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Abstract. In this paper, we obtain the generalized Wintgen inequality
for C-totally real submanifolds in S-space form. The advantage with this
result is that we have two inequalities in only one. We introduce bi-slant
submanifolds in S-space form. We give a non trivial example. Further,
we discuss the Wintgen inequality for bi-slant submanifolds in the same
ambient space and derive its applications in various slant cases.

M.S.C. 2010: 53C05, 53C40, 53C25, 53C15.
Key words: S-space form; Wintgen inequality; bi-Slant Submanifolds; C-totally real
submanifolds.

1 Introduction

The Wintgen inequality (1979) is the sharp geometric inequality for surfaces in the
Euclidian space, E4, involving the Gauss curvature (intrinsic invariant), the normal
curvature and squared mean curvature (extrinsic invariant), respectively. De Smet
et al [23] conjectured a generalized Wintgen inequality for submanifolds of arbitrary
dimension and codimension in Riemannian space form. This conjecture was proved
by [16] and Ge and Tang [14], independently. Later, this conjecture was been proved
in different space forms, in complex and Sasakian space forms ([18], [19]), Golden
Riemannian space form [12], Bochner Kahler space form [1]. Recently, Mohd et al
derived a generalized Wintgen-type inequality for submanifolds in generalized space
forms, they extended this inequality to the case of bi-slant submanifolds in generalized
space forms and derived some applications in various slant cases [3].

On the other hand, Yano, [24], introduced the notion of f -structure on a (2n+ s)-
dimensional manifold as a tensor field of type (1, 1) and rank 2n satisfying f3 +
f = 0. Almost complex, in even dimension (s = 0) and almost contact, in odd
dimension (s = 1) structures are well known examples of f -structure. The existence
of such structure is equivalent to a reduction of the structural group of the tangent
bundle to U(n) × O(s), [4]. Recently, Najma [21] established new results of squared
mean curvature and Ricci curvature for the submanifolds of S-space form that is the
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generalization of complex and contact structure. Kim, [15], obtained a basic inequality
for submanifolds of an S-space form tangent to structure vector fields. The notion of
bi-slant submanifolds of an almost hermitian manifold or almost contact manifold was
introduced as a natural generalisation of CR-submanifold, hemi-slant submanifold,
semi-slant submanifold, [6]. In [17], [20], the authors have studied CR-submanifolds
of S-manifolds. Motivated by the work above, we establish the generalized Wintgen-
type inequality for submanifolds in S-space form that is the genaralization of Sasakian
space form and Kahler space form, ([18], [19]). This paper is organized as follows. In
section 2, we recall some necessary background on f -structures, S-manifolds and S-
space forms. In section 3, we established the generalized Wintgen-type inequality for
submanifolds of S-space form. In section 4, we give a non trivial example of bi-slant
submanifolds of S-space forms, the generalized Wintgen-type inequality for the same
ambient space and derive its applications in various slant cases.

2 Preliminaries

Yano showed that almost complex and almost contact structures can be generalized as
f -structures on a smooth manifold of dimension 2n+ s. The idea for the f -structure
is to consider a tensor field with condition f3 + f = 0, of type (1, 1) and rank 2n.

Let M̄2n+s be a smooth manifold along an f -structure of rank 2n. We take s
structural vectors fields ξ1, ξ2, . . . , ξs on M̄ such as

(2.1) fξα = 0, ηα ◦ f = 0, f2 = −I +

s∑
α=1

ξα ⊗ ηα,

where ηα and ξα are dual forms to each other, therefore, complemented frames exist
on f -structures. For an f -manifold, we define a Riemannian metric as

(2.2) g(X,Y ) = g(fX, fY ) +

s∑
α=1

ηα(X)ηα(Y ), X, Y ∈ Γ(TM̄).

A consequence of (2.1) and (2.2) is

(2.3) g(fX,X) = 0, g(fX, Y ) = −g(X, fY ).

