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Abstract. The object of the present paper is to investigate some geo-
metric and physical properties of weakly cyclic B symmetric (WCBS)4
spacetime under certain conditions. At first, the existence of (WCBS)4
spacetime is showed by constructing a non-trivial example. Then it is
shown that a (WCBS)4 spacetime with harmonic Weyl tensor is a Yang
Pure space or the integral curve of vector field ρ are geodesic and vector
field ρ is irrotational, provided r = b

a . Moreover some geometric properties
of (WCBS)4 spacetime satisfying certain curvature restrictions are inves-
tigated and shown that conformally flat (WCBS)4 spacetime is infinites-
imally spatially isotropic relative to the unit timelike vector field ρ. Next
we characterize viscous fluid, dust and perfect fluid (WCBS)4 spacetimes
and obtained interesting results. Finally, we showed that in a (WCBS)4
spacetime with non-constant scalar curvature satisfying divC = 0 and ful-
filling the condition r = b

a , if ρ is Killing vector then it is Weyl compatible,
purely electric spacetime and its possible Petrov types are I or D.
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1 Introduction

A Lorentzian manifold is a special case of pseudo-Riemannian manifold. A pseudo-
Riemannian manifold of dimension n is a smooth n-dimensional differentiable manifold
equipped with a pseudo-Riemannian metric of signature (p, q) where n = p+q. Due to
non-degeneracy of Lorentzian metric, the tangent vector can be classified into timelike,
null or spacetime vector. A Lorentzian manifold has many applications especially in
the field of relativity and cosmology. The casuality of the vector fields plays an
important role and hence it becomes a convenient choice for researchers for the study
of General Relativity. If a Lorentzian manifold admits a globally timelike vector field,
it is called time oriented Lorentzian manifold, physically known as spacetime. In
general, a Lorentzian manifold may not have a globally timelike vector field. For
more details see [1, 8, 23, 4, 17] and references therein.
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In [6], it is showed that a generalistic spacetime with covariant constant energy
momentum tensor is Ricci symmetric, that is, ∇S = 0, where S is the Ricci tensor of
the spacetime and ∇ denotes the covariant differentiation with respect to the metric
tensor g. If however, ∇S ̸= 0, then such a spacetime may be called weakly Ricci
symmetric [26]. De and Ghosh [9] studied weakly Ricci symmetric spacetimes and
proved that if in a weakly Ricci symmetric spacetime of non-zero scalar curvature the
matter distribution is perfect fluid, then the acceleration vector and the expansion
scalar are zero and such a spacetime can not admit heat flux. A non-flat Riemannian
or pseudo-Riemannian manifold (Mn, g)(n > 2) is called weakly Ricci symmetric if
the Ricci tensor S is of the form

(∇XS)(U, V ) = A(X)S(U, V ) +D(U)S(V,X)

+ E(V )S(X,U),(1.1)

whereA,D and E are 1-forms which are non-zero simultaneously. Such an n-dimensional
Riemannian manifold is denoted by (WRS)n. If A = B = D = 0, then the manifold
reduces to a Ricci symmetric manifold.

A (0,2) symmetric tensor is a generalized Z tensor if

Zij = Sij + ϕgij ,(1.2)

where ϕ is an arbitrary scalar function. Recently, Mantica and Molinari [19] intro-
duced weakly Z symmetric manifolds. It is further weaken by De et al. [10] into
weakly cyclic Z symmetric manifolds and it is denoted by (WCZS)n. A non-flat
Riemannian or pseudo-Riemannian manifold (Mn, g)(n > 2) is called weakly cyclic Z
symmetric if the Z tensor is non-zero and satisfies the following condition

(∇XZ)(U, V ) + (∇UZ)(V,X) + (∇V Z)(X,U)

= A(X)Z(U, V ) +D(U)Z(V,X) + E(V )Z(X,U),(1.3)

for all vector fields X, U and V. Here, Z is the generalized Z tensor. De et al.
[11] studied weakly cyclic Z symmetric spacetimes and showed that if a (WCZS)4
spacetime satisfies divC = 0 and fulfills the condition r = a, then the spacetime is the
Robertson-Walker spacetime. De et al. [20] introduced a new symmetric (0,2) tensor
Bij as

