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Abstract. We study the quasi-∗Einstein metric on Sasakian and (κ, µ)-
manifolds. We show that on Sasakian manifolds the ∗-Ricci operator com-
mutes with tensor field ϕ and quasi-∗Einstein Sasakian metric is ∗-flat.
Further, we study (κ < 1, µ)-manifolds with quasi-∗Einstein metric and
obtain that such manifold is ∗-flat or locally isometric to En+1×Sn(4) or
∗Einstein.
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1 Introduction

A Riemannian manifold (M, g) is called ∗Einstein with S∗ = νg, where S∗ denotes
∗-Ricci tensor and ν is a constant. A ∗-Ricci soliton is a generalization of ∗Einstein
metric which is given by [13]

1

2
LUg + S∗ = νg,(1.1)

where ν is a constant and U is the potential field. If for a smooth function F, U = ∇F ,
then (1.1) is called gradient ∗-Ricci soliton.

The ∗-Ricci tensor on an almost contact metric manifold M is defined as follows
[12] :

S∗(Z, V ) =
1

2
trace(X 7→ R(Z, ϕV )ϕX), ∀Z, V,X ∈ TM,(1.2)

where ϕ is a (1, 1)-tensor field and R is a Riemann curvature tensor.
The Einstein condition S = νg and its generalizations have been studied ex-

tensively in contact geometry (see [8, 11, 16]). A generalization of Einstein metric
emerged from the m-Bakry-Emery Ricci tensor SF

m defined as:

SF
m = S +∇2F − 1

m
dF ⊗ dF,(1.3)
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has been studied in [4, 5], where 0 < m ≤ ∞, S is the Ricci tensor and ∇2F denotes
the Hessian form of F .

A Riemannian manifold (M, g, F,m) is called m−quasi-Einstein [7] if it satisfies

S +HessF − 1

m
dF ⊗ dF = νg,(1.4)

for some m ∈ Z+. Similarly, we call (M, g, F,m), m−quasi-∗Einstein if it satisfies

S∗ +HessF − 1

m
dF ⊗ dF = νg.(1.5)

If m = ∞, then (1.5) gives the gradient ∗-Ricci soliton. A quasi-∗Einstein metric
is ∗Einstein if F = constant. We call a quasi-∗Einstein metric steady, expanding, or
shrinking, respectively, when ν = 0, < 0 or > 0.

Sharma [15] proved that a complete K-contact metric with gradient Ricci soliton
is a compact Einstein Sasakian manifold and gradient soliton is expanding. As ev-
ery Sasakian manifold is a K-contact manifold, this result is also true for Sasakian
manifolds. Ghosh et al. extended this result for (κ, µ)-spaces [11]. Quasi-Einstein
metrics have been studied in extent for a general manifold, and gap results and rigid
properties were obtained in (cf. [4, 17]). Further, Ghosh [9] studied quasi-Einstein
contact metric on Sasakian manifolds and on (κ, µ)-spaces. Recently, Chen [6] studied
the quasi-Einstein metric on almost cosymplectic manifolds.

However, only very little literature is available on the study of ∗Einstein and its
generalization. This inspired us to study quasi-∗Einstein structure associated with
contact metric manifolds.

2 Preliminaries and some basic results

An odd-dimensional Riemannian manifold M2n+1 is called an almost contact met-
ric manifold if it admits a (1, 1) tensor field ϕ, a vector field ξ, a 1-form η and a
Riemannian metric g satisfying [1]

ϕ2Z = −Z + η(Z)ξ, η(ξ) = 1,(2.1)

η ◦ ϕ = 0, ϕξ = 0,(2.2)

g(ϕZ, ϕV ) = g(Z, V )− η(Z)η(V ), η(Z) = g(Z, ξ),(2.3)

where Z, V ∈ TM . A contact manifold is a Riemannian manifold M2n+1 with a
global 1-form η called a contact 1-form such that η∧ (dη)n ̸= 0 everywhere on M and
dη(Z, V ) = g(Z, ϕV ).

