)ny (ei)ny (e5)
+ g(ej, e5)naer) — mx(e)ns (e5) + ma(ei)ns (e )ny (e)ny (e5)
c+3s

4

— glei, e (es) = glew e (e) = (1 (e))mn (e))*) + S~ (39 (Peis ),

(g(ei ei)glej, e5) +n5(e)n] (e:)

whence

3
2?:(2ms—2s)—|—c+ 5

(m(m—l)—2ms+2s)+¥ | P2

_4 _
c+3j (25 — 2ms) + 3(04 s)

(4.2)
P>

1
= Z(C +3s)m(m —1) +

Since N is bi-slant submanifold on S-space form M, where dim N = m = ny +no +3s,
we may consider an adapted bi-slant orthonormal frames as follows:

1 1
€1,€2 = mpeh--wenl—henl = m €nyi—1
1 1
€ni4+1,€n+2 = mpenr‘rla <o lnidng—15€ngtng, = mpenl-‘rng—la
and e, 4+ny,4+a = - Then we have
gler, fea) = —g(fer,e2) = —g(feu, o3t Pey),
or,
e1, feg) = — Peq, Peq).
g(er, fea) Cosalg( 1, Per)
Now, from [6], we get g(ey, fea) = —cosf;. Similarly,
2(64 fein) = cos? 6, 1 <i< my
g \CiJei+1) = cos? n+1 <i< ny+ng+2.
Hence,
m
(4.3) | P|?= Z > (e, fe;) = (m cos? 01 + ng cos? 0y).

,j=1

Then (4.3) in (4.2) give us

(4.4)

1 —14 —
27 = i(c +3s)m(m —1) + #(23 —2ms) + 3(e (n1 cos? 01 + ngy cos? 0y).
Using (2.7), (3.4), (3.5), and (3.6), we get (4.1). O

The following results is an immediate consequence of Theorem 4.1



Generalized Wintgen-type inequality for submanifolds in S-space-forms 87

Corollary 4.2. Let N be a semi-slant submanifold of Sasakian space form (s = 1)
M. Then

_c+3 (c—1) 3(c—1)

o 2
)" o P T dacosO).

(4.5) pn <ILH |? —(p

Corollary 4.3. Let N be a hemi-slant submanifold of Sasakian space form (s = 1)
M. Then

c+3, (c—1) 3(c—1)
)" o dm(m —1)

(46) v <IHI|> (o~ (dy cos ).

Corollary 4.4. Let N be an anti-invariant submanifold of Sasakian space form (s =
1) M. Then

c+3 (c—1)
4 )- 2m

(4.7) pn <[ H |I* =(p

Corollary 4.5. Let N be an invariant submanifold of Sasakian space form (s = 1)
M. Then

c+3 (cfl)+3(cfl)

4. <||HII? =(p — _
(48) px SIH P (o= =5) = 25 =+ =~

We may have the similar results for Kahler space form (s = 0).
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