Bij = aSij + brgij ,(1.4)

where a and b are non-zero arbitrary scalar functions and r is the scalar curvature.
For a = 1 and b = ϕ

r the tensor reduces to generalized Z tensor. Thus generalized
Z tensor is a particular case of B tensor and hence it give us a reason to study B
tensor. Contracting (1.4) we get, scalar B as B = (a + nb)r. In [20], the authors
introduced pseudo B symmetric manifold which is a generalization of pseudo Z sym-
metric manifold [21]. Motivated by this we introduced weakly cyclic B symmetric
manifold. A non-flat Riemannain or pseudo-Riemannain manifold (Mn, g)(n > 1) is
called a weakly cyclic B symmetric manifold of dimension n if the B tensor is non-zero
and satisfies the condition

(∇XB)(Y, Z) + (∇Y B)(Z,X) + (∇ZB)(X,Y )

= A(X)B(Y,Z) +D(Y )B(Z,X) + E(Z)B(X,Y ),(1.5)



124 J.P. Singh, M. Khatri

where A, D and E are non-zero 1-forms. It will be denoted by (WCBS)n manifold.
In [11], the authors investigated weakly cyclic Z symmetric spacetime and obtained
interesting results. This inspired us to study weakly cyclic B symmetric spacetime.

The notion of quasi Einstein manifolds arose during the study of exact solutions
of the Einstein’s field equation as well as during the considerations of quasi-umbilical
hypersurfaces of semi-Euclidean spaces. Chaki and Maity [5] introduced the notion
of quasi Einstein manifolds as a generalization of the Einstein manifolds. A pseudo-
Riemannain manifold (Mn, g)(n > 2) is said to be a quasi Einstein manifold if its
Ricci curvature is non-zero and satisfies the condition

S(X,Y ) = αg(X,Y ) + βA(X)A(Y ),(1.6)

where α and β are real valued non-zero scalar functions on M . In [12], it is proved
that a quasi Einstein manifolds can be taken as a model of perfect fluid spacetime in
General Relativity. Also, the Robertson-Walker spacetimes are quasi Einstein mani-
folds. Thus quasi Einstein manifolds are important in theoretical physics, especially
in General Relativity and cosmology.

The Weyl (or conformal curvature) tensor plays an important role in differential
geometry and also in General Relativity providing curvature to the spacetime when
the Ricci tensor is zero. The Weyl conformal tensor C in a Lorentzian manifold
(Mn, g)(n > 3) is defined by [29]

C(X,Y )U = R(X,Y )U − 1

n− 2
[g(Y, U)QX − g(X,U)QY

+ S(Y, U)X − S(X,U)Y ]

+
r

(n− 1)(n− 2)
[g(Y,U)X − g(X,U)Y ],(1.7)

where Q is the symmetric endomorphism of the tangent space at each point corre-
sponding to the Ricci tensor S, that is, g(QX,Y ) = S(X,Y ). The Lorenzian manifold
of dimension n(n > 3) is said to be conformally flat if the conformal curvature tensor
C is identically zero. In [16], Endean studied cosmology in conformally flat spacetime.

Ahsan and Siddiqui [1] proved that a concircularly flat perfect fluid spacetime ad-
mits a conformal Killing vector field if and only if the energy-momentum tensor has
a symmetry inheritance property. The concircular curvature tensor in a Lorentzian
manifold (Mn, g)(n > 3) is defined by

C̃(X,Y )U = R(X,Y )U

+
r

n(n− 1)
[g(U,X)Y − g(Y, Z)X],(1.8)

for all vector fields X,Y, Z in M . For n = 3, the Weyl tensor as well as concircular
curvature tensor vanishes identically. The Lorenzian manifold of dimension n(n > 3)

is said to be concircularly flat if the concircular curvature tensor C̃ is identically zero.
The paper is organized as follows:
In Section 2, the existence of (WCBS)4 spacetime is established by constructing a

non-trivial example. Next in Section 3 it is shown that a (WCBS)4 spacetime is quasi
Einstein spacetime. Moreover conformally flat (WCBS)4 spacetime and (WCBS)4
spacetime with divC = 0 are studied and prove that a (WCBS)4 spacetime satisfying
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divC = 0 with assumption r = b
a , the integral curve of vector field ρ are geodesic

and vector field ρ is irrotational or the spacetime is Yang Pure space. In the next
section, we investigate some geometric and physical properties of this spacetime under
certain curvature conditions. The last section deal with the application of (WCBS)4
spacetime in General Relativity. We prove that if a perfect fluid (WCBS)4 spacetime
with vanishing scalar B obeys Einstein’s field equation without cosmological constant
then the spacetime is characterized by the following cases:
(i) The spacetime represents inflation and the fluid behaves as a cosmological constant.
This is also termed as a phantom barrier.
(ii) The spacetime represents quintessence barrier and the fluid behaves as exotic
matter.
The energy density and isotropic pressure for viscous fluid (WCBS)4 spacetime are
obtained and also we prove that a relativistic fluid (WCBS)4 spacetime obeying
Einstein’s field equation with the cosmological constant admit heat flux, provided
λ + kσ ̸= 3B−2br

2a . Finally, it is shown that in a (WCBS)4 spacetime with non-

constant scalar curvature satisfying divC = 0 and fulfilling the condition r = b
a , if ρ

is Killing vector then it is Weyl compatible, purely electric spacetime and its possible
Petrov types are I or D.

