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EXISTENCE RESULTS FOR GENERALIZED EXPONENTIAL

VECTOR VARIATIONAL-LIKE INEQUALITIES IN FUZZY

ENVIRONMENT

MOHAMMAD FARID, SYED SHAKAIB IRFAN, IQBAL AHMAD AND PREETI SHUKLA

Abstract. In this paper, we study a generalized exponential fuzzy vector

variational-like inequalities in Euclidean spaces. We construct an example to

illustrate the main problem. We define a new class of αg-relaxed exponentially
(γ, η)-monotone mapping in fuzzy environment. We prove the existence of so-

lutions to generalized exponential vector variational-like inequality with fuzzy

mappings by using KKM-technique. Further, we give some consequences of
the main result. The results presented in this paper unifies and extends some

known results in this area.

1. Introduction

The theory of variational inequality has been introduced by Kinderlehrer and
Stampacchia [16]. Variational inequality theory has appeared as an effective and
powerful tools to study and investigate a wide class of problems arising in pure and
applied sciences including elasticity, optimization, transportation and structural
analysis, see for example [2, 9, 16, 23, 26].

Wu and Huang defined the concepts of relaxed η−α pseudomonotone mappings
to study vector variational-like inequality problem in Banach spaces. The general-
ized variational-like inequalities with generalized α-monotone multifunctions study
by Ceng et al. [5] [see for instance, [11, 19, 22]]. In 2004, Antczak [1] introduced
the class of exponential (p, r)-invex functions for differentiable case [see for more
details, [13, 21]]. The exponential and logarithmic functions are very important in
mathematical modeling of various real-life problems, for example, in mathematical
modeling of growth and decline of populations, digital circuit optimization in the
field of electrical engineering. Very recently, Jayswal et al. [15] introduced expo-
nential type vector variational-like inequality problems with exponential invexities.
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In 1965, Zadeh [27] introduced the concepts of fuzzy sets. The fuzzy set theory
has much application in various branches of engineering and mathematical sciences
including artificial intelligence, control engineering, computer science, management
science etc., see [28]. The concept of variational inequalities for fuzzy mappings
was introduced by Chang [6] et al. in 1989 and study the existence theorems.
Recently several kinds of variational inequalities and complementarity problems
for fuzzy mappings were studied [see for instance [17, 20, 8]]. Recently, Chang
[7] et al. introduced and studied a new class of generalized vector variational-like
inequalities in fuzzy environment and generalized vector variational inequalities in
fuzzy environment.

Motivated by the work of Antczak [1], Irfan et al. [14], Jayswal et al. [15],
Chang et al. [7], Ho et al. [13] and by the ongoing research in this direction, we
introduce a more general problem generalized exponential type vector variational-
like inequality problem with fuzzy mapping (in short, GEVVLIPFM) in Euclidean
spaces and define a new kind of αg-relaxed exponentially (γ, η)-monotone mapping.
We prove the existence results of GEVVLIPFM by KKM-technique and Nadler
results. The results presented in this paper extend and generalize many previously
known results in this research area.

2. Preliminaries

Let Z be a nonempty set. We recall that a fuzzy set B in Z is characterized by
a function µB : Z → [0, 1], called membership function of B, ” which associates
with each point u ∈ Z a real number in the interval [0, 1], with the value of µB
at u representing the grade of membership of u in B”. Clearly, any crisp subset
B of Z is fuzzy set if µB(u) = 1, when u ∈ B and µB(u) = 0 otherwise. Let X
be a nonempty subset of a vector space V and D be a nonempty set. A mapping
F : D → F(X), where F(X) be the collection of all fuzzy sets of X, is called a fuzzy
mapping, and F (u), u ∈ D is a fuzzy set in F(X), denoted by Fu and Fu(v), v ∈ X
is the grade of membership of v in Fu, see for details [27].

Let B ∈ F(X) and α ∈ [0, 1], then the set

Bα = {u ∈ X : B(u) ≥ α}

is called an α-cut set of B.
In the sequel, we assume that E1 and E2 as Euclidean space of dimensions

m and n, K and C be nonempty subsets of E1 and E2 respectively.

Let K be a nonempty subset of E1. Then, K is said to be

(i) cone if λK ⊂ K, ∀ λ ≥ 0;
(ii) convex cone if K +K ⊂ K;
(iii) pointed cone if K is cone and K

⋂
{−K} = {0};

(iv) proper cone if K 6= E2.

LetK : C → 2E2 be a closed pointed convex cone valued mapping with intK(u) 6=
∅ with apex at origin, where intK(u) be a set of interior points of K(u). Then,
K(u) induces a partial ordering in E2 as:

(i) v ≤K(u) w ⇔ w − v ∈ K(u);
(ii) v �K(u) w ⇔ w − v /∈ K(u);
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(iii) v ≤intK(u) w ⇔ w − v ∈ intK(u);
(iv) v �intK(u) w ⇔ w − v /∈ intK(u).

Let (E2,K) be an ordered space with the ordering of E2 defined by a set K(u)
and ordering relation ′′ ≤K(u)

′′ is a partial order. Then

(i) v �K(u) w ⇔ v + s � z + s, for any u, v, w, s ∈ E2;
(ii) v �K(u) w ⇔ λv � λw, for any λ ≥ 0.

In this paper, we introduce and study the following generalized exponential type
vector variational-like inequality problem with fuzzy mapping (in short, GEVVLIPFM).
Let C ⊆ E1 be a nonempty subset of an Euclidean space Rn and (E2,K) be an
ordered Euclidean space induces by a closed convex pointed cone K whose apex
at origin. Let K : C → 2E2 be a closed convex pointed cone valued mapping with
intK(x) 6= ∅. Let γ be a nonzero real number, η : C × C → E1, g : C → C, F :
C ×C → E2 and N : F(L(E1, E2))× F(L(E1, E2))× F(L(E1, E2))→ F(L(E1, E2))
be the mappings, where L(E1, E2) be the space of all continuous linear mappings
from E1 to E2 and A1, A2, A3 : C → F(L(E1, E2)) be the fuzzy mappings and
a1 : E1 → [0, 1], a2 : E1 → [0, 1], a3 : E1 → [0, 1] be functions. Then the

