Results on quasi-*Einstein metric
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Abstract. We study the quasi-*Einstein metric on Sasakian and (k, p)-
manifolds. We show that on Sasakian manifolds the x-Ricci operator com-
mutes with tensor field ¢ and quasi-*Einstein Sasakian metric is *-flat.
Further, we study (x < 1, u)-manifolds with quasi-*Einstein metric and
obtain that such manifold is *-flat or locally isometric to E"*! x S™(4) or
*Einstein.
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1 Introduction

A Riemannian manifold (M, g) is called *Einstein with S* = vg, where S* denotes
x-Ricci tensor and v is a constant. A *-Ricci soliton is a generalization of *Einstein
metric which is given by [13]

1

where v is a constant and U is the potential field. If for a smooth function F, U = VF,
then (1.1) is called gradient *-Ricci soliton.

The *-Ricci tensor on an almost contact metric manifold M is defined as follows
[12]:

1
(1.2) §°(2.V) = § trace(X = R(Z,0V)$X), VZ,V.X € TM,
where ¢ is a (1,1)-tensor field and R is a Riemann curvature tensor.
The Einstein condition S = vg and its generalizations have been studied ex-

tensively in contact geometry (see [8, 11, 16]). A generalization of Einstein metric
emerged from the m-Bakry-Emery Ricci tensor SE defined as:

1
(1.3) SE— 84+ V*F - —dF @ dF,
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has been studied in [4, 5], where 0 < m < oo, S is the Ricci tensor and V2F denotes
the Hessian form of F'.
A Riemannian manifold (M, g, F,m) is called m—quasi-Einstein [7] if it satisfies

1
(1.4) S+ HessF — —dF ® dF = vg,
m
for some m € Z*. Similarly, we call (M, g, F, m), m—quasi-*Einstein if it satisfies
. 1
(1.5) S* + HessF — —dF @ dF = vg.
m

If m = oo, then (1.5) gives the gradient *-Ricci soliton. A quasi-*Einstein metric
is *Finstein if F' = constant. We call a quasi-*Einstein metric steady, expanding, or
shrinking, respectively, when v =0, < 0 or > 0.

Sharma [15] proved that a complete K-contact metric with gradient Ricci soliton
is a compact Einstein Sasakian manifold and gradient soliton is expanding. As ev-
ery Sasakian manifold is a K-contact manifold, this result is also true for Sasakian
manifolds. Ghosh et al. extended this result for (k,u)-spaces [11]. Quasi-Einstein
metrics have been studied in extent for a general manifold, and gap results and rigid
properties were obtained in (cf. [4, 17]). Further, Ghosh [9] studied quasi-Einstein
contact metric on Sasakian manifolds and on (k, p)-spaces. Recently, Chen [6] studied
the quasi-Einstein metric on almost cosymplectic manifolds.

However, only very little literature is available on the study of *Einstein and its
generalization. This inspired us to study quasi-*Einstein structure associated with
contact metric manifolds.

2 Preliminaries and some basic results

An odd-dimensional Riemannian manifold M?2"*+! is called an almost contact met-
ric manifold if it admits a (1,1) tensor field ¢, a vector field £, a 1-form n and a
Riemannian metric g satisfying [1]

(2.1) $°Z=-Z+n2)¢ () =1,
) no¢=0,¢5=0,
(2.3) 9(0Z, V) =g(Z,V) =n(Z)n(V), n(Z) = 9(Z,¢&),

where Z,V € TM. A contact manifold is a Riemannian manifold M?"+! with a
global 1-form 7 called a contact 1-form such that n A (dn)™ # 0 everywhere on M and
dn(Z,V) = g(Z,¢V).

A contact metric manifold is called Sasakian [1] if

(Vz)V =g(Z, V) —n(V)Z,

where Z,V € TM.
The Riemann curvature tensor R on a Sasakian manifold is given by [1]

(2.4) R(Z.V)E = n(V)Z = n(Z)V.
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On a K-contact manifold [1], we have

(2.5) Vz€=—¢Z,
(2.6) Q¢ = 20,
(2.7) R(Z,8§)§ = Z —n(Z)¢.

Now, we define self-adjoint operators h = %quﬁ and [ = —R(&, .)€, which satisfy
(1]:
s £ =0=h, 6h=—hs, g(hX,Y)=g(hY,X),

' trh =trh¢ = 0.

Also, for any contact metric manifold [1], we have
(2.9) Vz€=—¢Z — phZ,
(2.10) Veh = —¢h® — ¢l + 6.

