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SURFACE TENSION-ASSISTED FOR KORTEWEG FLUID

MOTION IN WHOLE-SPACE CASE

SRI MARYANI, MULKI INDANA ZULFA, BAMBANG HENDRIYA GUSWANTO,

MUKHTAR EFFENDI, TRIYANI, SUPRIYANTO

Abstract. Diffuse and sharf-interface models are two separated categories of

mathematical models that can be used to describe liquid-vapor fluxes. The

interfacial layer where phase changes take place is represented differently in
each of them. In sharp-interface models, an infinitesimally thin hypersurface

is employed in place of the small, positive thickness that is present in diffuse-

interface models. By taking the limit where the interfacial regions thichness
goes to zero, the diffuse-intreface model can be connected to the related sharp

interface model. This phenomena known as Korteweg model which introduced

firstly by Diederik Johannes Korteweg. The purpose of this article is con-
sidering the R-boundedness of the solution operator families for compressible

Korteweg type in whole space case with surface tension by using Fourier trans-
form. The multipliers which appear from the transformation are estimated

using Weis’s multiplier theorem. This R-boundedness is an essential result for

further research related to half-space case.

1. Introduction

Water can be found in many different forms in daily life, including ice, liquid
water, and water vapor. The solid, water, and vapour (or gas) phases of water
are the terms used to describe these various physical states. When thinking about
water vapor, one would think about the process of heating water to make a cup of
tea. But what we see is water steama mixture of air, water vapor, and tiny water
dropletsemitting from the kettle and filling the kitchen. However, the gaseous phase
of water is referred to as water vapour in the natural sciences. Both liquids and gases
have the capacity to flow, in contrast to solids. They collectively make up the fluids
class. Their mass densities, however, differ considerably. There is an increasing
number of literature on fluid motion in recent years. Numerous researchers looked
into this topic. But most of them focused on numerical analysis rather than using a
mathematical analytic approach to study fluid motion. There are some researchers
who consider the Korteweg type. For example, some critical space of strong solution
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global in time for initial data close enough to equilibrium point in whole space has
been studied by Danchin and Desjardins [2]. Hattori and Li considered for robust
solutions that demand more regularity from the starting data [4]. Meanwhile,
Haspot [1] considered the existence of global weak solution.

A mathematical model known as the Korteweg type of fluid is used to explain how
compressible fluids behave, especially two-phase liquid-vapor mixes. Korteweg type
of fluid motion can be described in non-linear partial differential equations (PDE)
[14]. To characterize fluid capillarity effects, the model incorporates the Korteweg
stress tensor, which considers higher-order derivatives of the fluid density. The
Korteweg type of fluid model is a dissipative system, and its solution exhibit optimal
decay of higher-order derivatives. Recent research has focused on establishing the
global in time existence of strong solutions to the Korteweg type of fluid model in
hybrid Besov spaces.

In this paper, we consider the R-boundedness of the solution operator families
of the Korteweg type with surface tension in whole space. The R-boundedness
of the solution operator of the Korteweg model without surface tension has been
investigated by Saito [5]. He consider the R-bounded solution operator in half-space
case. In contrast, Inna et.al [9] investigated slip BC of Korteweg type in half-space.
Besides that, for another model fluid flows, such as Oldroyd-B model, in 2016
Maryani [6, 7] studied free boundary problem for Oldroyd-B model and global well-
posedness of the same problem, respectively. On the other hand, [8]. investigated
the R-boundedness of the solution operator families for two-phase Stokes resolvent
equation.

The Korteweg model fluid motion with surface tension can be written in the
following equation system:

∂tρ+ div (ρu) = 0 in Ωt,

ρ(∂tu− u · ∇u)−Div (S(u)− P (ρ)I) = Div K(ρ) in Ωt,

{S(u) + K(ρ)− P (ρ)I)nt = −P (ρ∗)nt + σ(H(Γ)−H(Γ0))nt on Γt,

nt · ∇ρ = 0 on Γt,

VN = nt · u on Γt,

λh− u · n = ζ on RN0 ,
(1.1)

with the initial data

(ρ,u) |t=0= (ρ0,u0) in Ωt.