An f -structure is normal, if there exist complemented frames and [f, f ] + 2
s∑

α=1
ξα ⊗

dηα = 0, where [f, f ] is the Nijenhuis torsion of f . Consider the fundamental 2-
form B defined as B(X,Y ) = g(X, fY ). A metric f - structure which is normal and
dη1 = dη2 = · · · = dηs = B is know as an S-structure. A smooth manifold along with
an S-structure is known as an S-manifold. Blair described such types of manifolds in
[4]. In the case s = 1, an S−manifold is a Sasakian manifold. In the case s = 0, an
S−manifold is a Kahler manifold. For s ≥ 2 examples of S−manifold are given in [1]
For the Riemannian connection ∇̄ of g of an S−manifold M̄2n+s, the following were
also proved in [4]

(2.4) ∇̄Xξα = −fX, X ∈ Γ(TM̄), α = 1, . . . , s.
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(2.5) (∇̄Xf)Y =

s∑
α=1

[g(fX, fY )ξα + ηα(Y )f2X], X, Y ∈ Γ(TM̄).

Let L denote the distribution determined by −f2 and M the complementary distribu-
tion. M is determined by f2+I and spanned by ξ1, . . . , ξs. If X ∈ L, then ηα(X) = 0
for any α and if If X ∈ M , then fX = 0.

A plane section π is called an invariant f−section if it is determined by a vector
X ∈ L(p), p ∈ M̄ , such that {X, fX} is an orthonormal pair spanning the sec-
tion. The sectional curvature K(X, fX) called an invariant f -sectional curvature is
a constant c, then its curvature tensor has the form

R̄(X,Y )Z =

s∑
α,β=1

{ηα(X)ηβ(Z)f2Y − ηα(Y )ηβ(Z)f2X

− g(fX, fZ)ηα(Y )ξβ + g(fY, fZ)ηα(X)ξβ}

+
c+ 3s

4
{−g(fY, fZ)f2X + g(fX, fZ)f2Y }

+
c− s

4
{g(X, fZ)fY − g(Y, fZ)fX + 2g(X, fY )fZ},

(2.6)

for any X,Y, Z ∈ Γ(TM̄).
Then the S-manifold will be denoted by M̄2n+s(c) and it is said to be S-space

form. As example of S-space form, we mention the euclidian space and hyperbolic
space [4].

Let N be a submanifold with an induced metric g of a real dimension m in an
S-space form, M̄2n+s(c). If ∇̄ and ∇ are the Levi-Civita connections on M̄2n+s(c)
and N , respectively, then the fundamental formulas of Gauss and Weingarten are

∇̄XY = ∇XY + h(X,Y ),

∇̄Xξ = −AξX +∇⊥
Xξ,

where X,Y ∈ Γ(TN), ξ ∈ Γ(TN)⊥ and ∇⊥ represents the normal connection. Recall
that, in the above basic formulas, h denotes the second fundamental form and Aξ is
the shape operator, they are connected by

g(h(X,Y ), ξ) = g(AξX,Y ).

Let R be the Riemannian curvature tensor of Nm. We will use the convention
R(X,Y, Z,W ) = g(R(X,Y )W,Z), for all X,Y, Z,W ∈ Γ(TN). Then the Gauss
equation is given by

(2.7) R̄(X,Y, Z,W ) = R(X,Y, Z,W ) + g(h(X,W ), h(Y,Z))− g(h(X,Z), h(Y,W )),

for all X,Y, Z,W ∈ Γ(TN), and the Ricci equation by

(2.8) R̄(X,Y, η, ξ) = R⊥(X,Y, η, ξ) + g([Aξ, Aη]X,Y ),

for all X,Y ∈ Γ(TN) and ξ, η ∈ Γ(TN)⊥.
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A submanifold N of an S-space form M̄(c) is called C-totally real submanifold if
ξα, α = 1, 2, . . . , s is normal to N , and a consequence of this is that f(TpN) ⊂ TpN

⊥,
for all p ∈ N [22].

For a vector field X ∈ TpN , p ∈ N , it can be written as fX = PX + QX,
where PX is tangent component of fX and QX is a normal component of fX. If
P = 0, then the submanifold is said to be an anti-invariant submanifold and if Q = 0,
the submanifold is said to be an invariant submanifold. Let {e1, e2, . . . , em} and
{em+1, em+2, . . . , e2n+s} be a tangent orthonormal frame and normal orthonormal
frame respectively on N .

The mean curvature vector field is given by

(2.9) H =
1

m

m∑
i=1

h(ei, ei).