A contact metric manifold M2"*! is said to be (k, u)-space if Riemann curvature
tensor R satisfies [2]

(2.11) R(Z,V)§ = w{n(V)Z —n(Z)V} + p{n(V)hZ —n(Z)hV},

for some (k,p) € R?. If K =1 and h = 0, then (k, uu)-spaces reduce to the Sasakian
manifolds. The non-Sasakian manifolds have proven to be more interesting as there
exists the unit tangent sphere bundle of a flat Riemannian manifold with the usual
contact metric structure as an example of non-Sasakian spaces of this type. More-
over, this type of space is invariant under D-homothetic transformations. These are
the driving factor for the study of this type of manifold. Boeckx proved that non-
Sasakian contact metric manifold satisfying (2.11) is completely determined locally
by its dimension for the constant values of &, y [3].

3 Quasi-*Einstein metric on a Sasakian manifold

In this section, we study the quasi-*Einstein metric on a Sasakian manifold. On a
Sasakian manifold M2+ [10]

(3.1) Q2 =QZ—(2n-1)Z -n(2)§,

(3.2) r* =1 —4n?

where Q*, @, r* and r are *-Ricci operator, Ricci operator, *-scalar curvature and
scalar curvature respectively

Lemma 3.1. [14] The curvature tensor R of a Riemannian manifold M?"*1 with
quasi-* Finstein metric satisfies

33)  R(ZV)VE = (VvQ*)Z—(VzQ*)V—%{(ZF)V—(VF)Z}

b IRV - (VP)Q'Z),
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2nv

(3.4) S(V,VF) = V + —(VF) + {(Q V)F —r*(VF)},

for any Z,V € TM, where VF is gradient of F.
Proof. From (1.5), we have

1
(3.5) Q'V+VyVEF = —(VF)VF = V.
We know that
(3.6) R(Z, V)X =VzVyX = VyVzX - Vz v X.
Using (3.5) in (3.6), we obtain (3.3). Further, contracting (3.3) over Z, we get
(3.4). O

Lemma 3.2. [9] If F € C* on a contact metric manifold M such that dF = (§F)n,
where d denotes the exterior differentiation. Then F is constant on M.

Next,

Lemma 3.3. On a Sasakian manifold M?"+1

(3.7) Q¢ =0Q".

Proof. Putting Z = ¢ in (3.1) and using (2.6), we obtain

(3.8) Q*¢=0.
Differentiating (3.8) with respect to Z, we get

(3.9) (V2Q")E = Q*62.

If V, Z € {¢1}, then with respect to ¢ basis {Z;, Z,1: = ¢Z;, £}, we have

9Q6Z,0V) = fZg (62,6°V)070, Z2) + 5o(R(67, V)05, )

= fZg (V,62)0Zi, Z:),

which gives

(3.10) 9(Q*9Z,¢V) = g(Q"V, Z).
From (3.1) and using the fact that @ is symmetric, we get
(3.11) 9@V, 2) =g(Q"Z,V).
From (3.10) and (3.11), we get
—0Q"9Z =Q"Z,
wherein multiplying with ‘¢’ on both sides and using (2.1), we find
Q" ¢Z = Q" Z,

whereby proof is complete. O
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Theorem 3.4. Let M?" ! be a Sasakian manifold, then LS* =0 and VeQ* = 0.

Proof. 1t is well-known that L£¢g = 0 on a Sasakian manifold. Also, we have

(3.12) ﬁg(Rquv(Z)X) = ﬁg(VzV¢v¢X — Vv Vz0X — V[Z’¢,V]X),

(3.13)  Rr.zgvodX = ViezVevoX —VeuVe z0X — Vie z4v10X,
(314) Rzr.ovoX = VzVevoX —VieovVzoX — Vg eov)0X,
(315) RzgvLedX = VzVay(LeoX)— VouVz(LehX) — Vo LedX,

Y Z,V,X € TM.
From (3.12)~(3.15), we obtain

Le(Rz,pvdX) = Re.z2,4vdX + Rz c.4v9X + Rz ovLep X,

which gives (L¢R)z,v¢X = 0 and contracting it over X, we get L£¢S* = 0. This
implies

(3.16) Le(9(Q°2,V)) = 57 (LeZ, V) = 57(Z, LeV) = 0.

Simplifying (3.16), we find

(3.17) £, Q"Z] - Q([¢, Z]) = 0.
Using (2.5) in (3.17), we get
(3.18) VeQ" = Q"¢ — ¢Q".
Using Lemma 3.3 in (3.18), we obtain the result. 0

Theorem 3.5. Let M?"*! be a Sasakian manifold satisfying (1.5), then F is constant
and quasi-* Finstein soliton is steady.

Proof. Taking inner product of (3.3) with £ and using (3.8) and (3.9), we get
(3.19) g(R(Z,V)VF.€) = ~29(Q"6Z,V) + ~A(VF)n(Z) = (ZF)n(V)}.