2 Existence of (WCBS)4 spacetime

In this section, we prove the existence of the (WCBS)4 spacetime by constructing a
non-trivial example (see [24]). Now, we shall consider a Lorentzian metric g on the
4-dimensional real number space R4 by

ds2 = e2z[(dx1)2 + (dx2)2 + (dx3)2]− (dx4)2,(2.1)

where z = x4 ̸= 0 and x1, x2, x3, x4 are the standard coordinates of R4. Then the
non-vanishing components of the Christoffel symbol, the curvature tensor and the
Ricci tensor are

Γ4
11 = Γ4

22 = Γ4
33 = e2z, Γ1

14 = Γ2
24 = Γ3

34 = 1,(2.2)

R1441 = R2442 = R3443 = e2z, R1221 = R1331 = R2332 = −e4z,(2.3)

S11 = S22 = S33 = −3e2z, S44 = 3,(2.4)

and the components which can be obtained from this by symmetric properties. One
can easily show that the scalar curvature r of the manifold is r = −12.
Let us choose an arbitrary scalar function as a = e−z and b = e−2z. Making use
of (1.4) the non-vanishing components of symmetric B tensor and their covariant
derivatives are as follows

B11 = B22 = B33 = −3(ez + 4), B44 = 3(e−z + 4e−2z,(2.5)

B11,4 = B22,4 = B33,4 = −3, B44,4 = −3(e−z + 8e−2z).(2.6)

Let us choose the associate 1-forms as follows:

Ai(x) =


1

ez + 4
for i = 4

0 , otherwise,
(2.7)
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Di(x) =


−37ez

(ez + 4)2
for i = 4

0 , otherwise
(2.8)

and

Ei(x) =


−3e2z − 13

(ez + 4)2
for i = 4

0 , otherwise,

(2.9)

at any point x ∈ R4. In consequence of (2.5), (2.6), (2.7), (2.8) and (2.9) we obtain

B11,4 +B14,1 +B14,1 = A4B11 +D1B41 + E1B14,(2.10)

B22,4 +B24,2 +B24,2 = A4B22 +D2B42 + E2B24,(2.11)

B33,4 +B34,3 +B34,3 = A4B33 +D3B43 + E3B34,(2.12)

B44,4 +B44,4 +B44,4 = A4B44 +D4B44 + E4B44,(2.13)

for all other cases (1.5) holds trivially. Therefore, this proves that the manifold (R4, g)
under consideration is a (WCBS)4 spacetime with non-zero scalar curvature. Hence
we can state that:

Theorem 2.1. Let (R4, g) be a Lorentzian manifold endowed with the metric given
by

ds2 = gijdx
idxj = e2z[(dx1)2 + (dx2)2 + (dx3)2]− (dx4)2

where z = x4 ̸= 0 and x1, x2, x3, x4 are the standard coordinates of R4. Then (R4, g)
is an (WCBS)4 spacetime with non-zero scalar curvature r = −12.

3 (WCBS)4 spacetime

A Lorentzian manifold (M4, g) is said to be weakly cyclic B symmetric (WCBS)4
spacetime if the B tensor is non-zero and satisfies

(∇XB)(Y,Z) + (∇Y B)(Z,X) + (∇ZB)(X,Y )

= A(X)B(Y,Z) +D(Y )B(Z,X) + E(Z)B(X,Y ),(3.1)

for all vector fields X,Y, Z in M4. Here, 1-forms A,D and E are given by

A(X) = g(X, ρ1), D(X) = g(X, ρ2), E(X) = g(X, ρ3),

where ρ1, ρ2, ρ3 are timelike vector fields, that is, g(ρi, ρi) = −1, i = 1, 2, 3 corre-
sponding to 1-forms A,D and E respectively.
Interchanging Y and Z in (3.1) we obtain

(∇XB)(Z, Y ) + (∇ZB)(Y,X) + (∇Y B)(X,Z) =

A(X)B(Z, Y ) +D(Z)B(Y,X) + E(Y )B(X,Z).(3.2)
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Combining (3.1) and (3.2) yields

[D(Y )− E(Y )]B(X,Z) = [D(Z)− E(Z)]B(X,Z).(3.3)