GEVVLIPFM is to find u0 ∈ C and x̄ ∈ Ã1(u0) = (A1(u0))a1(u0), ȳ ∈ Ã2(u0) =

(A2(u0))a2(u0), z̄ ∈ Ã3(u0) = (A3(u0))a3(u0) such that

〈N(x̄, ȳ, z̄),
1

γ
(eγη(v,g(u0)) − 1)〉+ F (g(u0), v) �intK(u0) 0, ∀v ∈ C, (2.1)

where Ã1, Ã2, Ã3 : C → 2L(E1,E2) be set valued mappings.
The following example is provided to illustrate problem (2.1)

Example 2.1. Let E1 = E2 = R, C = [0,+∞), K(u0) = [0,∞), ∀u0 ∈ C. Define
A1, A2, A3 : C → 2F(L(E1,E2)) ≡ 2R by

µA1(u0)(x) =

{
1

1+(x−1)2 , if u0 ∈ [0, 1],
1

1+u0(x−2)2 , if u0 ∈ (1,+∞),
,

µA2(u0)(y) =

{
1

1+(y−1)2 , if u0 ∈ [0, 1],
1

1+u0(y−2)2 , if u0 ∈ (1,+∞),
,

µA3(u0)(z) =

{
1

1+(z−1)2 , if u0 ∈ [0, 1],
1

1+u0(z−2)2 , if u0 ∈ (1,+∞),
,

and a1 : C → [0, 1], a2 : C → [0, 1], a3 : C → [0, 1] as

a1(u0) =

{
1
2 , if u0 ∈ [0, 1],

1
1+u0

, if u0 ∈ (1,+∞),
,

a2(u0) =

{
1
2 , if u0 ∈ [0, 1],

1
2+u0

, if u0 ∈ (1,+∞),
,

a3(u0) =

{
1
2 , if u0 ∈ [0, 1],

1
3+u0

, if u0 ∈ (1,+∞),
.
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For u0 ∈ [0, 1]

Ã1(u0) = (A1(u0))a1(u0) = {x ∈ R : µA1(u0)(x) ≥ 1

2
}

= {x ∈ R :
1

1 + (x− 1)2
≥ 1

2
} = [0, 2]

Ã2(u0) = (A2(u0))a2(u0) = {y ∈ R : µA2(u0)(y) ≥ 1

2
}

= {y ∈ R :
1

1 + (y − 1)2
≥ 1

2
} = [0, 2]

Ã3(u0) = (A3(u0))a3(u0) = {z ∈ R : µA3(u0)(z) ≥
1

2
}

= {z ∈ R :
1

1 + (z − 1)2
≥ 1

2
} = [0, 2],

and for any u0 ∈ (1,+∞), we have

Ã1(u0) = (A1(u0))a1(u0) = {x ∈ R : µA1(u0)(x) ≥ 1

1 + u0
}

= {x ∈ R :
1

1 + u0(x− 2)2
≥ 1

1 + u0
}

= {x ∈ R : (x− 2)2 ≤ 1} = [1, 3]

Ã2(u0) = (A2(u0))a2(u0) = {y ∈ R : µA2(u0)(y) ≥ 1

2 + u0
}

= {y ∈ R :
1

1 + u0(y − 2)2
≥ 1

2 + u0
}

= {y ∈ R : (y − 2)2 ≤ 1} = [1, 3]

Ã3(u0) = (A3(u0))a3(u0) = {z ∈ R : µA3(u0)(z) ≥
1

3 + u0
}

= {z ∈ R :
1

3 + u0(z − 2)2
≥ 1

3 + u0
}

= {z ∈ R : (z − 2)2 ≤ 1} = [1, 3].

Define N : F(L(E1, E2))× F(L(E1, E2))× F(L(E1, E2))→ F(L(E1, E2)) by

N(x, y, z) = {2x+ y + z}, ∀x, y, z ∈ F(L(E1, E2)) ≡ R,

η : C × C → E1 = R such that

η(u, v) = ln(
u

2
− v + 1), ∀u, v ∈ C,

g : C → C such that

g(u) =
u

2
, ∀u ∈ C,

and F : C × C → E2 = R such that

F (u, v) =
v

2
− u, ∀u, v ∈ C.

Consider γ = 1.
Consider the following two cases:



16 MOHAMMAD FARID, SYED SHAKAIB IRFAN, IQBAL AHMAD, PREETI SHUKLA

Case 1. If u0 ∈ [0, 1], x ∈ Ã1(u0), y ∈ Ã2(u0) and z ∈ Ã3(u0) then

〈N(x, y, z),
1

γ
(eγη(v,g(u0)) − 1)〉+ F (g(u0), v) = 〈2x+ y + z, eln(

v
2−

u0
2 ) − 1〉

+
v

2
− u0

2

= (2x+ y + z + 1)(
v

2
− u0

2
).

Thus,

(2x+ y + z + 1)(
v

2
− u0

2
) ≥ 0

⇒ u0 ≤ v, ∀v ∈ C.
This shows that u0 = 0 is a solution of the GEVVLIPFM(2.1).

Case 2. If u0 ∈ [0, 1], x ∈ Ã1(u0), y ∈ Ã2(u0) and z ∈ Ã3(u0) then

〈N(x, y, z),
1

γ
(eγη(v,g(u0)) − 1)〉+ F (g(u0), v) = 〈2x+ y + z, eln(

v
2−

u0
2 ) − 1〉

+
v

2
− u0

2

= (2x+ y + z + 1)(
v

2
− u0

2
).

Thus,

(2x+ y + z + 1)(
v

2
− u0

2
) ≥ 0

⇒ u0 ≤ v, ∀v ∈ C.
This shows that there is no solution for GEVVLIPFM(2.1) in this case. Thus, from
the case 1, we find that GEVVLIPFM(2.1) has a solution and a solution set is {0}.

Let C ⊆ E1 be a nonempty closed convex subset of an Euclidean space E1 = Rm

and (E2,K) be an ordered space induces by the closed convex pointed cone K(u)
whose apex at origin with intK(u) 6= ∅.

Lemma 2.1. [5] Let (E2,K) be an ordered space induced by the pointed closed
convex cone K with intK(u) 6= ∅. Then, for any u, v, w ∈ E2, the following relation
hold:

(i) w �intK x ≥K v ⇒ w �intK v;
(ii) w �intK x ≤K v ⇒ w �intK v.

