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Abstract. We show that on a conformally flat n-torus Tn, there exist n
closed geodesics such that they are linearly independent in the fundamen-
tal group Zn of Tn and the product of their lengths is less than or equal to
a dimensional constant times the volume of Tn. This generalizes a result
of Loewner to high dimensions and multiple geodesics.
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1 Introduction

In Riemannian geometry, systole refers to the shortest length of non-contractible
closed curves. Let M be a Riemannian manifold, the systole of M is defined by

(1.1) sys(M) := min
0̸=[γ]∈π1(M)

length(γ).

Systolic inequalities relate systoles to the area or volume of the manifold. In 1949,
Loewner proved the systolic inequality for 2-torus. He showed that for any metric g
on the torus T 2, we have

(1.2) sys(T 2, g)2 ≤ 2√
3
area(T 2, g).

Following the same approach, Pu proved the systolic inequality for RP2 in [7]:

(1.3) sys(RP2, g)2 ≤ π

2
area(RP2, g).

Those constants are in fact optimal. In higher dimensions, major breakthroughs
were due to Gromov who established the following systolic inequality for tori in any
dimensions:

Theorem 1.1. (Gromov,[2]) Let (Tn, g) be a Riemannian metric on the n-dimensional
torus. Then there exists a dimensional constant C(n) such that

sys(Tn, g)n ≤ C(n)V ol(Tn, g),

where V ol(Tn, g) is the volume of (Tn, g).
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In Gromov’s original paper, the constant is taken to be C(n) = [6(n+1)nn
√
(n+ 1)!]n.

Gromov observed that the systole and volume can be related via the filling radius, an
important geometric concept invented by him. By showing that the systole is con-
trolled by the filling radius and the filling radius is controlled by the volume, Gromov
proved the systolic inequality on higher dimensional tori. Later, by estimating the
volume of suitable balls in the torus, Guth was able to reprove Gromov’s systolic
inequality and improve the constant to (8n)n [4]. In the same paper, Guth mentioned
the following conjecture:

Conjecture 1. For any Riemannian torus (Tn, g), we have

(1.4) sys(Tn, g)n ≤ Cnnn/2V ol(Tn, g),

where C > 0 is an absolute constant.

He pointed out that the above conjecture is a corollary of a conjecture of Gromov
on the volume of balls in a torus. Guth also mentioned that a randomly chosen flat
n-torus with volume 1 has systole of order ≈ n1/2. Thus the constant Cnnn/2 in the
above conjecture has nearly optimal order.

It is worth mentioning that Gromov also established systolic inequalities for a
more general class of manifolds, the so called “essential manifolds” which include all
the aspherical manifolds. There are many other variants of the notion of systoles,
such as relative systoles, higher dimensional systoles, shortest closed geodesics in a
simple connected space, etc. For a detailed survey of systolic inequalities, one can
read e.g. [1].

One possible way to generalize the classical systolic inequality is to consider multi-
ple closed geodesics instead of just the shortest one. In this direction, Hebda studied
the relationship between the primitive length spectrum and the area of the 2-tori
[5][6]. The primitive length spectrum of a Riemannian manifold M refers to the set
of lengths of shortest loops in primitive free homotopy classes of unoriented closed
curves in M , counted with multiplicity. We may list the primitive length spectrum
in an increasing sequence:

(1.5) 0 < l1(g) ≤ l2(g) ≤ l3(g) ≤ · · · .

The main result of Hebda can be stated as follows:

Theorem 1.2. For each positive integer n there exists a function µn(x1, ..., xn) such
that for every Riemannian metric g on the two-dimensional torus T 2 with area a(g)
and first eigenvalue of Laplacian λ1(g), one has

(1.6) µn(l
2
1(g), ..., l

2
n(g)) ≤ a2(g)

and

(1.7) λ1(g) ≤
4π2

µn(l1(g), ..., ln(g))
.

Equality holds in either inequality if and only if one of the following holds:



160 Yuhang Liu

� n = 1, and (T 2, g) is a flat equilateral torus with l1(g) = l2(g) = l3(g);

� n = 2, and (T 2, g) is a flat isosceles torus with l2(g) = l3(g);

� n ≥ 3, and (T 2, g) is a flat torus.

Hebda also obtained the (rather complicated) expression of the functions µn by
studying the primitive length spectrum of the flat tori. Inspired by Hebda’s work, we
find a generalization of Loewner’s inequalities to higher dimensional tori with confor-
mally flat metrics.

The main theorem in this paper is as follows.