Define a 1-form as H(X) = D(X) − E(X) = g(X, ρ) for all vector fields X. Using
this in (3.3) gives

H(Y )B(X,Z) = H(Z)B(X,Y ).(3.4)

Taking a frame field and contracting X = Z = ei where {ei} is the orthonormal basis
of the tangent space at each point in spacetime we get

BH(Y ) = B(ρ, Y ).(3.5)

Taking Z = ρ in (3.4) gives

H(Y )[aS(X, ρ) + brH(X)] = −B(X,Y ).(3.6)

Replacing X by ρ in (1.4) in using it in (3.5) we obtain

aS(ρ, Y ) = (a+ 3b)rH(Y ).(3.7)

In regard of (3.6) and (3.7), we see that

S(X,Y ) = αg(X,Y ) + βH(X)H(Y ),(3.8)

where α = − br
a and β = −B

a . Hence we can state the following:

Theorem 3.1. A (WCBS)4 spacetime is a quasi Einstein spacetime.

Theorem 3.2. A conformally flat (WCBS)4 spacetime is infinitesimally spatially
isotropic relative to the unit timelike vector field ρ.

Proof. Suppose (WCBS)4 spacetime is conformally flat. Making use of (3.8) and
(1.7) in conformally flat (WCBS)4 spacetime we obtain

R(X,Y )Z =
1

2

[
− 2br

a
g(Y,Z)X − B

a
H(Y )H(Z)X

+
2br

a
g(X,Z)Y +

B

a
H(X)H(Z)Y

− B

a
H(X)g(Y,Z)ρ+

B

a
H(Y )g(X,Z)ρ

]
− r

6

[
g(Y, Z)X − g(X,Z)Y

]
.(3.9)

Let ρ⊥ denote the 3-dimensional distribution in a conformally flat (WCBS)4 space-
time orthogonal to ρ, then from (3.9) we get

R(X,Y )Z =
(br
a

− r

6

)
[g(Y, Z)X − g(X,Z)Y ],(3.10)

for all X,Y, Z ∈ ρ⊥. Also taking Y = Z = ρ in (3.9) gives

R(X, ρ)ρ =
r

6a
(6b+ a)X,(3.11)
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for every X ∈ ρ⊥.
According to Karchar [18], a Lorentzian manifold is called infinitesimal spatially
isotropic relative to timelike unit vector field ρ if its curvature tensor R satisfies
relations

R(X,Y )Z = l[g(Y,Z)X − g(X,Z)Y ],

for all X,Y, Z ∈ ρ⊥ and
R(X, ρ)ρ = mX,

for all X ∈ ρ⊥, where l,m are real valued functions on the manifold. Thus in view of
(3.10) and (3.11) we see that a conformally flat (WCBS)4 spacetime is infinitesimal
spatially isotropic relative to timelike unit vector field ρ.
This completes the proof. □

Theorem 3.3. In a (WCBS)4 spacetime satisfying divC = 0 with assumption r = b
a ,

the integral curve of vector field ρ are geodesic and vector field ρ is irrotational or the
spacetime is Yang Pure space.

Proof. Suppose (WCBS)4 spacetime has harmonic conformal curvature, that is,
divC = 0. Then (1.7) gives

(∇XS)(Y, U) − (∇US)(Y,X)

=
1

6
[g(Y,U)dr(X)− g(X,Y )dr(U)].(3.12)

Making use of (3.8) in (3.12) we obtain{adr(U)− rda(U)

a2

}
[bg(X,Y ) + (a+ 4b)H(X)H(Y )]

+
r

a

[
db(U)g(X,Y ) + {da(U) + 4db(U)}H(X)H(Y )

+(a+ 4b){(∇UH)(X)H(Y ) + (∇UH)(Y )H(X)}
]

−
{adr(X)− rda(X)

a2

}
[bg(Y, U) + (a+ 4b)H(Y )H(U)]

− r

a

[
db(X)g(Y, U) + {da(X) + 4db(X)}H(Y )H(U)

+(a+ 4b){(∇XH)(Y )H(U) + (∇XH)(U)H(Y )}
]

=
1

6
[g(Y,U)dr(X)− g(X,Y )dr(U)].(3.13)

Taking a frame field and contracting (3.13) over X and Y gives

−
(
1 +

b

a

)
dr(U) +

br

a2
da(U)− (a+ 4b)

a2
[
adr(ρ)

−rda(ρ)
]
H(U)− r

a
db(U)− r

a

[
da(ρ)H(U)

+4db(ρ)H(U)
]
− B

a

[
(δH)H(U)