Definition 2.1. A mapping F : E1 → E2 is a K(u)− convex on E1 if

F (λu+ (1− λ)v) ≤K(u) λF (u) + (1− λ)F (v), ∀u, v ∈ E1, λ ∈ [0, 1].

Definition 2.2. A mapping F : C → E2 is said to be completely continuous if for
any sequence {un} ∈ C, un ⇀ u0 weakly, then F (un)→ F (u0).

Definition 2.3. Let E1 and E2 be two topological vector spaces, A : E1 → 2E2 be
a set valued mapping and A−1(v) = {u ∈ E1 : v ∈ A(u)}. Then,

(i) A is said to be upper semicontinuous if for each u ∈ E1 and each open set
V in E2 with A(u) ⊂ V , then there exists an open neighborhood U of u in
E1 such that A(u0) ⊂ V , for each u0 ∈ U .

(ii) A is said to be closed if for any set {uα} → u in E1 and any net {vα} in
E2 such that vα → v and vα ∈ A(uα), for any α, we have v ∈ A(u).
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(iii) A is said to have a closed graph if the graph of A, Graph(A) = {(u, v) ∈
E1 × E2, v ∈ A(u)} is closed in E1 × E2.

Definition 2.4. Let F : C → 2E1 be a set valued mapping. Then F is said to
be a KKM-mapping if for any {v1, v2, ..., vn} of C, we have co{v1, v2, ..., vn} ⊂⋃n
i=1 F (vi), where co{v1, v2, ..., vn} denotes the convex hull of v1, v2, ..., vn.

Lemma 2.2. [10] Let C be a nonempty subset of a Hausdorff topological vector
space E1 and let F : C → 2E1 be a KKM-mapping. If F (v) is a closed in E1 for
all v ∈ C and compact for some v ∈ C, then

⋂
v∈C F (v) 6= ∅.

Lemma 2.3. [18] Let E be a normed vector space and H be a Hausdorff metric on
the collection CB(E) of all closed and bounded subsets of E, induced by a metric d
in terms of d(u, v) = ‖u− v‖, which is defined by

H(X,Y ) = max{sup
u∈X

inf
v∈Y
‖u− v‖, sup

v∈Y
inf
u∈X
‖u− v‖},

for X,Y ∈ CB(E). If X and Y are compact subset in E, then for each u ∈ X,
there exists v ∈ Y such that ‖u− v‖ ≤ H(X,Y ).

Definition 2.5. Let C be a nonempty closed convex subset of E1, η : E1×E1 → E1

be a mapping and N : F(L(E1, E2)) → F(L(E1, E2)) be a single valued mapping,
where L(E1, E2) be the space of all continuous linear mapping from E1 to E2.
Suppose that A : C → F(L(E1, E2)) be a fuzzy mapping with (A(u))a(u) 6= for all

u ∈ C, where a : E1 → [0, 1] and Ã : C → 2L(E1,E2) be a nonempty compact set

valued mapping defined by Ã(u) = (A(u))a(u), then

(i) N is said to be η-hemicontinuous, if

lim
t→0+

〈N(u+ t(v − u)), η(v, u)〉 = 〈Nu, η(v, u)〉, ∀u, v ∈ C.

(ii) A is said to be H-hemicontinuous, if for any u, v ∈ C, the mapping t →
H(A(u+ t(v−u)), Au) is continuous at 0+, where H is a Hausdorff metric
defined on CB(L(E1, E2)).

Definition 2.6. A mapping f : Rm → Rn is lipschitz continuous on D ⊂ Rm iff
there is an L ∈ R such that

‖f(u)− f(v)‖ ≤ L‖u− v‖, ∀u, v ∈ D. (2.2)

Definition 2.7. A mapping F : E1 → E1 is said to be affine if for any ui ∈ C and
λi ≥ 0, (1 ≤ i ≤ n) with

∑n
i=1 λi = 1, we have F (

∑n
i=1 λiui) =

∑n
i=1 λiF (ui).

Definition 2.8. Let E1 be an Euclidean space. A mapping F : E1 → R is a lower
semicontinuous at u0 ∈ E1 if F (u0) ≤ lim infn F (un), for any sequence {un} ⊂ E1

such that {un} converges to u0.

Definition 2.9. Let E1 be an Euclidean space. A mapping F : E1 → R is a weakly
upper semicontinuous at u0 ∈ E1 if F (u0) ≥ lim supn F (un), for any sequence
{un} ⊂ E1 such that {un} converges to u0 weakly.

Lemma 2.4. [3] Let S be a nonempty compact convex subset of a finite dimensional
space and T : S → S be a continuous mapping. Then there exists x ∈ S such that
Tx = x.

Definition 2.10. Let E1 and E2 be two topological spaces and A : E1 → F(E2) be
a fuzzy mapping. A mapping A is said to have fuzzy set valued if Au(v) is upper
semi continuous on E1 × E2 as a ordinary real function.
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Lemma 2.5. [3] Let C be a closed subset of a topological space E1, then charac-
teristic function χC of C is an upper semi continuous real valued function.

Lemma 2.6. [3] Let C be a nonempty closed convex subset of a real Hausdorff
topological vector space E1, K be a nonempty closed convex subset of a real Haus-
dorff topological vector space E2, and a : E1 → [0, 1] be a lower semi continuous
function. Let A : C → F(K) be a fuzzy mapping with (A(u))a(u) 6= for all u ∈ E1

and Ã : C → 2K be a multifunction defined by Ã(u) = (A(u))a(u). If A is a closed

set valued mapping, then Ã is a closed multifunction.

Definition 2.11. A fuzzy mapping A : C → F(L(E1, E2)) is said to be αg-relaxed
exponentially (γ, η)-monotone if for every pair of points u, v ∈ C, we have

〈Au−Av, 1

γ
(eγη(u,g(v)) − 1)〉 ≥K(u) αg(u− v), (2.3)

where αg : E1 → E2 with αg(tu) = tqαg(u) for all t > 0 and u ∈ E1, where q > 1
is a real number.