Here, 0 < t < T , ρ∗ is a positive constant describing the mass density of the
reference domain Ω, S(u) and K(ρ) are defined by

S(u) = µD(u) + (ν − µ)div uI, K(ρ) =
κ

2
(∆ρ2 − |∇ρ|2)I− κ∇ρ⊗∇ρ

D(u), u = (u1, . . . , uN ), the doubled deformation tensor whose (i, j)-th compo-
nents are Dij(u) = ∂iuj + ∂jui, (∂i = ∂/∂xi), I the N × N identity matrix, µ,
ν are positive constants (µ and ν are the first and second viscosity coefficients,
respectively).

In this paper, we discuss the existence of the R-bounded operator families for
the resolvent problem (1.1) in whole space case. Once we obtain R-boundedness
for the solution operator families, we can consider the maximal Lp-Lq regularity for
the linearized problem by the Weis operator valued Fourier multiplier theorem [3],
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which is the key estimate when we consider the local solvability for the nonlinear
problem in the maximal Lp-Lq regularity class. Here we introduce the definition of
R-boundedness of operator families.

Definition 1.1. Let X and Y be Banach spaces, and let L(X,Y ) be the set of all
bounded linear operators from X into Y . A family of operators T ⊂ L(X,Y ) is
called R-bounded on L(X,Y ), if there exist constants C > 0 and p ∈ [1,∞) such that
for any n ∈ N, {Tj}nj=1 ⊂ T , {fj}nj=1 ⊂ X and sequences {rj}nj=1 of independent,
symmetric, {−1, 1}-valued random variables on [0, 1], we have the inequality:{∫ 1

0

‖
n∑
j=1

rj(u)Tjfj‖pY du
}1/p

≤ C
{∫ 1

0

‖
n∑
j=1

rj(u)fj‖pX du
}1/p

.

The smallest such C is called R-bound of T , which is denoted by RL(X,Y )(T ).

Concerning R-boundedness, we introduce the following lemma proved by [10,
Proposition 3.4].

Lemma 1.2. (1) Let X and Y be Banach spaces, and let T and S be R-bounded
families in L(X,Y ). Then T + S = {T + S | T ∈ T , S ∈ S} is also R-bounded
family in L(X,Y ) and

RL(X,Y )(T + S) ≤ RL(X,Y )(T ) +RL(X,Y )(S).

(2) Let X, Y and Z be Banach spaces and let T and S be R-bounded families in
L(X,Y ) and L(Y,Z), respectively. Then ST = {ST | T ∈ T , S ∈ S} is also an
R-bounded family in L(X,Z) and

RL(X,Z)(ST ) ≤ RL(X,Y )(T )RL(Y,Z)(S).

To prove Theorem 2.1, we use the following technical lemma

Lemma 1.3. Let 1 < q < ∞ and let Λ be a set in C. Let m(λ, ε) be a function
defined on Λ × (RN \ {0}) such that for any multi-index α ∈ NN0 (N0 = N ∪ {0})
there exists a constant Cα depending on α and Λ such that

|∂αξm(λ, ε)| ≤ Cα|ξ|−α

for any (λ, ε) ∈ Λ × (RN \ {0}). Let Kλ be an operator defined by Kλf =

F−1[m(λ, ε)f̂(ξ)]. Then, the set {Kλ | λ ∈ Λ} is R-bounded on L(Lq(RN )) and

RL(Lq(RN ))({Kλ | λ ∈ Λ}) ≤ Cq,N max
|α|≤N+1

Cα

with some constant Cq,N that depends solely on q and N .

The proof of the Lemma 1.3 can be seen in [11, Theorem 3.3].

1.1. Notation. We summarize several symbols and functional spaces used through-
out the paper. Let N, R and C denote the sets of all natural numbers, real num-
bers, and complex numbers, respectively. We use boldface letters, e.g. u to denote
vector-valued functions.

For scalar function f and N -vector functions g, we set

∇f = (∂1f, . . . , ∂Nf)T, ∇2f = (∂i∂jf)1≤i,j≤N ,

∇3f = {∂i∂j∂kf | i, j, k = 1, . . . , N} ∇g = (∂igj)1≤i,j≤N ,

∇2g = {∂i∂jgk | i, j, k = 1, . . . , N},
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where ∂i = ∂/∂xi.

Let N0 = N ∪ {0}. For multi-index α′ = (α1, . . . , αN−1) ∈ NN−10 and scalar
function f = f(ξ1, . . . , ξN−1),

∂α
′

ξ′ f =
∂|α
′|

∂ξα1
1 · · · ∂ξ

αN−1

N−1
f, |α′| = α1 + · · ·+ αN−1.