Theorem 1.3. Let (Tn, g) be a conformally flat Riemannian metric on the n-dimensional
torus. Then there exist a dimensional constant C(n) > 0 and n distinct closed
geodesics γi of length ci (1 ≤ i ≤ n) which represent n linearly independent elements
in π1(T

n) ∼= Zn, such that the following holds:

n∏
i=1

ci ≤ C(n)V ol(g).

Here V ol(g) is the volume of (Tn, g). Moreover, C(n) can be taken to be 2n/V ol(Bn),
where V ol(Bn) is the volume of the n-dimensional unit ball.

As a corollary, we confirm Conjecture 1 for conformally flat tori.

Corollary 1.4. For any conformally flat torus (Tn, g), we have

(1.8) sys(Tn, g)n ≤
(
2n

eπ

)n/2

V ol(Tn, g).

The rest of the paper is organized as follows. In the Preliminary, we will state
some facts from the lattice theory and Lie group theory. In Section 3 we will prove
the main theorem and the corollary. We first prove it for flat tori and then finish the
proof by reducing conformally flat metrics to flat metrics.

2 Preliminaries

Definition 2.1. Let a⃗1, a⃗2, ..., a⃗n be n linearly independent vectors in Rn. We call

(2.1) Λ :=

{
n∑

i=1

kia⃗i : ki ∈ Z

}

a lattice of rank n, and call {a⃗1, a⃗2, ..., a⃗n} a basis of Λ.

When n ≥ 2, a lattice Λ of rank n has infinitely many bases. Suppose that
both {a⃗1, a⃗2, ..., a⃗n} and {⃗b1, b⃗2, ..., b⃗n} are bases of Λ, and let A and B denote their
matrices, respectively. Then there is an n×n integer unimodular matrix U such that

(2.2) B = UA.
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Therefore, although the number of the bases of a given lattice is infinite, the absolute
value of the determinants of their corresponding matrices is a constant. It is called
the determinant of the lattice, and is denoted by det(Λ).

In fact we have

(2.3) det(Λ) = vol

({
n∑

i=1

λia⃗i : 0 ≤ λi ≤ 1

})
.

We also recall the notion of “successive minima” in the lattice theory. Let Λ de-
note a lattice in Rn and B denote the unit n-ball centered at the origin. Let λ1 be
the smallest positive number such that λ1B ∩Λ contains one pair of nonzero vectors.
Similarly, let λi be the smallest positive number such that λiB ∩ Λ contains i pairs
of linearly independent vectors. Then we call λi the i-th successive minimum with
respect to the lattice Λ.

Now we are ready to state Minkowski’s second theorem:

Theorem 2.1. Let λi be the i-th successive minimum with respect to the lattice Λ.
Then we have

(2.4)
2n

n!V ol(B)
det(Λ) ≤

n∏
i=1

λi ≤
2n

V ol(B)
det(Λ).

There are many proofs of this theorem. One concise proof can be found in [3],
pp. 58–61. We remark that Minkowski’s second theorem holds for any Minkowski
norm in Rn, but we only need the version for Euclidean norm. However, the constant

2n

V ol(B) is not sharp, and it is quite challenging to determine the sharp bound.

Finally we recall the notion of Haar measure on topological groups. Any locally
compact Hausdorff topological group has a unique (up to scalars) nonzero left invari-
ant measure which is finite on compact sets. If the group is Abelian or compact, then
this measure is also right invariant and is known as the Haar measure. In particular,
the torus Tn, viewed as an Abelian Lie group, admits the Haar measure, which can
be taken as the volume measure with respect to a flat metric on Tn. We also note
that a metric on Tn is flat if and only if it is homogeneous, that is, invariant under
left translations.

3 Proof of the main theorem

Recall the main theorem we want to prove:

Theorem 3.1. Let (Tn, g) be a conformally flat Riemannian metric on the n-dimensional
torus. Then there exist a dimensional constant C(n) > 0 and n distinct closed
geodesics γi of length ci (1 ≤ i ≤ n) which represent n linearly independent elements
in π1(T

n) ∼= Zn, such that the following holds:

n∏
i=1

ci ≤ C(n)V ol(g).
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Here V ol(g) is the volume of (Tn, g). Moreover, C(n) can be taken to be 2n/V ol(Bn),
where V ol(Bn) is the volume of the n-dimensional unit ball.