Definition 2.12. Let N : F(L(E1, E2))×F(L(E1, E2))×F(L(E1, E2))→ F(L(E1, E2))
be a single valued mappings and a : E1 → [0, 1] be function. A fuzzy mapping
A : C → F(L(E1, E2)) with compact valued is said to be αg-relaxed exponentially
(γ, η)-monotone with respect to first argument of N and g if for each pair of points
u, v, y, z ∈ C, we have

〈N(x1, y, z)−N(x2, y, z),
1

γ
(eγη(u,g(v)) − 1)〉 ≥K(u) αg(u− v), (2.4)

∀x1 ∈ (A(u))a(u), x2 ∈ (A(v))a(v), where αg : E1 → E2 with αg(tu) = tqαg(u) for
all t > 0 and u ∈ E1, where q > 1 is a real number.

Remark 2.1. Some special cases:

(i) If N(x, y, z) = N(x, y) then by Definition 2.12, we have for each pair of
points u, v, y ∈ C,

〈N(x1, y)−N(x2, y),
1

γ
(eγη(u,g(v)) − 1)〉 ≥K(u) αg(u− v), (2.5)

∀x1 ∈ (A(u))a(u), x2 ∈ (A(v))a(v), where αg : E1 → E2 with αg(tu) =
tqαg(u) for all t > 0 and u ∈ E1, where q > 1 is a real number.

(ii) If N(x, y, z) = N(x) then by Definition 2.12, we have for each pair of points
u, v ∈ C,

〈N(x1)−N(x2),
1

γ
(eγη(u,g(v)) − 1)〉 ≥K(u) αg(u− v), (2.6)

∀x1 ∈ (A(u))a(u), x2 ∈ (A(v))a(v), where αg : E1 → E2 with αg(tu) =
tqαg(u) for all t > 0 and u ∈ E1, where q > 1 is a real number.

3. Main Result

Theorem 3.1. Let C be a nonempty closed convex bounded subset of a real Eu-
clidean space E1 and (E2,K) an ordered Euclidean space induces by a pointed closed
convex cone K. Let K : C → 2E2 be a closed convex pointed cone valued mapping
with intK(u) 6= ∅ and E2 r (intK(u)) be an upper semicontinuous mapping. Let
g : C → C be a closed convex continuous single valued mapping and η : C×C → E1

be an affine in the first argument with η(u, u) = 0 for all u ∈ C. Let F : C×C → E2
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be a K(u)-convex in the second argument with the condition F (u, u) = 0 for all
u ∈ C. Let N : F(L(E1, E2)) × F(L(E1, E2)) × F(L(E1, E2)) → F(L(E1, E2)) be

a Lipschitz continuous mapping with all arguments, Ã1, Ã2, Ã3 : C → 2L(E1,E2)

be a nonempty upper semi continuous compact valued mappings induced by fuzzy
mappings A1, A2, A3 : C → F(L(E1, E2)), that is Ã1(u) = (A1(u))a1(u), Ã2(u) =

(A2(u))a2(u), Ã3(u) = (A3(u))a3(u) with a1 : E1 → [0, 1], a2 : E1 → [0, 1],

a3 : E1 → [0, 1]. If Ã1, Ã2, Ã3 are H-hemicontinuous and αg-relaxed exponentially
(γ, η)-monotone with respect to first argument of N and g. Then the following two
statements (i) and (ii) are equivalent:

(i) there exist u0 ∈ C and x̄ ∈ Ã1(u0) = (A1(u0))a1(u0), ȳ ∈ Ã2(u0) =

(A2(u0))a2(u0), z̄ ∈ Ã3(u0) = (A3(u0))a3(u0) such that

〈N(x̄, ȳ, z̄),
1

γ
(eγη(v,g(u0)) − 1)〉+ F (g(u0), v) �intK(u0) 0, ∀v ∈ C,

(ii) there exists u0 ∈ C such that

〈N(r̄, s̄, t̄),
1

γ
(eγη(v,g(u0)) − 1)〉+ F (g(u0), v) �intK(u0) αg(v − u0), ∀v ∈ C,

r̄ ∈ Ã1(v) = (A1(v))a1(v), s̄ ∈ Ã2(v) = (A2(v))a2(v), t̄ ∈ Ã3(v) = (A3(v))a3(v).

Proof. Let the statement (i) is true that is there exist u0 ∈ C and x̄ ∈ Ã1(u0) =

(A1(u0))a1(u0), ȳ ∈ Ã2(u0) = (A2(u0))a2(u0), z̄ ∈ Ã3(u0) = (A3(u0))a3(u0) such
that

〈N(x̄, ȳ, z̄),
1

γ
(eγη(v,g(u0)) − 1)〉+ F (g(u0), v) �intK(u0) 0, ∀v ∈ C. (3.1)

Since N is αg-relaxed exponentially (γ, η)-monotone therefore ∀v ∈ C, r̄ ∈ Ã1(v) =

(A1(v))a1(v), s̄ ∈ Ã2(v) = (A2(v))a2(v), t̄ ∈ Ã3(v) = (A3(v))a3(v) we have

〈N(r̄, s̄, t̄)−N(x̄, ȳ, z̄),
1

γ
(eγη(v,g(u0)) − 1)〉+ F (g(u0), v)

≥K(u0) αg(v − u0) + F (g(u0), v)

〈N(r̄, s̄, t̄),
1

γ
(eγη(v,g(u0)) − 1)〉+ F (g(u0), v)

≥K(u) 〈N(x̄, ȳ, z̄),
1

γ
(eγη(v,g(u0)) − 1)〉

+αg(v − u0) + F (g(u0), v)

〈N(r̄, s̄, t̄),
1

γ
(eγη(v,g(u0)) − 1)〉+ F (g(u0), v)− αg(v − u0)

≥K(u) 〈N(x̄, ȳ, z̄),
1

γ
(eγη(v,g(u0)) − 1)〉+ F (g(u0), v). (3.2)

From (3.1), (3.2) and Lemma 2.1, we have

〈N(r̄, s̄, t̄),
1

γ
(eγη(v,g(u0)) − 1)〉+ F (g(u0), v) �intK(u0) αg(v − u0), ∀v ∈ C,

r̄ ∈ Ã1(v) = (A1(v))a1(v), s̄ ∈ Ã2(v) = (A2(v))a2(v), t̄ ∈ Ã3(v) = (A3(v))a3(v).
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Conversely, consider the statements (ii) is correct that is there exists u0 ∈ C such
that

〈N(r̄, s̄, t̄),
1

γ
(eγη(v,g(u0)) − 1)〉+ F (g(u0), v) �intK(u0) αg(v − u0), (3.3)

∀v ∈ C, r̄ ∈ Ã1(v) = (A1(v))a1(v), s̄ ∈ Ã2(v) = (A2(v))a2(v), t̄ ∈ Ã3(v) =
(A3(v))a3(v).