Putting V = ¢ in (3.19) and using (2.4), we get

v

(3.20) (- = D(EFm(2) - (ZF)) = 0.
Now, we claim that v # m. Infact, if ¥ = m, then putting Z = £ in (3.3), we get

(321)  REVIVE = (YvQ)E~ (VeQ')V — {(EF)V ~ (VF)E)
L{enQV — (VE)QE).

_|_

From (2.4), we obtain

(3.22) R(£,V)VF = (VF)¢ — (EF)V.
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Using (3.22) in (3.21), we get

(32 (VvQ)E— (VeQ)V + {(EF)QV ~ (VFIQ'€) =0.

Using Theorem 3.4, (3.8) and (3.9) in (3.23), we obtain
EF

(3.24) Q oV + EQ*V =0.
Taking inner product of (3.24) with Z, we find

¢F

(3.25) 9Q V. 2) + = g(@V.2) = 0.

Interchanging V' and Z in (3.25), we get

(3.26) 0@ 62.V)+ 9@ 2, v) =0,

Subtracting (3.26) from (3.25), we obtain

(3.27) Q¢ +0Q")V =0,

V'V € TM. Using Lemma 3.3 in (3.27), we get ¢Q*V = 0. Which further using (2.1)
gives Q*V = 0. Hence r* = 0. Using this in (3.4), we find

(3.28) S(V,VF)=2n(VF).
On the other hand from (3.1), we get
(3.29) QV =(2n-1)V +n(V)E.

Using (3.29) in (3.28), we obtain VF = (£F)n(V). Which gives F' constant by
use of Lemma 3.2. Therefore, from (1.5), we obtain v = 0, that gives m = 0, a
contradiction of the fact that m > 0.

Hence v # m and from (3.20), we have ZF = (£F)n(Z). By using Lemma 3.2 we
find that

(3.30) F = constant.
From (3.8), we see that
(3.31) 57(&,6) = 0.

Using (3.30) and (3.31) in (1.5), we get v = 0. Hence quasi-*Einstein soliton is
steady. a

Corollary 3.6. Let M?"*! be a Sasakian manifold satisfying (1.5), then M is -Ricci
flat, n-Finstein and scalar curvature is constant.
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Proof. Using v =0 and (3.30) in (1.5), we see that
(3.32) Q* =0.

Using (3.32) in (3.1), we find
(3.33) QOZ = (2n —1)Z + n(Z)c.

Hence M is n-Einstein. Further, from (3.33) we obtain r = 4n2. Hence scalar
curvature is constant. (|

Now, we give an example

Example 3.1. Consider the manifold M3 = {(z,y,2) € R® : z,y # 0} endowed
with the structure {¢,&,n, g}

p(e1) = e, ple2) = —eq, ¢(ez) =0, n = m(ydax — zdy) + dz,

(3.34) 63252%7gzm(dx(@derdy@dy)Jﬂl@n;
4 4

3z%+3y° 3z°+3y°
o= (2 0 Dy al o) o (14 B 40
We subsequently have

3 3
(3.35) [er,es] =0forl =1,2; [e1,eq] = —?yel + ;62 + 2es3.

_ 3 _ 3z _ _ 3
(3.36) {V61€1 = Fea, Ve,e1 = —Feg —e3,Veer = —e2, Ve, 02 = —Fey +e3,

_ 3z _ — — —
Ve,e2 = 5re1, Vegea = €1, Ve,e3 = —€2, Ve,e3 =€, Vegez = 0.

R(€l,€p)€s = O7l #p # S, lap78 =1,2,3, R(elae3)e3 = €l,l =12
(337) R(@l,eg)el = —€s3, l= 1a27 R(el7ep)ep = 07 l 7é b, l7p = 1a2a
S*(er,ep) =0, I,p=1,2,3.

Further, by using (3.37) in (1.5), we infer the following system of differential equations:

(3.38)

02F,, — 2yaF,, + y°F,, — 3eF, - 3tp o2y ap p
yBep VR, p_lp2_y

02Fy, + 2caF,, + 2°F,, — %0 F, 4 3 p 4 Sop o po
—map g Ry,
%ﬁﬁfhfﬂw—yany+an4ﬂuﬂm—ymmz+¥§ﬂf—%ﬁg—ﬁ;
— LR F, + Y F,F, — 2F,F, + T2 =),

aF,. —yF.. +aF, +aF, — 2F,F, + LF? =,

aFy, +2F,, —aF, +yF, — = F,F, — %FZQ =0,
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where o =1+ M and indices denote the derivative with respect to z, y and z.
Case A: Assume that the potential function F' depends only on z, so (3.38)
reduces to

(3.39) v=0, F,=0.