A contact metric manifold is called Sasakian [1] if

(∇Zϕ)V = g(Z, V )ξ − η(V )Z,

where Z, V ∈ TM .
The Riemann curvature tensor R on a Sasakian manifold is given by [1]

R(Z, V )ξ = η(V )Z − η(Z)V.(2.4)
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On a K-contact manifold [1], we have

∇Zξ = −ϕZ,(2.5)

Qξ = 2nξ,(2.6)

R(Z, ξ)ξ = Z − η(Z)ξ.(2.7)

Now, we define self-adjoint operators h = 1
2Lξϕ and l = −R(ξ, .)ξ, which satisfy

[1]: {
lξ = 0 = hξ, ϕh = −hϕ, g(hX, Y ) = g(hY,X),

trh = trhϕ = 0.
(2.8)

Also, for any contact metric manifold [1], we have

∇Zξ = −ϕZ − ϕhZ,(2.9)

∇ξh = −ϕh2 − ϕl + ϕ.(2.10)

A contact metric manifold M2n+1 is said to be (κ, µ)-space if Riemann curvature
tensor R satisfies [2]

R(Z, V )ξ = κ{η(V )Z − η(Z)V }+ µ{η(V )hZ − η(Z)hV },(2.11)

for some (κ, µ) ∈ R2. If κ = 1 and h = 0, then (κ, µ)-spaces reduce to the Sasakian
manifolds. The non-Sasakian manifolds have proven to be more interesting as there
exists the unit tangent sphere bundle of a flat Riemannian manifold with the usual
contact metric structure as an example of non-Sasakian spaces of this type. More-
over, this type of space is invariant under D-homothetic transformations. These are
the driving factor for the study of this type of manifold. Boeckx proved that non-
Sasakian contact metric manifold satisfying (2.11) is completely determined locally
by its dimension for the constant values of κ, µ [3].

3 Quasi-∗Einstein metric on a Sasakian manifold

In this section, we study the quasi-∗Einstein metric on a Sasakian manifold. On a
Sasakian manifold M2n+1 [10]

Q∗Z = QZ − (2n− 1)Z − η(Z)ξ,(3.1)

r∗ = r − 4n2,(3.2)

where Q∗, Q, r∗ and r are ∗-Ricci operator, Ricci operator, ∗-scalar curvature and
scalar curvature respectively

Lemma 3.1. [14] The curvature tensor R of a Riemannian manifold M2n+1 with
quasi-∗Einstein metric satisfies

R(Z, V )∇F = (∇V Q
∗)Z − (∇ZQ

∗)V − ν

m
{(ZF )V − (V F )Z}(3.3)

+
1

m
{(ZF )Q∗V − (V F )Q∗Z},
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S(V,∇F ) =
1

2
V r∗ +

2nν

m
(V F ) +

1

m
{(Q∗V )F − r∗(V F )},(3.4)

for any Z, V ∈ TM , where ∇F is gradient of F .

Proof. From (1.5), we have

Q∗V +∇V ∇F − 1

m
(V F )∇F = νV.(3.5)

We know that

R(Z, V )X = ∇Z∇V X −∇V ∇ZX −∇[Z,V ]X.(3.6)

Using (3.5) in (3.6), we obtain (3.3). Further, contracting (3.3) over Z, we get
(3.4). □

Lemma 3.2. [9] If F ∈ C∞ on a contact metric manifold M such that dF = (ξF )η,
where d denotes the exterior differentiation. Then F is constant on M .

Next,

Lemma 3.3. On a Sasakian manifold M2n+1

Q∗ϕ = ϕQ∗.(3.7)

Proof. Putting Z = ξ in (3.1) and using (2.6), we obtain

Q∗ξ = 0.(3.8)

Differentiating (3.8) with respect to Z, we get

(∇ZQ
∗)ξ = Q∗ϕZ.(3.9)

If V,Z ∈ {ξ⊥}, then with respect to ϕ basis {Zi, Zn+i = ϕZi, ξ}, we have

g(Q∗ϕZ, ϕV ) =
1

2

2n∑
i=1

g(R(ϕZ, ϕ2V )ϕZi, Zi) +
1

2
g(R(ϕZ, ϕ2V )ϕξ, ξ)

=
1

2

2n∑
i=1

g(R(V, ϕZ)ϕZi, Zi),

which gives

g(Q∗ϕZ, ϕV ) = g(Q∗V,Z).(3.10)

From (3.1) and using the fact that Q is symmetric, we get

g(Q∗V,Z) = g(Q∗Z, V ).(3.11)

From (3.10) and (3.11), we get

−ϕQ∗ϕZ = Q∗Z,

wherein multiplying with ‘ϕ’ on both sides and using (2.1), we find

Q∗ϕZ = ϕQ∗Z,

whereby proof is complete. □
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Theorem 3.4. Let M2n+1 be a Sasakian manifold, then LξS
∗ = 0 and ∇ξQ

∗ = 0.