Let v ∈ C be an arbitrary element. Consider vλ = λv + (1 − λ)u0, λ ∈ (0, 1].

As C is convex, vλ ∈ C. Let r̄λ ∈ Ã1(vλ) = (A1(vλ))a1(vλ), s̄λ ∈ Ã2(vλ) =

(A2(vλ))a2(vλ), t̄λ ∈ Ã3(vλ) = (A3(vλ))a3(vλ), we get from (3.3)

〈N(r̄λ, s̄λ, t̄λ),
1

γ
(eγη(vλ,g(u0))−1)〉+F (g(u0), vλ) �intK(u0) αg(vλ−u0) = tqαg(v−u0).

(3.4)
Now,

〈N(r̄λ, s̄λ, t̄λ),
1

γ
(eγη(vλ,g(u0)) − 1)〉 + F (g(u0), vλ)

= 〈N(r̄λ, s̄λ, t̄λ),

1

γ
(eγη(λv+(1−λ)u0,g(u0)) − 1)〉

+F (g(u0), λv + (1− λ)u0)

= 〈N(r̄λ, s̄λ, t̄λ),

1

γ
(eγηλ(v,g(u0))+(1−λ)γη(u0,g(u0)) − 1)〉

+λF (g(u0), v) + (1− λ)F (g(u0), u0)

≤ K(u0)
〈N(r̄λ, s̄λ, t̄λ),

1

γ
(λ(eγη(v,g(u0)) − 1)

+(1− λ)(eγη(v,g(u0)) − 1)〉+ λF (g(u0), v)

= λ{〈N(r̄λ, s̄λ, t̄λ),
1

γ
(eγη(v,g(u0)) − 1)〉

+F (g(u0), v)}. (3.5)

From (3.4), (3.5) and Lemma 2.1, we have

〈N(r̄λ, s̄λ, t̄λ),
1

γ
(eγη(v,g(u0)) − 1)〉+ F (g(u0), v) �intK(u0) t

q−1αg(v − u0). (3.6)

Since Ã1(vλ) = (A1(vλ))a1(vλ), Ã2(vλ) = (A2(vλ))a2(vλ), Ã3(vλ) = (A3(vλ))a3(vλ)
are compact, therefore by Lemma 2.3, for each fixed r̄λ ∈ Ã1(vλ) = (A1(vλ))a1(vλ),

s̄λ ∈ Ã2(vλ) = (A2(vλ))a2(vλ), t̄λ ∈ Ã3(vλ) = (A3(vλ))a3(vλ) there exists

r̄
′
λ ∈ Ã1(v

′

λ) = (A1(v
′

λ))a1(v′λ)
, s̄

′
λ ∈ Ã2(v

′

λ) = (A2(v
′

λ))a2(v′λ)
, t̄

′
λ ∈ Ã3(v

′

λ) =

(A3(v
′

λ))a3(v′λ)
such that

‖rλ − r
′

λ‖ ≤ H(Ã1(vλ), Ã1(u0)),

‖sλ − s
′

λ‖ ≤ H(Ã2(vλ), Ã2(u0)),

‖tλ − t
′

λ‖ ≤ H(Ã3(vλ), Ã3(u0)) (3.7)
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Since Ã1(u0), Ã2(u0) and Ã3(u0) are compact, therefore without loss of generality,
we may assume that

rλ → r0 ∈ A1u0 as λ→ 0+

sλ → s0 ∈ A2u0 as λ→ 0+

tλ → t0 ∈ A3u0 as λ→ 0+.

Also, Ã1, Ã2 and Ã3 are H-hemicontinuous, thus it follows that

H(Ã1(vλ), Ã1(u0))→ 0 as λ→ 0+

H(Ã2(vλ), Ã2(u0))→ 0 as λ→ 0+

H(Ã3(vλ), Ã3(u0))→ 0 as λ→ 0+.

By (3.7), we get

‖rλ − r0‖ ≤ ‖rλ − r
′

λ‖+ ‖r
′

λ − r0‖
≤ H(Ã1(vλ), Ã1(r0)) + ‖r

′

λ − r0‖ → 0 as λ→ 0+,

‖sλ − v0‖ ≤ ‖sλ − s
′

λ‖+ ‖s
′

λ − v0‖
≤ H(Ã2(vλ), Ã2(v0)) + ‖s

′

λ − v0‖ → 0 as λ→ 0+,

and

‖tλ − t0‖ ≤ ‖tλ − t
′

λ‖+ ‖t
′

λ − t0‖
≤ H(Ã3(vλ), Ã3(t0)) + ‖t

′

λ − t0‖ → 0 as λ→ 0+. (3.8)

Since N is Lipschitz continuous with all arguments therefore we get

‖〈N(rλ, sλ, tλ),
1

γ
(eγη(v,g(u0)) − 1)〉 − tq−1αg(v − u0)

−〈N(r0, s0, t0),
1

γ
(eγη(v,g(u0)) − 1)〉‖

≤ ‖〈N(rλ, sλ, tλ)−N(r0, s0, t0),
1

γ
(eγη(v,g(u0)) − 1)〉‖+ ‖tq−1αg(v − u0)‖

≤ 1

γ
{‖N(rλ, sλ, tλ)−N(r0, sλ, tλ)‖+ ‖N(r0, sλ, tλ)−N(r0, s0, tλ)‖

+‖N(r0, s0, tλ)−N(r0, s0, t0)‖}‖eγη(v,g(u0)) − 1‖
+tq−1‖αg(v − u0)‖ → 0 as λ→ 0+. (3.9)

By (3.4), we get

〈N(rλ, sλ, tλ),
1

γ
(eγη(vλ,g(u0)) − 1)〉 + F (g(u0), vλ)

− tq−1αg(v − u0) ∈ E2 r (intK(u0)).