We divide the proof into two parts. We first prove it for flat tori. Any flat torus is
isometric to Rn/Λ for a certain lattice Λ in Rn. Any primitive closed geodesic of Rn/Λ
passing through the origin is represented by a nonzero vector in Λ. Let v⃗1, v⃗2, ..., v⃗n
denote the n vectors in Λ realizing the successive minima. By definition they are
linearly independent over Z, and thus they represent n distinct closed geodesics which
are Z-linearly independent in π1(T

n). By Minkowski’s second theorem, we have

(3.1)

n∏
i=1

||v⃗i|| ≤
2n

V ol(B)
det(Λ).

Also notice det(Λ) = V ol(Rn/Λ). Thus we have established the desired inequality for
flat tori.

In the next step we study the general case. Let g = f(p)2g0 be a conformally flat
metric on Tn, where p is a point on Tn, f(p) is the conformal factor and g0 is a flat
metric on Tn. Let’s consider the “averaged metric” h = f̄(p)2g0, where

(3.2) f̄(p) =

∫
Tn

f(σp)dµ(σ),

σ ranges over translations on Tn and µ is the Haar measure on Tn (viewed as the
group of translations). Here we normalize µ so that

∫
Tn dµ(σ) = 1. The metric h

is flat since f̄ is constant (by the definition of Haar measure). Thus we can find n
closed geodesics γ0

i (1 ≤ i ≤ n) with respect to h satisfying the desired inequality.
We choose the g-minimizers γi in the homotopy classes of γ0

i . We claim that these
γi’s satisfy

n∏
i=1

L(γi) ≤ C(n)V ol(g),

where L(γi) is the g-length of γi, which would finish the proof.

We compare the volume and lengths of curves for the metrics g and h. We first
show the following lemma:

Lemma 3.2. The volume of h is less than or equal to the volume of g.

Proof. Let dvol0 denote the volume element for g0. Then

(3.3) V ol(g) =

∫
Tn

f(p)ndvol0(p), V ol(h) =

∫
Tn

( ∫
Tn

f(σp)dµ(σ)
)n

dvol0(p).

By Holder’s inequality:
(3.4)∫
Tn

f(σp)dµ(σ) ≤
( ∫

Tn

f(σp)ndµ(σ)
)1/n( ∫

Tn

1dµ(σ)
)(n−1)/n

=
( ∫

Tn

f(σp)ndµ(σ)
)1/n

.
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Thus we have

V ol(h) ≤
∫
Tn

∫
Tn

f(σp)ndµ(σ)dvol0(p)

=

∫
Tn

∫
Tn

f(σp)ndvol0(p) dµ(σ)

=

∫
Tn

∫
Tn

f(p)ndvol0(p) dµ(σ)

=

∫
Tn

V ol(g)dµ(σ)

= V ol(g).

(3.5)

Here we used Fubini’s theorem to interchange the order of integration, and σ∗(dvol0) =
dvol0 since translations are isometries for flat metrics. □

Next, let h(γ) and g(γ) denote the length of the curve γ in the metric h and g,
respectively. We claim h(γ0

i ) ≥ g(γi), where γi and γ0
i are defined at the beginning

of this section.

Indeed, by the construction of h we have

(3.6) h(γ0
i ) =

∫
Tn

g(σγ0
i )dµ(σ).

Here σγ0
i is the image of γ0

i under the group action of σ. Note that each σγ0
i is

homotopic to γ0
i since σ lies in a connected group Tn. Thus by the definition of γi,

g(σγ0
i ) ≥ g(γi). Thus h(γ

0
i ) ≥ g(γi).

Now we have come to the end of the proof. For the flat metric h, we have proven∏n
i=1 h(γ

0
i ) ≤ C(n)V ol(h) with C(n) given by Minkowski’s second theorem in the

previous section. In this section, we proved V ol(g) ≥ V ol(h) and g(γi) ≤ h(γ0
i ).

Combining all these, we conclude the proof of the main theorem.

Proof of Corollary 1.4. Since sys(Tn, g)n ≤
∏n

i=1 ci, we only need to calculate the
growth rate of C(n) = 2n/V ol(Bn). It is well known that

(3.7) V ol(Bn) =
π

n
2

Γ(n2 + 1)
,

where Γ(·) is the Gamma function. By Stirling’s formula: Γ(n2 + 1) ≈ ( n
2e )

n
2 . Sub-

stituting it into the expression of C(n), we obtain C(n) ≈ ( 2neπ )
n
2 , thus proving the

corollary.

Remark 3.1. The construction of h is more like “averaging g1/2” instead of averaging
the metric g itself. We hope to find a way to average more general classes of metrics so
that the above argument goes through. We also hope to establish similar inequalities
on other types of manifolds. It is also interesting to investigate the optimal constant
for each conformal class of flat metrics.
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