The norm of the squared mean curvature of the submanifolds is defined by

(2.10) ∥ H ∥2= 1

m2

2n+s∑
r=m+1

(

m∑
i=1

hr
ii)

2.

Further,

(2.11) ∥ h ∥2=
m∑

i,j=1

g(h(ei, ej), h(ei, ej)),

and

(2.12) ∥ P ∥2=
m∑

i,j=1

g2(Pei, ej).

3 Generalized Wintgen inequality for C-totally real
submanifolds in S-space form

We denote by K and R⊥ the sectional curvature function and the normal curvature
tensor on N . Then the normalized scalar ρ is given by

ρ =
2τ

m(m− 1)
=

2

m(m− 1)

∑
1≤i<j≤m

K(ei, ej),

where τ is a scalar curvature, and the normalized normal scalar curvature is given by
[16]

ρ⊥ =
2τ⊥

m(m− 1)
=

2

m(m− 1)

√ ∑
1≤i<j≤m

∑
1≤r<s≤2n+s−m

(R⊥(ei, ej , ξr, ξs))2.

Following [16], we put

KN =
1

4

2n+s−m∑
r,s=1

trace[Ar, As]
2,
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and call it the scalar normal curvature of N . The normalized scalar normal curvature
is given by

ρN =
2

m(m− 1)

√
KN .

Obviously

KN =
1

4

2n+s−m∑
r,s=1

trace[Ar, As]
2

=
∑

1≤r<s≤2n+s−m

∑
1≤i<j≤m

g([Ar, As]ei, ej)
2.

(3.1)

In terms of the component of the second fundamental form, we can express KN by
the formula

(3.2)
∑

1≤r<s≤2n+s−m

∑
1≤i<j≤m

(

m∑
k=1

hr
jkh

s
ik − hr

ikh
s
jk)

2.

Lemma 3.1. Let N be a C-totally real submanifold in S−space form M̄(c). Then

(3.3) ρN ≤∥ H ∥2 −ρ+
c+ 3s

4
.

The equality case holds identically if and only if, with respect to suitable orthonormal
frames {e1, . . . , em} and {em+1, . . . , e2n+s} the shape operators of N in M̄ take the
form

Aem+1
=


f1 b 0 . . . 0
b f1 0 . . . 0
0 0 f1 . . . 0
...

...
...

. . .
...

0 0 0 . . . f1

 ,

Aem+2
=


f2 + b 0 0 . . . 0

0 f2 − b 0 . . . 0
0 0 f2 . . . 0
...

...
...

. . .
...

0 0 0 . . . f2

 ,

Aem+3
=


f3 0 0 . . . 0
0 f3 0 . . . 0
0 0 f3 . . . 0
...

...
...

. . .
...

0 0 0 . . . f3

 ,

where f1, f2, f3 and b are real functions, and Aem+4
= · · · = Ae2n+s

= 0.

Proof. Let N be a C-totally real submanifold in S-space form M̄(c). We choose
{e1, e2, . . . , em} and {em+1, em+2, . . . , e2n+s} as orthonormal frame and orthonormal
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normal frame on N . respectively. From (2.6), we put X = ei, Y = ej , Z = ej and
W = ei, i < j, we have

R̄(ei, ej , ej , ei) =
1

8
(c+ 3s).m(m− 1)

Using Gauss equation, we infer

1

8
(c+ 3s)m(m− 1) = τ −m2 ∥ H ∥2 + ∥ h ∥2 .

On the other hand, we have

m2 ∥ H ∥2 =

2n+s∑
r=m+1

(

m∑
i=1

hr
ii)

2

=
1

m− 1

2n+s∑
r=m+1

m∑
1=i<j

(hr
ii − hr

jj)
2 +

2m

m− 1

2n+s∑
r=m+1

m∑
1=i<j

hr
iih

r
jj .

(3.4)

Furthermore, from [13], we have
(3.5)
2n+s∑

r=m+1

m∑
1=i<j

(hr
ii − hr

jj)
2 + 2m

2n+s∑
r=m+1

(

m∑
1=i<j

hr
ij)

2 ≥ [

2n+s∑
r=m+1

m∑
1=i<j

(hr
jkh

s
ik − hr

ikh
s
jk)]

1/2.