Since E2 r (intK(u0)) is closed therefore from (3.9), we have

〈N(r0, s0, t0),
1

γ
(eγη(v,g(u0)) − 1)〉+ F (g(u0), v) ∈ E2 r (intK(u0))

〈N(r0, s0, t0),
1

γ
(eγη(v,g(u0)) − 1)〉+ F (g(u0), v) �intK(u0) 0, ∀ v ∈ K.

�
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Theorem 3.2. Let C be a nonempty closed convex bounded subset of a real Eu-
clidean space E1 and (E2,K) an ordered Euclidean space induces by a pointed
closed convex cone K. Let K : C → 2E2 be a closed convex pointed cone val-
ued mapping with intK(u) 6= ∅ and E2 r (intK(u)) be an upper semicontinuous
mapping. Let g : C → C be a closed convex and continuous single valued map-
ping and η : C × C → E1 be an affine in the first argument with η(u, u) = 0
for all u ∈ C and continuous in both variable. Let F : C × C → E2 be a com-
pletely continuous in the first argument and affine in the second argument with
the condition F (g(u), u) = 0 for all u ∈ C. Let αg : E1 → E2 be a weakly
lower semicontinuous with respect to g. Let N : F(L(E1, E2)) × F(L(E1, E2)) ×
F(L(E1, E2)) → F(L(E1, E2)) be a Lipschitz continuous mapping with all argu-

ments and Ã1, Ã2, Ã3 : C → 2L(E1,E2) be a nonempty upper semi continuous com-
pact valued mappings induced by fuzzy mappings A1, A2, A3 : C → F(L(E1, E2)),

that is Ã1(u) = (A1(u))a1(u), Ã2(u) = (A2(u))a2(u), Ã3(u) = (A3(u))a3(u) with

a1 : E1 → [0, 1], a2 : E1 → [0, 1], a3 : E1 → [0, 1]. If Ã1, Ã2, Ã3 are H-
hemicontinuous and αg-relaxed exponentially (γ, η)-monotone with respect to first
argument of N and g. Then (2.1) is a solvable, that is there exist u ∈ C and

x ∈ Ã1(u) = (A1(u))a1(u), y ∈ Ã2(u) = (A2(u))a2(u), z ∈ Ã3(u) = (A3(u))a3(u)
such that

〈N(x, y, z),
1

γ
(eγη(v,g(u)) − 1)〉+ F (g(u), v) �intK(u) 0, ∀v ∈ C.

Proof. Consider the set valued mapping S : C → 2E1 such that ∀v ∈ C

S(v) = {u ∈ C : 〈N(x, y, z),
1

γ
(eγη(v,g(u)) − 1)〉+ F (g(u), v) �intK(u) 0,

x ∈ Ã1(u) = (A1(u))a1(u), y ∈ Ã2(u) = (A2(u))a2(u), z ∈ Ã3(u) = (A3(u))a3(u)}.

First, we claim that S is a KKM-mapping. If S is not a KKM-mapping then there
exists {u1, u2, u3, ..., um} ⊂ C such that

co{u1, u2, u3, ..., um} *
m⋃
i=1

S(ui),

that means there exists at least u ∈ co{u1, u2, u3, ..., um}, u =
∑m
i=1 λiui, where

λi ≥ 0, i = 1, 2, 3, ...,m,
∑m
i=1 λi = 1, but u /∈

⋃m
i=1 S(ui). From the construction

of S, for any x ∈ Ã1(u) = (A1(u))a1(u), y ∈ Ã2(u) = (A2(u))a2(u), z ∈ Ã3(u) =
(A3(u))a3(u)), we have

〈N(x, y, z),
1

γ
(eγη(ui,g(u))−1)〉+F (g(u), ui) �intK(u) 0, for i = 1, 2, 3, ...,m. (3.10)
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From (3.10) and since η and F are affine in first and second argument, it follows
that

0 = 〈N(x, y, z),
1

γ
(eγη(u,g(u)) − 1)〉+ F (g(u), u)

= 〈N(x, y, z),
1

γ
(eγη(

∑m
i=1 λiui,g(u)) − 1)〉+ F (g(u),

m∑
i=1

λiui)

= 〈N(x, y, z),
1

γ
(e

∑m
i=1 λiγη(ui,g(u)) − 1)〉+

m∑
i=1

λiF (g(u), ui)

≤K(u) 〈N(x, y, z),
1

γ
(e

∑m
i=1 λiγη(ui,g(u)) − 1)〉+

m∑
i=1

λiF (g(u), ui)

=

m∑
i=1

λi{〈N(x, y, z),
1

γ
(eγη(ui,g(u)) − 1)〉+ F (g(u), ui)} ≤intK(u) 0,

this shows that 0 ∈ intK(u), which contradicts the fact that K(u) is proper. Hence
S is a KKM-mapping.
Define another set valued mapping W : C → 2E1 such that ∀v ∈ C

W (v) = {u ∈ C : 〈N(p, q, r),
1

γ
(eγη(v,g(u)) − 1)〉+ F (g(u), v)

�intK(u) αg(v − u),

∀p ∈ Ã1(v) = (A1(v))a1(v), q ∈ Ã2(v) = (A2(v))a2(v), r ∈ Ã3(v) = (A3(v))a3(v))}.

Now, we will prove that S(v) ⊂W (v), ∀v ∈ C.

Let u ∈ S(v), there exists some x ∈ Ã1(u) = (A1(u))a1(u), y ∈ Ã2(u) =

(A2(u))a2(u), z ∈ Ã3(u) = (A3(u))a3(u)), such that

〈N(x, y, z),
1

γ
(eγη(v,g(u)) − 1)〉+ F (g(u), v) �intK(u) 0. (3.11)

Since N is a αg-relaxed exponentially (γ, η)-monotone therefore ∀v ∈ C, p ∈
Ã1(v) = (A1(v))a1(v), q ∈ Ã2(v) = (A2(v))a2(v), r ∈ Ã3(v) = (A3(v))a3(v)) we
have

〈N(x, y, z),
1

γ
(eγη(v,g(u)) − 1)〉+ F (g(u), v) ≤intK(u) 〈N(p, q, r),

1

γ
(eγη(v,g(u)) − 1)〉

+ F (g(u), v)− αg(v − u). (3.12)

Using (3.11), (3.12) and Lemma 2.1, we have

〈N(p, q, r),
1

γ
(eγη(v,g(u)) − 1)〉+ F (g(u), v) �intK(u) αg(v − u),

∀v ∈ C, p ∈ Ã1(v) = (A1(v))a1(v), q ∈ Ã2(v) = (A2(v))a2(v), r ∈ Ã3(v) =
(A3(v))a3(v)).