Therefore, quasi-*Einstein soliton is steady and F is constant.
Case B: Now, assume that the potential function F' depends only on y, so (3.38)
reduces to

(3.40) v=0, F,=0.

That is, quasi-*Einstein soliton is steady and F' is constant.
Case C: Further, assume that the potential function F' depends only on z, so
(3.38) reduces to

(3.41) v=0, F.=0.

Which implies quasi-*Einstein soliton is steady and F' is constant.

4 Quasi-*Einstein (k < 1, ) spaces

In this section, we study quasi-*Einstein (k < 1, u)-spaces.
For a (k, j1)-space [2]

(4.1) B = —(1 - k)¢,

where k < 1.

Theorem 4.1. [3] Let (M?"*1 & n,¢,9) be a non-Sasakian (k,p)—space(k < 1).
Then its Riemann curvature tensor R is given by

_ bk

gRZ V)Y, W) =(1- )R, + Ry + L L il Rs
’ ’ 2 1—k 2 1—k

+ug(9pZ,V)g(¢Y, W) +n(Z)n(W)Re — n(Z)n(Y ) Ry

(4.2) +n(V)n(Y)Rg — n(V)n(W)Ry,
where
Rl = g(V,Y)g(Z,W)—g(Z,Y)g(V,W),
Ry = g(V,Y)g(hZ, W) —g(Z,Y)g(hV, W)
—g(V,W)g(hZ,Y) + g(Z,W)g(hV,Y),
Ry = g(hV,Y)g(hZ,W) — g(hZ,Y)g(hV, W),

Ry = g(oV.Y)g(¢Z, W) — g(¢Z,Y)g(sV, W),
Rs = g(ohV,Y)g(ohZ, W) — g(¢hV,W)g(¢hZ,Y),

Ry = (~1+r+5)g(V.Y)+ (=14 ng(hV,Y),
Ry = (~1+r+5)g(ViW)+ (=14 pg(hV, W),
Ry = (=1+x+5)g(Z,W)+(=1+ng(hz, W),
Ry = (~1+r+5)9(ZY)+(~1+pg(hZ,Y),
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vVZV,Y,WeTM.

Using (1.2) and (4.2) we find that
(4.3) Q7 = (5 +n)6?Z,
and *-scalar curvature is given by
(4.4) r* = =2n(nu + k),
which is constant.

Theorem 4.2. Let M?"*! be a (k < 1, u)-space satisfying (1.5). Then, M is a x-flat
or locally isometric to E"1 x S™(4) or * Einstein.

Proof. From (4.3), we have

(4.5) Q€=0.
Differentiating (4.5) along Z € T'M and using (2.9), we have
(4.6) (VzQ")§ = Q"2 + Q" ohZ.

Taking inner product of (3.3) with ¢ and using (4.5), we obtain
9(R(ZV)VEE) = g((VvQ)Z = (V2Q)V.€)

(47) ——{(ZFmn(V) = (VE)n(2)},

Using (2.11) and (4.6) in (4.7) and then replacing Z by ¢Z and V by ¢V, we get
(4.8) Q"0+ Q") Z — hQ"¢Z — ¢Q"hZ = 0,
V Z € TM. Further, using (2.1) and (4.3) in (4.8), we find that
(4.9) K4 np=0.

Putting V = ¢ in (4.7), using (2.11), (V2Q*)&, &) =0, (VeQ*)Z,£) = 0, we get
(4.10) hVF = o(VF — ((F)E),

where o = ¥750 is constant. Differentiating (4.10) along Z € T'M and using (2.9),
(3.5) and (4.10), we obtain

(V2h)VF — hQ*Z — @(m)g b bz
(4.11) =o[vZ - Q"Z — (Z(EF))§ + (EF)(9Z + dhZ)).
Using (4.5) in (3.5), we get
(112) §(EF) — - (eF) = .
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On the other hand, using (2.11), we get [ = puh — k¢?. Using this and (4.1) in
(2.10), we find

(4.13) Veh = —poh.
Putting ¢ in place of Z in (4.11) and using (4.12) and (4.13), we find
(4.14) UhVF = 0.

From (4.14), we have either y =0 or p # 0.

Case A: Let g = 0. Then using this in (4.9), we obtain kK = 0. Thus R(Z,V)§ =0
and hence in dimension 3, M is x-flat and in higher dimension M is locally isometric
to "L x S™(4).[1]

Case B: In this case, we have hVF = 0. Using h? = (k — 1)¢?, we get

(4.15) 0=h?VF = (k—1)¢$*VF.

Since k < 1, we have VF = (£F)£. Hence from Lemma 3.2, we get F' is constant.
Consequently from (3.5), Q*Z = vZ. Hence M is *-Einstein. O
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