Combining (3.2), (3.4) (3.5), we have

(3.6) m2 ∥ H ∥2 −m2ρN ≥ 2m

m− 1

2n+s∑
r=m+1

m∑
1=i<j

hr
iih

r
jj − (hr

ij)
2.

From the relation (2.7) and (3.6), we get

(3.7) m2 ∥ H ∥2 −m2ρN ≥ 2m

m− 1
[τ − 1

8
(c+ 3s)m(m− 1)].

Then

(3.8) ∥ H ∥2 −ρN ≥ ρ− 1

4
(c+ 3s).

Finally, analysing the case of equality in (3.5), we deduce that the equality holds in
the inequality (3.3), at some point p ∈ N if and only if there exist an orthonormal
basis of TpN and an orthonormal basis of TpN

⊥ such that the shape operators take
the form desired. □

As an immediate consequence of Lemma 1, we deduce the following results of [18],
[19]

Corollary 3.2. Let N be a totally real submanifold of Kahler space form M̄2n(c).
Then

(3.9) ρN ≤∥ H ∥2 −ρ+
c

4
.
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Corollary 3.3. Let N be a totally real submanifold of Sasakian space form M̄2n+1(c).
Then

(3.10) ρN ≤∥ H ∥2 −ρ+
c+ 3

4
.

The main result of this section is the following

Theorem 3.4. Let N be a totally real submanifold of S-space M̄ . Then

(ρ⊥)2 ≤ (∥ H ∥2 −ρ+
c+ 3s

4
)2 +

4

m(m− 1)
(ρ− c+ 3s

4
).
c− s

4
+

(c− s)2

8m(m− 1)
.

Proof. LetN be a totally real submanifold of S-space form M̄ . We choose {e1, . . . , em}
an orthonormal frame on N . From (2.6), we put X = ej , Y = ei, Z = ξ and W = η,
we have

R̄(ei, ej , ξ, η) =
c− s

4
{g(ei, fξ)g(fej , η)− g(ej , fξ)g(fei, η)},

without loss of generality, we can suppose that η = fek and ξ = fel.
Then

(3.11) R̄(ei, ej , ξ, η) =
c− s

4
{γikγjl − γilγjk},

where γil is the Kronecker symbol.
From (3.11) and (2.8),

(3.12) g(R⊥(ei, ej)η, ξ) =
c− s

4
{γikγjl − γilγjk} − g([Ar, As]ei, ej).

From this, we get

(τ⊥)2 =

m∑
i,j=1

g(R⊥(ei, ej)η, ξ)
2 = (

c− s

4
{γikγjl − γilγjk})2

− 2
c− s

4
{γikγjl − γilγjk}g([Ar, As]ei, ej) + (g([Ar, As]ei, ej))

2

=
m2(m− 1)2

4
ρN +

m(m− 1)

2
(
c− s

4
)2 + (

c− s

4
)(− ∥ h ∥2 +m2 ∥ H ∥2).

(3.13)

On other hand (2.7) give us

(3.14) m2 ∥ H ∥2 − ∥ h ∥2= 2τ − (c+ 3s)m(m− 1)

4
,

or equivalently,

(3.15) m2 ∥ H ∥2 − ∥ h ∥2= m(m− 1)(ρ− c+ 3s

4
).
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By substituting (3.15) in (3.13) we obtain

(ρ⊥)2 ≤ (ρN )2 +
4

m(m− 1)
(ρ− c+ 3s

4
).
c− s

4
+

(c− s)2

8m(m− 1)
.

Taking account of lemma 3.1, it follows that

(ρ⊥)2 ≤ (∥ H ∥2 −ρ+
c+ 3s

4
)2 +

4

m(m− 1)
(ρ− c+ 3s

4
).
c− s

4
+

(c− s)2

8m(m− 1)
. □

Remark 3.1. For integral submanifolds with N normal to the structure vector fields,
we have the same inequality.

4 Generalized Wintgen inequality for bi-slant
submanifolds in S-space form

In this section, we suppose that the structure vector fields ξα, α = 1, . . . , s, are tangent
to N.