Therefore u ∈ W (v) that is S(v) ⊂ W (v), ∀v ∈ C. This implies that W is also
a KKM-mapping.
We claim that for each v ∈ C, W (v) ⊂ C is closed in the weak topology of E1. Let

us suppose that u ∈W (v)
w

, the weak closure of W (v). Since E1 is reflexive, there is
a sequence {un} in W (v) such that {un} converges weakly to u ∈ C. Then, for each
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p ∈ Ã1(v) = (A1(v))a1(v), q ∈ Ã2(v) = (A2(v))a2(v), r ∈ Ã3(v) = (A3(v))a3(v)), we
have

〈N(p, q, r),
1

γ
(eγη(v,g(un)) − 1)〉+ F (g(un), v) �intK(un) αg(v − un)

〈N(p, q, r),
1

γ
(eγη(v,g(un)) − 1)〉+ F (g(un), v)− αg(v − un) ∈ E2 r (−intK(un)).

Since N and F are completely continuous and E2 r (−intK(un)) is closed, αg is
weakly lower semicontinuous and b is continuous therefore the sequence

{〈N(p, q, r),
1

γ
(eγη(v,g(un)) − 1)〉+ F (g(un), v)− αg(v − un)}

converges to

〈N(p, q, r),
1

γ
(eγη(v,g(u)) − 1)〉+ F (g(u), v)− αg(v − u)

and

〈N(p, q, r),
1

γ
(eγη(v,g(u)) − 1)〉+ F (g(u), v)− αg(v − u) ∈ E2 r (−intK(u)).

Therefore

〈N(p, q, r),
1

γ
(eγη(v,g(u)) − 1)〉+ F (g(u), v) �intK(un) αg(v − u).

Thus, u ∈W (v). This shows that W (v) is weakly closed ∀v ∈ C.
Furthermore, E1 is reflexive and C ⊂ E1 is a nonempty closed convex and bounded.
Therefore, C is weakly compact subset of E1 and so W (v) is also weakly compact.
Therefore from Lemma 2.2 and Theorem 3.1, it follows that⋂

v∈C
W (v) 6= ∅.

Thus, there exists u ∈ C such that

〈N(p, q, r),
1

γ
(eγη(v,g(u)) − 1)〉+ F (g(u), v) �intK(un) αg(v − u),

∀v ∈ C, p ∈ Ã1(v) = (A1(v))a1(v), q ∈ Ã2(v) = (A2(v))a2(v), r ∈ Ã3(v) =
(A3(v))a3(v)).

Hence from Theorem 3.1, we can conclude that there exist u ∈ C and x ∈
Ã1(u) = (A1(u))a1(u), y ∈ Ã2(u) = (A2(u))a2(u), z ∈ Ã3(u) = (A3(u))a3(u)) such
that

〈N(x, y, z),
1

γ
(eγη(v,g(u)) − 1)〉+ F (g(u), v) �intK(u) 0, ∀v ∈ C,

that is (2.1) is solvable. �

Theorem 3.3. Let C be a nonempty closed convex bounded subset of a real Eu-
clidean space E1 with 0 ∈ C and (E2,K) an ordered Euclidean space induces by
a pointed closed convex cone K(u). Let K : C → 2E2 be a closed convex pointed
cone valued mapping with intK(u) 6= ∅ and E2 r (intK(u)) be an upper semi-
continuous mapping. Let g : C → C be a closed convex and continuous single
valued mapping and η : C × C → E1 be an affine in the first argument with
η(u, u) = 0 for all u ∈ C. Let F : C × C → E2 be a completely continu-
ous in the first argument and affine in the second argument with the condition
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F (u, u) = 0 for all u ∈ C. Let αg : E1 → E2 be a weakly lower semicontinu-
ous. Let N : F(L(E1, E2)) × F(L(E1, E2)) × F(L(E1, E2)) → F(Lc(E1, E2)) be a
Lipschitz continuous mapping with all arguments, where Lc(E1, E2) be a space of

all completely continuous linear mapping from E1 to E2 and Ã1, Ã2, Ã3 : C →
2L(E1,E2) be a nonempty upper semi continuous compact valued mappings induced
by fuzzy mappings A1, A2, A3 : C → F(L(E1, E2)), that is Ã1(u) = (A1(u))a1(u),

Ã2(u) = (A2(u))a2(u), Ã3(u) = (A3(u))a3(u) with a1 : E1 → [0, 1], a2 : E1 → [0, 1],

a3 : E1 → [0, 1]. If Ã1, Ã2, Ã3 are H-hemicontinuous and αg-relaxed exponentially
(γ, η)-monotone with respect to first argument of N and g. If there exists one r > 0
such that

〈N(p, q, s),
1

γ
(eγη(g(0),v) − 1)〉+ F (v, g(0)) �intK(0) 0, (3.13)

∀v ∈ C, p ∈ Ã1(v) = (A1(v))a1(v), q ∈ Ã2(v) = (A2(v))a2(v), s ∈ Ã3(v) =
(A3(v))a3(v) with ‖v‖ = r.

Then (2.1) is solvable that is there exists u ∈ C and x ∈ Ã1(u) = (A1(u))a1(u), y ∈
Ã2(u) = (A2(u))a2(u), z ∈ Ã3(u) = (A3(u))a3(u) such that

〈N(x, y, z),
1

γ
(eγη(v,g(u)) − 1)〉+ F (g(u), v) �intK(u) 0, ∀v ∈ C.