Proof. It is well-known that Lξg = 0 on a Sasakian manifold. Also, we have

Lξ(RZ,ϕV ϕX) = Lξ(∇Z∇ϕV ϕX −∇ϕV ∇ZϕX −∇[Z,ϕV ]X),(3.12)

RLξZ,ϕV ϕX = ∇LξZ∇ϕV ϕX −∇ϕV ∇LξZϕX −∇[LξZ,ϕV ]ϕX,(3.13)

RZ,LξϕV ϕX = ∇Z∇LξϕV ϕX −∇LξϕV ∇ZϕX −∇[Z,LξϕV ]ϕX,(3.14)

RZ,ϕV LξϕX = ∇Z∇ϕV (LξϕX)−∇ϕV ∇Z(LξϕX)−∇[Z,ϕV ]LξϕX,(3.15)

∀ Z, V,X ∈ TM .
From (3.12)∼(3.15), we obtain

Lξ(RZ,ϕV ϕX) = RLξZ,ϕV ϕX +RZ,LξϕV ϕX +RZ,ϕV LξϕX,

which gives (LξR)Z,ϕV ϕX = 0 and contracting it over X, we get LξS
∗ = 0. This

implies

Lξ(g(Q
∗Z, V ))− S∗(LξZ, V )− S∗(Z,LξV ) = 0.(3.16)

Simplifying (3.16), we find

[ξ,Q∗Z]−Q∗([ξ, Z]) = 0.(3.17)

Using (2.5) in (3.17), we get

∇ξQ
∗ = Q∗ϕ− ϕQ∗.(3.18)

Using Lemma 3.3 in (3.18), we obtain the result. □

Theorem 3.5. Let M2n+1 be a Sasakian manifold satisfying (1.5), then F is constant
and quasi-∗Einstein soliton is steady.

Proof. Taking inner product of (3.3) with ξ and using (3.8) and (3.9), we get

g(R(Z, V )∇F, ξ) = −2g(Q∗ϕZ, V ) +
ν

m
{(V F )η(Z)− (ZF )η(V )}.(3.19)

Putting V = ξ in (3.19) and using (2.4), we get

(
ν

m
− 1)((ξF )η(Z)− (ZF )) = 0.(3.20)

Now, we claim that ν ̸= m. Infact, if ν = m, then putting Z = ξ in (3.3), we get

R(ξ, V )∇F = (∇V Q
∗)ξ − (∇ξQ

∗)V − {(ξF )V − (V F )ξ}(3.21)

+
1

m
{(ξF )Q∗V − (V F )Q∗ξ}.

From (2.4), we obtain

R(ξ, V )∇F = (V F )ξ − (ξF )V.(3.22)
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Using (3.22) in (3.21), we get

(∇V Q
∗)ξ − (∇ξQ

∗)V +
1

m
{(ξF )Q∗V − (V F )Q∗ξ} = 0.(3.23)

Using Theorem 3.4, (3.8) and (3.9) in (3.23), we obtain

Q∗ϕV +
ξF

m
Q∗V = 0.(3.24)

Taking inner product of (3.24) with Z, we find

g(Q∗ϕV,Z) +
ξF

m
g(Q∗V,Z) = 0.(3.25)

Interchanging V and Z in (3.25), we get

g(Q∗ϕZ, V ) +
ξF

m
g(Q∗Z, V ) = 0.(3.26)

Subtracting (3.26) from (3.25), we obtain

(Q∗ϕ+ ϕQ∗)V = 0,(3.27)

∀ V ∈ TM . Using Lemma 3.3 in (3.27), we get ϕQ∗V = 0. Which further using (2.1)
gives Q∗V = 0. Hence r∗ = 0. Using this in (3.4), we find

S(V,∇F ) = 2n(V F ).(3.28)

On the other hand from (3.1), we get

QV = (2n− 1)V + η(V )ξ.(3.29)

Using (3.29) in (3.28), we obtain V F = (ξF )η(V ). Which gives F constant by
use of Lemma 3.2. Therefore, from (1.5), we obtain ν = 0, that gives m = 0, a
contradiction of the fact that m > 0.