A submanifold N in an almost contact metric manifold M̄ is said to be Slant if
for any differentiable function f on N , and any non zero vector field X on N , linearly

independent on ξ angle between fX and TpM is a constant θ ∈ [0,
π

2
], called the

slant angle of N in M̄ . Recall that both invariant and anti-invariant submanifolds

are particular examples of slant submanifolds with slant angle θ = 0 and θ =
π

2
,

respectively, moreover, if 0 < θ <
π

2
, then N is said to be a θ-slant submanifold or

proper slant submanifold. A submanifold in an almost hermitian manifold M̄ is said
to be slant if for any differentiable function f on N and any non zero vector field X

on N , linearly independent on ξ angle between fX and TpM is a constant θ ∈ [0,
π

2
].

Combining these two concepts lead us to the introduction of bi-slant submanifolds
for S-space forms

Definition 4.1. A submanifold N tangent to structure vector field of an S-space M̄
is said to be a bi-slant submanifold, if there exist three orthogonal distribution D1,
D2 and D3 = span{ξ1, ξ2, . . . , ξs} such that

1) TN = D1 ⊕D2 ⊕D3,

2) Di, is the slant distribution with slant angle θi, for any i = 1, 2.

3) fD1 ⊥ D2 and fD2 ⊥ D1.

4.1 Examples of bi-slant submanifolds of S-space form

As example of bi-slant submanifold in an S-space form, for s = 0, we have the class of
slant submanifold but also the class of semi-slant submanifold, hemi-slant submanifold
and CR-submanifold [2].
Now we give a nontrivial example of proper bi-slant submanifold.

For any θ1, θ2 ∈ [0,
π

2
],

x(u, v, w, t, z1, z2) = (u, 0, w, v cos θ1, v sin θ1, t cos θ2, t sin θ2, z1, z2),
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defines a 6−dimensional bi-slant submanifold N , with slant angle θ1, θ2 in R10(−3s)
with its S-structure given by

ξα = 2
∂

∂zα
, α = 1, 2

ηα =
1

2
(dzα −

4∑
i=1

yidxi), α = 1, 2

fX =
4∑

i=1

Y i ∂

∂xi
−

4∑
i=1

Xi ∂

∂yi
+ (

4∑
i=1

Y iYi)(

2∑
α=1

∂

∂zα
)

g =
2∑

α=1
ηα ⊗ ηα +

4∑
i=1

(dxi ⊗ dxi + dyi ⊗ dyi),

where

X =

4∑
i=1

(Xi ∂

∂xi
+ Y i ∂

∂yi
) +

2∑
α=1

Zα ∂

∂zα
.

Furthemore, it is easy to see that

e1 =
∂

∂x1
, e2 = cos θ1

∂

∂y1
+ sin θ1

∂

∂y2
, e3 =

∂

∂x3
,

e4 = cos θ2
∂

∂y3
+ sin θ2

∂

∂y4
, e5 =

∂

∂z1
, e6 =

∂

∂z2
.

From a local orthonormal frame of TpN , if we define D1 = {e1, e2} and D2 = {e3, e4}
then g(fe1, e2) = cos θ1 g(fe3, e4) = cos θ2 proving that the distribution D1 is θ1-
slant and the distribution D2 is θ2- slant.

4.2 Wintgen inequality

Theorem 4.1. Let N be a bi-slant submanifold in S-space form M̄ , with slant angle
θi and dimDi = di, i = 1, 2. Then

(4.1) ∥ H ∥2 −ρN ≥ ρ− c+ 3s

4
+

s(c+ 3s− 4)

2m
− 3(c− s)

4m(m− 1)
(d1 cos

2 θ1 + d2 cos
2 θ2).

Proof. Let N be a bi-slant submanifold in S-space form. We choose {e1, e2, . . . , em},
where m = d1+d2+s, and {em+1, em+2, . . . , e2n} as orthonormal frame and orthonor-
mal normal frame on N respectively. From (2.6), we take X = ei, Y = ej , Z = ej
and W = ei, i < j.