Proof. For r > 0, assume that Cr = {u ∈ E1 : ‖u‖ ≤ r}. From Theorem 3.2,
we know that (2.1) is solvable over Cr that is there exists ur ∈ C

⋂
Cr and

xr ∈ Ã1(ur) = (A1(ur))a1(ur), yr ∈ Ã2(ur) = (A2(ur))a2(ur), zr ∈ Ã3(ur) =
(A3(ur))a3(ur) such that

〈N(xr, yr, zr),
1

γ
(eγη(v,g(ur)) − 1)〉+ F (g(ur), v) �intK(ur) 0, ∀v ∈ C

⋂
Cr. (3.14)

Putting v = 0 in (3.14), we get

〈N(xr, yr, zr),
1

γ
(eγη(0,g(ur)) − 1)〉+ F (g(ur), 0) �intK(ur) 0. (3.15)

If ‖ur‖ = r for all r, then it contradicts to (3.13). Hence ‖ur‖ < r. For any w ∈ C,
let us choose λ ∈ (0, 1) small enough such that (1− λ)ur + λw ∈ C

⋂
Cr. Putting

v = (1− λ)ur + λw in (3.14), we get

〈N(xr, yr, zr),
1

γ
(eγη((1−λ)ur+λw,g(ur))− 1)〉+F (g(ur), (1− λ)ur + λw) �intK(ur) 0.

(3.16)
Since η and F are affine in the first and second variable, we have

〈N(xr, yr, zr),
1

γ
(eγη((1−λ)ur+λw,g(ur)) − 1)〉+ F (g(ur), (1− λ)ur + λw)

= 〈N(xr, yr, zr),
1

γ
(e(1−λ)γη(ur,g(ur))+λγη(w,g(ur)) − 1)〉+ λF (g(ur), w)

≤K (ur〈N(xr, yr, zr),
1

γ
(1− λ)(eγη(ur,g(ur))−1 +

1

γ
λeγη(w,g(ur)) − 1)〉

+λF (g(ur), w)

= λ{〈N(xr, yr, zr),
1

γ
eγη(w,g(ur)) − 1)〉+ F (g(ur), w)}. (3.17)
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Hence from (3.16), (3.17) and Lemma 2.1, we get

〈N(xr, yr, zr),
1

γ
eγη(w,g(ur)) − 1)〉+ F (g(ur), w) �intK(ur) 0, ∀w ∈ C. (3.18)

Thus, (2.1) is solvable. �

If N(x, y, z) = N(x, y) and A3 ≡ 0, a zero mapping, then Theorem 3.1 reduces
to the following corollary:

Corollary 3.1. Let C be a nonempty closed convex bounded subset of a real Eu-
clidean space E1 and (E2,K) an ordered Euclidean space induces by a pointed
closed convex cone K. Let K : C → 2E2 be a closed convex pointed cone val-
ued mapping with intK(u) 6= ∅ and E2 r (intK(u)) be an upper semicontinuous
mapping. Let g : C → C be a closed convex continuous single valued mapping and
η : C × C → E1 be an affine in the first argument with η(u, u) = 0 for all u ∈ C.
Let F : C × C → E2 be a K(u)-convex in the second argument with the condition
F (u, u) = 0 for all u ∈ C. Let N : F(L(E1, E2)) × F(L(E1, E2)) → F(L(E1, E2))

be a Lipschitz continuous mapping with all arguments, Ã1, Ã2 : C → 2L(E1,E2)

be a nonempty upper semi continuous compact valued mappings induced by fuzzy
mappings A1, A2 : C → F(L(E1, E2)), that is Ã1(u) = (A1(u))a1(u), Ã2(u) =

(A2(u))a2(u) with a1 : E1 → [0, 1], a2 : E1 → [0, 1]. If Ã1, Ã2 are H-hemicontinuous
and αg-relaxed exponentially (γ, η)-monotone with respect to first argument of N
and g. Then the following two statements (i) and (ii) are equivalent:

(i) there exist u0 ∈ C and x̄ ∈ Ã1(u0) = (A1(u0))a1(u0), ȳ ∈ Ã2(u0) =
(A2(u0))a2(u0) such that

〈N(x̄, ȳ),
1

γ
(eγη(v,g(u0)) − 1)〉+ F (g(u0), v) �intK(u0) 0, ∀v ∈ C,

(ii) there exists u0 ∈ C such that

〈N(r̄, s̄),
1

γ
(eγη(v,g(u0)) − 1)〉+ F (g(u0), v) �intK(u0) αg(v − u0),

∀v ∈ C, r̄ ∈ Ã1(v) = (A1(v))a1(v), s̄ ∈ Ã2(v) = (A2(v))a2(v).

If N(x, y, z) = N(x) and A2, A3 ≡ 0, a zero mapping, and g ≡ I, an identity
mapping then Theorem 3.1 reduces to the following corollary

Corollary 3.2. Let C be a nonempty closed convex bounded subset of a real Eu-
clidean space E1 and (E2,K) an ordered Euclidean space induces by a pointed closed
convex cone K. Let K : C → 2E2 be a closed convex pointed cone valued map-
ping with intK(u) 6= ∅ and E2 r (intK(u)) be an upper semicontinuous mapping.
Let η : C × C → E1 be an affine in the first argument with η(u, u) = 0 for all
u ∈ C. Let F : C × C → E2 be a K(u)-convex in the second argument with
the condition F (u, u) = 0 for all u ∈ C. Let N : F(L(E1, E2)) → F(L(E1, E2))

be a Lipschitz continuous mapping with all arguments, Ã1 : C → 2L(E1,E2) be a
nonempty upper semi continuous compact valued mapping induced by fuzzy map-
pings A1 : C → F(L(E1, E2)), that is Ã1(u) = (A1(u))a1(u) with a1 : E1 → [0, 1]. If

Ã1 is H-hemicontinuous and α-relaxed exponentially (γ, η)-monotone with respect
to N . Then the following two statements (i) and (ii) are equivalent:
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(i) there exist u0 ∈ C and x̄ ∈ Ã1(u0) = (A1(u0))a1(u0) such that

〈N(x̄),
1

γ
(eγη(v,g(u0)) − 1)〉+ F (g(u0), v) �intK(u0) 0, ∀v ∈ C,

(ii) there exists u0 ∈ C such that

〈N(r̄),
1

γ
(eγη(v,g(u0)) − 1)〉+ F (g(u0), v) �intK(u0) αg(v − u0),

∀v ∈ C, r̄ ∈ Ã1(v) = (A1(v))a1(v).
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