+(∇ρH)(U)
]
= −1

2
dr(U),(3.14)
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where (δH) = Σn
i=1ϵi(∇eiH)(ei). Putting X = Y = ρ in (3.13) we get{adr(U)− rda(U)

a2

}
(a+ 3b) +

r

a

[
3db(U) + da(U)

]
− b

a2
{
adr(ρ)− rda(ρ)

}
H(U) +

(a+ 4b)

a2
{
adr(ρ)

−rda(ρ)
}
H(U) +

r

a

{
adb(ρ) + da(ρ)

}
H(U)

+
B

a
(∇ρH)(U) =

1

6

[
dr(ρ)H(U) + dr(U)

]
.(3.15)

Combining (3.14) and (3.15) yields

−2br

a2
da(U) +

2r

a
db(U)− r

a
db(ρ)H(U)

−B

a
(δH)H(U) +

(4
3
− b

a

)
dr(U)

−
(1
6
+

b

a

)
dr(ρ)H(U) +

br

a2
da(ρ)H(U) = 0.(3.16)

Replacing U by ρ in (3.16) and using it in (3.16) results in the following

2r

a

[adb(U)− bda(U)

a

]
+

2r

a

[adb(ρ)− bda(ρ)

a

]
H(U)

+
(4
3
− b

a

)[
dr(U) + dr(ρ)H(U)

]
= 0.(3.17)

If possible, suppose r = b
a , then

dr(U) =
adb(U)− bda(U)

a2
,(3.18)

for any vector field U . In consequence of (3.17) and (3.18) we see that either 4a+3b = 0
or dr(U) = −dr(ρ)H(U). Considering the case when 4a+3b = 0, we see that r = −4

3
is a constant, and hence dr = 0. Using this facts in (3.12) gives

(∇XS)(Y,U)− (∇US)(Y,X) = 0.

This means that (WCBS)4 spacetime is a Yang Pure space [30].
Suppose 4a + 3b ̸= 0. Replacing Y by ρ in (3.13) and using dr(U) = −dr(ρ)H(U)
yields

(∇XH)(U)− (∇UH)(X) = 0.(3.19)

This means that the 1-form H is closed. Thus we get

g(∇Xρ, U) = g(∇Uρ,X)

for all X,U . Taking U = ρ gives

g(∇ρρ,X) = g(∇Xρ, ρ).

Since g(∇Xρ, ρ) = 0 implies g(∇ρρ,X) = 0 for all X. Hence ∇ρρ = 0. This means
that the integral curve of the vector field ρ are geodesic and vector field is irrotational.
This completes the proof. □
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A vector field ρ is a Killing vector if

g(Y,∇ρX) + g(∇ρY,X) = 0,(3.20)

for any vector fields X,Y . Hence we can state the following:

Corollary 3.4. If a (WCBS)4 spacetime with non-constant scalar curvature satisfies
divC = 0 and fulfills the condition r = b

a , then the vector field ρ is a Killing vector if
and only if ρ is parallel vector.

4 Some geometrical properties of (WCBS)4 space-
time

The k-nullity distribution N(k) of a pseudo-Riemannian manifold Mn is defined by
[27]

N(k) : p → Np(k)

= {Z ∈ Tp(M)|R(X,Y )Z = k[g(Y,Z)X − g(X,Z)Y ]}

for all X,Y ∈ TM , where k is some smooth function. If the generator ρ of the quasi-
Einstein manifold Mn belongs to the k-nullity distribution N(k) for some smooth
function k, then Mn is called N(k)-quasi Einstein manifold [28].

According to Deszcz [2, 13, 14], for (0,4)-tensor field T if R · T and Q(g, T ) are
linearly dependent, that is, R · T = LTQ(g, T ) holds on the set UT = {x ∈ M :
Q(g, T ) ̸= 0 at x}, where LT is some function on UT . In particular, if T = R(resp.,

S,C, C̃) then the manifold is called pseudosymmetric (resp., Ricci-pseudosymmetric,
conformally pseudosymmetric, concircularly pseudosymmetric). De and Velimirović
[8] studied spacetimes with semisymmetric Energy-Momentum tensor and showed
that such a spacetime is Ricci semisymmetric.

In this section, (WCBS)4 spacetime under certain curvature conditions such as
Ricci-pseudosymmetric, conformal Ricci semisymmetric and concircular Ricci-pseudosymmetric
are studied.

Theorem 4.1. Every Ricci-pseudosymmetric (WCBS)4 spacetime with non-vanishing
scalar B is an N(B−br

3a )-quasi Einstein spacetime.