Hence ν ̸= m and from (3.20), we have ZF = (ξF )η(Z). By using Lemma 3.2 we
find that

F = constant.(3.30)

From (3.8), we see that

S∗(ξ, ξ) = 0.(3.31)

Using (3.30) and (3.31) in (1.5), we get ν = 0. Hence quasi-∗Einstein soliton is
steady. □

Corollary 3.6. Let M2n+1 be a Sasakian manifold satisfying (1.5), then M is ∗-Ricci
flat, η-Einstein and scalar curvature is constant.
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Proof. Using ν = 0 and (3.30) in (1.5), we see that

Q∗ = 0.(3.32)

Using (3.32) in (3.1), we find

QZ = (2n− 1)Z + η(Z)ξ.(3.33)

Hence M is η-Einstein. Further, from (3.33) we obtain r = 4n2. Hence scalar
curvature is constant. □

Now, we give an example

Example 3.1. Consider the manifold M3 = {(x, y, z) ∈ R3 : x, y ̸= 0} endowed
with the structure {ϕ, ξ, η, g}

(3.34)


ϕ(e1) = e2, ϕ(e2) = −e1, ϕ(e3) = 0, η = 4

4+3x2+3y2 (ydx− xdy) + dz,

e3 = ξ = ∂
∂z , g = 1

(1+ 3x2

4 + 3y2

4 )2
(dx⊗ dx+ dy ⊗ dy) + η ⊗ η,

e1 = (1 + 3x2+3y2

4 ) ∂
∂x − y ∂

∂z , e2 = (1 + 3x2+3y2

4 ) ∂
∂y + x ∂

∂z .

We subsequently have

[el, e3] = 0 for l = 1, 2; [e1, e2] = −3y

2
e1 +

3x

2
e2 + 2e3.(3.35)

(3.36)

{
∇e1e1 = 3y

2 e2,∇e2e1 = − 3x
2 e2 − e3,∇e3e1 = −e2,∇e1e2 = − 3y

2 e1 + e3,

∇e2e2 = 3x
2 e1,∇e3e2 = e1, ∇e1e3 = −e2, ∇e2e3 = e1, ∇e3e3 = 0.

(3.37)


R(el, ep)es = 0, l ̸= p ̸= s, l, p, s = 1, 2, 3, R(el, e3)e3 = el, l = 1, 2,

R(el, e3)el = −e3, l = 1, 2, R(el, ep)ep = 0, l ̸= p, l, p = 1, 2,

S∗(el, ep) = 0, l, p = 1, 2, 3.

Further, by using (3.37) in (1.5), we infer the following system of differential equations:

(3.38)

α2Fxx − 2yαFzx + y2Fzz − 3yα
2 Fy − 3yx

2 Fz − α2

m F 2
x + 2yα

m FxFz

+ 3xα
2 Fx − y2

mF 2
z = ν; Fzz − 1

mF 2
z = ν,

α2Fyy + 2xαFzy + x2Fzz − 3xα
2 Fx + 3xy

2 Fz +
3yα
2 Fy − α2

m F 2
y

− 2xα
m FyFz − x2

mF 2
z = ν,

3xα
2 Fy + α2Fxy − yαFzy + αFz + xαFxz − yxFzz +

3yα
2 Fx − 3y2

2 Fz − Fz

−α2

m FxFy +
yα
m FzFy − xα

m FzFx + xy
m F 2

z = 0,

αFxz − yFzz + αFy + xFz − α
mFxFz +

y
mF 2

z = 0,

αFyz + xFzz − αFx + yFz − α
mFyFz − x

mF 2
z = 0,
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where α = 1 + 3x2+3y2

4 and indices denote the derivative with respect to x, y and z.
Case A: Assume that the potential function F depends only on x, so (3.38)

reduces to

ν = 0, Fx = 0.(3.39)

Therefore, quasi-∗Einstein soliton is steady and F is constant.
Case B: Now, assume that the potential function F depends only on y, so (3.38)

reduces to

ν = 0, Fy = 0.(3.40)

That is, quasi-∗Einstein soliton is steady and F is constant.
Case C: Further, assume that the potential function F depends only on z, so

(3.38) reduces to

ν = 0, Fz = 0.(3.41)

Which implies quasi-∗Einstein soliton is steady and F is constant.

4 Quasi-∗Einstein (κ < 1, µ) spaces

In this section, we study quasi-∗Einstein (κ < 1, µ)-spaces.
For a (κ, µ)-space [2]

h2 = −(1− κ)ϕ2,(4.1)

where κ ≤ 1.