R̄(ei, ej , ej , ei) =

s∑
α,β=1

{g(fei, fei)ηα(ej)ηβ(ej))− g(fei, fej)ηα(ej)ηβ(ei))

+ g(fej , fej)ηα(ei)ηβ(ei))− g(fej , fei)ηα(ei)ηβ(ej))}

+
c+ 3s

4
{g(fei, fei)g(fej , fej)− g(fei, fej)g(fej , fei)}

+
c− s

4
{g(ei, fei)g(ej , fej)− g(ei, fej)g(ej , fei)− 2g(ei, fej)g(ej , fei)}.
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By using (2.2) and (2.3) in the above equation, we get

R̄(ei, ej , ej , ei) = g(ei, ei)η
2
α(ej)− η2

α(ej)η
2
γ(ei) + ηα(ej)ηβ(ei)ηγ(ei)ηγ(ej)

+ g(ej , ej)η
2
α(ei)− η2

α(ei)η
2
γ(ej) + ηα(ei)ηβ(ej)ηγ(ei)ηγ(ej)

+
c+ 3s

4
(g(ei, ei)g(ej , ej) + η2

γ(ej)η
2
γ(ei)

− g(ei, ei)η
2
γ(ej)− g(eij , ej)η

2
γ(ei)− (ηγ(ej)ηγ(ei))

2) +
c− s

4
(3g2(Pei, ej)),

whence

2τ̄ = (2ms− 2s) +
c+ 3s

4
(m(m− 1)− 2ms+ 2s) +

3(c− s)

4
∥ P ∥2

=
1

4
(c+ 3s)m(m− 1) +

c+ 3s− 4

4
(2s− 2ms) +

3(c− s)

4
∥ P ∥2 .

(4.2)

Since N is bi-slant submanifold on S-space form M̄ , where dimN = m = n1+n2+ s,
we may consider an adapted bi-slant orthonormal frames as follows:

e1, e2 =
1

cos θ1
Pe1, . . . , en1−1, en1

=
1

cos θ1
Pen1−1

en1+1, en1+2 =
1

cos θ2
Pen1+1, . . . , en1+n2−1, en1+n2

=
1

cos θ2
Pen1+n2−1,

and en1+n2+α = ξα. Then we have

g(e1, fe2) = −g(fe1, e2) = −g(fe1,
1

cos θ1
Pe1),

or,

g(e1, fe2) = − 1

cos θ1
g(Pe1, P e1).

Now, from [6], we get g(e1, fe2) = − cos θ1. Similarly,

g2(ei, fei+1) =

{
cos2 θ1 1 ⩽ i < n1

cos2 θ2 n1 + 1 ⩽ i < n1 + n2 + 2.

Hence,

(4.3) ∥ P ∥2=
m∑

i,j=1

g2(ei, fej) = (n1 cos
2 θ1 + n2 cos

2 θ2).

Then (4.3) in (4.2) give us

2τ̄ =
1

4
(c+ 3s)m(m− 1) +

c+ 3s− 4

4
(2s− 2ms) +

3(c− s)

4
(n1 cos

2 θ1 + n2 cos
2 θ2).

(4.4)

Using (2.7), (3.4), (3.5), and (3.6), we get (4.1). □

The following results is an immediate consequence of Theorem 4.1
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Corollary 4.2. Let N be a semi-slant submanifold of Sasakian space form (s = 1)
M̄ . Then

(4.5) ρN ≤∥ H ∥2 −(ρ− c+ 3

4
)− (c− 1)

2m
+

3(c− 1)

4m(m− 1)
(d1 + d2 cos

2 θ2).

Corollary 4.3. Let N be a hemi-slant submanifold of Sasakian space form (s = 1)
M̄ . Then

(4.6) ρN ≤∥ H ∥2 −(ρ− c+ 3

4
)− (c− 1)

2m
+

3(c− 1)

4m(m− 1)
(d1 cos

2 θ1).

Corollary 4.4. Let N be an anti-invariant submanifold of Sasakian space form (s =
1) M̄ . Then

(4.7) ρN ≤∥ H ∥2 −(ρ− c+ 3

4
)− (c− 1)

2m
.

Corollary 4.5. Let N be an invariant submanifold of Sasakian space form (s = 1)
M̄ . Then

(4.8) ρN ≤∥ H ∥2 −(ρ− c+ 3

4
)− (c− 1)

2m
+

3(c− 1)

4m
.

We may have the similar results for Kahler space form (s = 0).
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