Proof. Suppose (WCBS)4 spacetime is Ricci-pseudosymmetric, that is, R · S =
LSQ(g, S) holds on Us and LS is a certain function on US . Thus we get

S(R(X,Y )U, V ) + S(U,R(X,Y )V ) =

LS [g(Y, U)S(X,V )− g(X,U)S(Y, V )

+g(Y, V )S(U,X)− g(X,V )S(Y, U)].(4.1)

In consequence of (3.8) in (4.1) we obtain

H(R(X,Y )U)H(V ) +H(U)H(R(X,Y )V ) =

LS [g(Y,U)H(X)H(V )− g(X,U)H(Y )H(V )

+g(Y, V )H(X)H(U)− g(X,V )H(Y )H(U)].(4.2)
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Contracting (4.2) over X and V and using (3.8) yields

R(ρ, Y )U = LSg(Y, U)ρ+
[B
a

− br

a
− 4LS

]
H(Y )U.(4.3)

Substituting Y = U = ρ in (4.3) we get the following relation

LS =
(B − br)

3a
.(4.4)

Taking U = ρ in (4.2) gives

R(X,Y )ρ = LS [H(Y )X −H(X)Y ].(4.5)

Making use of (4.4) in (4.5) we obtain

R(X,Y )ρ =
B − br

3a
[H(Y )X −H(X)Y ].(4.6)

This means that the vector field ρ belongs to the (B−br
3a )-nullity distribution. This

completes the proof. □

If we take LS = 0, then the manifold satisfies the condition R · S = 0 and so it is
Ricci semisymmetric. In this case, we see that B = br implies a = −3b. Hence we
can state the following:

Corollary 4.2. In a Ricci semisymmetric (WCBS)4 spacetime with non-vanishing
scalar B the relation a+ 3b = 0 holds.

Theorem 4.3. In a (WCBS)4 spacetime with non-vanishing scalar B satisfying

C(X,Y ) · S = 0,
(

5B−8br
12a

)
is an eigenvalue of the Ricci operator Q.

Proof. Proceeding similarly as in Theorem 4.1, we obtain the following relation

g(R(X,Y )U, ρ) =
(5B − 8br

12a

)
[g(Y,U)H(X)

− g(X,U)H(Y )].(4.7)

Contracting (4.7) over X and U yields

S(Y, ρ) =
(5B − 8br

12a

)
g(Y, ρ),(4.8)

i.e., QY =
(

5B−8br
12a

)
Y for all vector field Y . Thus

(
5B−8br

12a

)
is an eigenvalue of the

Ricci operator Q. This completes the proof. □

Suppose (WCBS)4 spacetime is concircularly pseudosymmetric, that is, R · C̃ =
LSQ(g, S). Then proceeding similarly as in Theorem 4.1 and Theorem 4.3 one can
easily obtained the following:

Theorem 4.4. In a (WCBS)4 spacetime with non-vanishing scalar B satisfying

R · C̃ = LSQ(g, S), 3(B−br)
5a is an eigenvalue corresponding to Ricci operator Q and

the timelike vector field ρ belongs to the N(B−br
5a )-quasi Einstein spacetime.
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5 Application of (WCBS)4 spacetime in General Rel-
ativity

The general theory of relativity postulate that the spacetime should be described as a
curved manifold. The Einstein’s field equation [23] relate the geometry of spacetime
with the distribution of matter within it. Einstein’s field equation is conferred by

S(X,Y )− r

2
g(X,Y ) + λg(X,Y ) = kT (X,Y ),(5.1)

for all vector fields X,Y where S is the Ricci tensor of type (0,2), r is the scalar
curvature, λ is the cosmological constant and k is the gravitational constant. Eq.
(5.1) imply that the matter detrmines the geometry of spacetime and conversely that
the motion of matter is determined by the metric tensor of the space which is not
flat. Here, T is the energy momentum tensor which is a symmetric (0, 2)-tensor with
divergence zero.

The energy momentum tensor is said to describe a perfect fluid [23] if

T (X,Y ) = (σ + p)H(X)H(Y ) + pg(X,Y ),(5.2)

where σ is the energy density and p is the isotropic pressure of the fluid, H is a
non-zero 1-form such that

g(X, ρ) = H(X),

for all X, ρ being the velocity vector field of the fluid which is a timelike vector, that
is, g(ρ, ρ) = H(ρ) = −1.
Combining (3.8) and (5.1), the energy momentum tensor can be written as

T (X,Y ) =
r[a(2λ− 1)− 2b]

2ak
g(X,Y )− B

ak
H(X)H(Y ),(5.3)

Thus we can state the following:

Proposition 5.1. A (WCBS)4 spacetime satisfying Einstein’s field equation with
cosmological constant can be considered as a model of perfect fluid spacetime, in Gen-
eral Relativity.