Theorem 4.1. [3] Let (M2n+1, ξ, η, ϕ, g) be a non-Sasakian (κ, µ)−space(κ < 1).
Then its Riemann curvature tensor R is given by

g(R(Z, V )Y,W ) = (1− µ

2
)R1 +R2 +

(
1− µ

2

1− κ

)
R3 −

µ

2
R4 +

(
κ− µ

2

1− κ

)
R5

+µg(ϕZ, V )g(ϕY,W ) + η(Z)η(W )R6 − η(Z)η(Y )R7

+η(V )η(Y )R8 − η(V )η(W )R9,(4.2)

where

R1 = g(V, Y )g(Z,W )− g(Z, Y )g(V,W ),

R2 = g(V, Y )g(hZ,W )− g(Z, Y )g(hV,W )

−g(V,W )g(hZ, Y ) + g(Z,W )g(hV, Y ),

R3 = g(hV, Y )g(hZ,W )− g(hZ, Y )g(hV,W ),

R4 = g(ϕV, Y )g(ϕZ,W )− g(ϕZ, Y )g(ϕV,W ),

R5 = g(ϕhV, Y )g(ϕhZ,W )− g(ϕhV,W )g(ϕhZ, Y ),

R6 = (−1 + κ+
µ

2
)g(V, Y ) + (−1 + µ)g(hV, Y ),

R7 = (−1 + κ+
µ

2
)g(V,W ) + (−1 + µ)g(hV,W ),

R8 = (−1 + κ+
µ

2
)g(Z,W ) + (−1 + µ)g(hZ,W ),

R9 = (−1 + κ+
µ

2
)g(Z, Y ) + (−1 + µ)g(hZ, Y ),
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∀ Z, V, Y,W ∈ TM .

Using (1.2) and (4.2) we find that

Q∗Z = (κ+ nµ)ϕ2Z,(4.3)

and ∗-scalar curvature is given by

r∗ = −2n(nµ+ κ),(4.4)

which is constant.

Theorem 4.2. Let M2n+1 be a (κ < 1, µ)-space satisfying (1.5). Then, M is a ∗-flat
or locally isometric to En+1 × Sn(4) or ∗Einstein.

Proof. From (4.3), we have

Q∗ξ = 0.(4.5)

Differentiating (4.5) along Z ∈ TM and using (2.9), we have

(∇ZQ
∗)ξ = Q∗ϕZ +Q∗ϕhZ.(4.6)

Taking inner product of (3.3) with ξ and using (4.5), we obtain

g(R(Z, V )∇F, ξ) = g((∇V Q
∗)Z − (∇ZQ

∗)V, ξ)

− ν

m
{(ZF )η(V )− (V F )η(Z)}.(4.7)

Using (2.11) and (4.6) in (4.7) and then replacing Z by ϕZ and V by ϕV , we get

(Q∗ϕ+ ϕQ∗)Z − hQ∗ϕZ − ϕQ∗hZ = 0,(4.8)

∀ Z ∈ TM . Further, using (2.1) and (4.3) in (4.8), we find that

κ+ nµ = 0.(4.9)

Putting V = ξ in (4.7), using (2.11), ⟨(∇ZQ
∗)ξ, ξ⟩ = 0, ⟨(∇ξQ

∗)Z, ξ⟩ = 0, we get

h∇F = σ(∇F − (ξF )ξ),(4.10)

where σ = ν−κm
mµ is constant. Differentiating (4.10) along Z ∈ TM and using (2.9),

(3.5) and (4.10), we obtain

(∇Zh)∇F − hQ∗Z − σ(ξF )

m
(ZF )ξ + νhZ

= σ[νZ −Q∗Z − (Z(ξF ))ξ + (ξF )(ϕZ + ϕhZ)].(4.11)

Using (4.5) in (3.5), we get

ξ(ξF )− 1

m
(ξF )2 = ν.(4.12)
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On the other hand, using (2.11), we get l = µh − κϕ2. Using this and (4.1) in
(2.10), we find

∇ξh = −µϕh.(4.13)

Putting ξ in place of Z in (4.11) and using (4.12) and (4.13), we find

µh∇F = 0.(4.14)

From (4.14), we have either µ = 0 or µ ̸= 0.
Case A: Let µ = 0. Then using this in (4.9), we obtain κ = 0. Thus R(Z, V )ξ = 0

and hence in dimension 3, M is ∗-flat and in higher dimension M is locally isometric
to En+1 × Sn(4).[1]

Case B: In this case, we have h∇F = 0. Using h2 = (κ− 1)ϕ2, we get

0 = h2∇F = (κ− 1)ϕ2∇F.(4.15)

Since κ < 1, we have ∇F = (ξF )ξ. Hence from Lemma 3.2, we get F is constant.
Consequently from (3.5), Q∗Z = νZ. Hence M is ∗-Einstein. □
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