Inserting (5.2) in (5.1) without cosmological constant, we obtain

S(X,Y ) = k(σ + p)H(X)H(Y ) + (kp+
r

2
)g(X,Y ).(5.4)

Comparing (3.8) and (5.4), we see that in a perfect fluid (WCBS4) spacetime the
following relations hold

α = −br

a
= (kp+

r

2
) and β = −B

a
= k(σ + p).(5.5)

Replacing X by QX in (5.4) and using (3.8) gives

S2(X,Y ) = k(σ + p)(α− β)H(X)H(Y )

+
k

2
(σ − p)[αg(X,Y ) + βH(X)H(Y )],(5.6)
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where S2(X,Y ) = S(QX,Y ). Taking a frame field and contracting (5.6) over X and
Y yields

||Q||2 = k2(σ2 + 2p2 − σp).(5.7)

Hence we can state the following:

Theorem 5.2. If a perfect fluid (WCBS)4 spacetime obeying Einstein’s field equation
without cosmological constant, then the square of the length of the Ricci operator is
k2(σ2 + 2p2 − σp).

In view of (5.4), if perfect fluid (WCBS)4 spacetime satisfies the timelike conver-
gence condition, that is, S(ρ, ρ) ≥ 0 then σ+3p ≥ 0, thus the spacetime obeys cosmic
strong energy condition. Thus we can state

Proposition 5.3. If a perfect fluid (WCBS)4 spacetime obeying Einstein’s field equa-
tion without the cosmological constant satisfies timelike convergence condition, then
the spacetime obeys strong energy condition.

In cosmology we know that when σ = −p this lead to rapid expansion of the
spacetime which is termed as inflation. Also σ + p = 0 is known as Phantom Barrier
[7]. Here the fluid behaves as a cosmological constant [25]. And if σ + 3p = 0 then
strong energy condition begins to violate and fluid behaves as exotic matter. This
is termed as a Quintessence Barrier. Recent observations have indicated that our
universe is in quintessence era [3].

In consequence of (5.5), we get σ + p = − B
ak and σ + 3p = − r

k .
Suppose that the scalar B vanishes, it follows that either (i) a+ 4b = 0 or (ii) r = 0.
Now (i) a+4b = 0 implies σ+p = 0. Thus the spacetime represents phantom barrier.
Again (ii) r = 0 implies σ + 3p = 0. Thus the spacetime represents quintessence
barrier. Hence we can state the following:

Theorem 5.4. If a perfect fluid (WCBS)4 spacetime with vanishing scalar B obeys
Einstein’s field equation without cosmological constant then the spacetime is charac-
terized by the following cases:
(i) The spacetime represents inflation and the fluid behaves as a cosmological con-
stant. This is also termed as a phantom barrier.
(ii) The spacetime represents quintessence barrier and the fluid behaves as exotic mat-
ter.

Next we state and proof the following:

Theorem 5.5. A relativistic fluid (WCBS)4 spacetime obeying Einstein’s field equa-
tion with the cosmological constant admit heat flux, provided λ+ kσ ̸= 3B−2br

2a .

Proof. For a relativistic fluid matter distribution, the energy momentum tensor is as
follows [15]

T (X,Y ) = pg(X,Y ) + (σ + p)A(X)A(Y )

+ A(X)B(Y ) +B(Y )A(Y ),(5.8)
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where A(X) = g(X, ρ), A(ρ) = −1, B(X) = g(X,µ), B(µ) > 0, g(ρ, µ) = 0. Here ρ is
the velocity vector field and µ is the heat conduction vector field.
Making use of (5.8), the Einstein’s field equation becomes

S(X,Y ) = (kp− λ+
r

2
)g(X,Y ) + k(σ + p)A(X)A(Y )

+ k[A(X)B(Y ) +B(X)A(Y )].(5.9)

Inserting (3.8) in (5.9) gives(
α − kp+ λ− r

2

)
g(X,Y ) + [β − k(σ + p)]A(X)A(Y )

− k[A(X)B(Y ) +B(X)A(Y )] = 0.(5.10)

Replacing X by ρ in (5.10) we obtain

B(Y ) =
1

k

(br
a

− B

a
− kσ +

r

2
− λ

)
A(Y ).(5.11)

Thus the spacetime admit heat flux if λ+ kσ ̸= 3B−2br
2a . This completes the proof. □

Next we consider viscous fluid matter, under which the energy momentum tensor
is of form:

T (X,Y ) = pg(X,Y ) + (σ + p)H(X)H(Y ) + P (X,Y ),(5.12)

where P denotes the anisotropic pressure tensor of the fluid.
Combining (5.12), (5.1) and (3.8) yields

(α− r

2
− kp)g(X,Y ) + [β − k(σ + p)]H(X)H(Y )

= kP (X,Y ).(5.13)

Replacing X and Y by ρ in (5.13) we get

−(α− r

2
− kp) + β − k(σ + p) = kI,(5.14)

where I = P (ρ, ρ). Contracting (5.13) over X and Y gives

4(α− r

2
− kp)− β + k(σ + p) = kJ,(5.15)

where J = Trace of P . Adding (5.14) and (5.15) the expression for isotropic pressure
is given by

p =
1

k

{
λ− br

a
− r

2
− k(I + J)

3

}
.(5.16)

In consequence of (5.16) in (5.14) the expression for energy density is given by

σ =
1

k

(br
a

+
r

2
− λ− B

a

)
.(5.17)

Thus we can state the following:



On weakly cyclic B symmetric spacetime 135

Theorem 5.6. In a viscous fluid (WCBS)4 spacetime obeying Einstein’s field equa-
tion with cosmological constant the energy density and isotropic pressure are given by
(5.17) and (5.16) respectively.

For a pressureless fluid spacetime (dust), the energy momentum tensor is of form
T (X,Y ) = σH(X)H(Y ). Proceeding similarly as in Theorem 5.6 one can easily
obtain the follow:

Proposition 5.7. A dust (WCBS)4 spacetime obeying Einstein’s field equation with
cosmological constant is vacuum if and only if scalar B vanishes.

Definition 5.1. A symmetric tensor bij is Weyl compatible if

bimCm
jkl + bjmCm

kil + bkmCm
ijl = 0.(5.18)

Now we examine the Weyl compatibility of (WCBS)4 spacetime. In accordance
of Corollary 3.4, suppose ρ is Killing vector field then ρ is parallel vector and hence
we get

R(X,Y )ρ = [∇X ,∇Y ]ρ−∇[X,Y ]ρ = 0.(5.19)

Contracting (5.19) over X and using (3.8) we see that (a+3b)r = 0. But, r ̸= 0 hence
a+ 3b = 0. Making use of this in (3.8) yields

S(X,Y ) = −1

9
[g(X,Y ) +H(X)H(Y )].(5.20)

In consequence of (5.20) the Weyl tensor is of form

Cijkl = Rijkl +
1

12
[gjkgil − gikgjl] +

1

18
[gilHjHk

−gjlHiHk + gjkHiHl − gikHjHl].(5.21)

Since the generator ρ is parallel so transvecting (5.21) by H l we get

H lCijkl =
1

36
[gjkHi − gikHj ].(5.22)

In view of (5.22) we can obtain the following relation

(HiCjklm +HjCkilm +HkCijlm)Hm = 0.(5.23)

Thus we can state the following:

Theorem 5.8. In a (WCBS)4 spacetime with non-constant scalar curvature sat-
isfying divC = 0 and fulfilling the condition r = b

a , if ρ is Killing vector then the
spacetime is Weyl compatible.

In General Relativity, given a timelike vector field u with uiui = −1, then the
electric and magnetic components of Weyl tensor are defined by

Ekl = ujumCjklm,(5.24)
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Hkl =
1

2
εjkrsu

jumCrs
lm,(5.25)

where the components Crs
lm is of type (2,2) of the Weyl tensor and εjkrs denotes

the completely skew-symmetric Levi-Civita symbol. In [22] it is shown that on a
4-dimensional spacetime a timelike vector field is Weyl compatible if and only if the
magnetic part of the Weyl tensor vanishes i.e., Hkl = 0. In regard of Theorem 5.8
and above result we obtain the following:

Proposition 5.9. In a (WCBS)4 spacetime with non-constant scalar curvature sat-
isfying divC = 0 and fulfilling the condition r = b

a , if ρ is Killing vector then it is a
purely electric spacetime.

If the electric and magnetic parts of the Weyl tensor are proportional i.e., γE = µH
for some scalar fields γ and µ including the case when one of them is zero, then the
space is of type I,D or O. But Ekl =

Rkl

4 ̸= 0, the Weyl tensor is non-vanishing so
the space cannot be of type O. Thus we can state

Proposition 5.10. In a (WCBS)4 spacetime with non-constant scalar curvature
satisfying divC = 0 and fulfilling the condition r = b

a , if ρ is Killing vector then the
possible Petrov types are I or D.
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