For complex valued functions f = f(x) and g = g(x); N -vector functions
f = (f1(x), . . . , fN (x)) and g = (g1(x), . . . , gN (x)), the inner products (f, g)RN

+
,

(f, g)RN
0

, (f ,g)RN
+

, and (f ,g)RN
0

are defined by

(f, g)RN
+

=

∫
RN

+

f(x)g(x) dx, (f, g)RN
0

=

∫
RN

0

f(x)g(x) dω,

(f ,g)RN
+

=

N∑
j=1

(fj , gj)RN
+
, (f ,g)RN

0
=

N∑
j=1

(fj , gj)RN
0
,

where dω denotes the surface element of RN0 and g(x) is the complex conjugate of
g(x).

The Laplace transform and its inverse are formulated by

L[f ](λ) :=

∫
R
e−λtf(t) dt, L−1[f ](λ) :=

∫
R
eλtg(τ) dτ.

Let us define the Fourier transform and its inverse transform as

F [u] = û(ξ) =

∫
RN

e−ix·ξu(x) dx, F−1ξ [u](x) :=
1

(2π)N

∫
RN

eix·ξu(ξ) dξ.

For Banach spaces X and Y , L(X,Y ) denotes the set of all bounded linear
operators from X into Y , L(X) is the abbreviation of L(X,X), and Hol (U,L(X,Y))
denotes the set of all L(X,Y ) valued holomorphic functions defined on a domain
U in C.

For any 1 < q < ∞, m ∈ N, Lq(RN+ ) and Hm
q (RN+ ) denote the usual Lebesgue

space and Sobolev space; while ‖ · ‖Lq(RN
+ ), ‖ · ‖Hm

q (RN
+ ) denote their norms, re-

spectively; Wm+s
q (RN0 ) = (Hm

q (RN0 ), Hm+1
q (RN0 ))s,q for m ∈ N0 and 0 < s < 1,

where (·, ·)s,q denotes the real interpolation functor; C∞((a, b)) denotes the set
of all C∞ functions defined on (a, b). The d-product space of X is defined by
Xd = {f = (f, . . . , fd) | fi ∈ X (i = 1, . . . , d)}, while its norm is denoted by ‖ · ‖X
instead of ‖ · ‖Xd for the sake of simplicity. The letter C denotes generic constants
and the constant Ca,b,... depends on a, b, . . .. The values of constants C and Ca,b,...
may change from line to line.

2. MAIN RESULTS

2.1. Reduced resolvent problem. Now, let us begin with the following resolvent
problem of the equation system (1.1){

λρ+ div u = f in RN ,

λu− µ∆u− ν∇div u− κ∇∆ρ+ γ∇ρ = g in RN ,
(2.1)

with ρ = ρ(x, t) is a density, u = u(x, t) = (u1(x, t), . . . , uN (x, t)) is a velocity
respect to x ∈ RN at t > 0, λ is eigen value, γ ≥ 0, µ > 0, µ + ν > 0, κ > 0,
f = (f1, f2, . . . , fN ) and g = g(x) = g1(x), g2(x), . . . , gN (x).
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Now, we state the main result of this paper

Theorem 2.1. Let 1 < q < ∞, 0 < ε < π/2, and λ0 > 0. Setting Yq(RN) =
W1

q(RN)× Lq(RN)Then, there exists an operator family

A0(λ) ∈ Hol(Σε,λ0 ,L(Yq(RN),W3
q(RN)))

A1(λ) ∈ Hol(Σε,λ0
,L(Yq(RN),W2

q(RN)N))

such that for λ = γ+iτ ∈ Σε,λ0 and F = (f,g) ∈ Yq(RN), (ρ,u) = (A0(λ)F,A1(λ)F)
is a unique solution of equation (2.1) and there exists a positive constant r such
that

RL(Yq(RN),Aq(RN))({(τ∂τ )nKλA0(λ) | λ ∈ Σε,λ0}) ≤ r,
RL(Yq(RN),Bq(RN))({(τ∂τ )nSλA1(λ) | λ ∈ Σε,λ0

}) ≤ r,
(2.2)

for n = 0, 1. Here, above constants λ0 and r depend solely on N , q, ε, µ, ν, κ, and
σ.

Remark. Aq(RN ) = Lq(RN )N
3+N2 ×W 1

q (RN ), Bq(RN ) = Lq(RN )N
3+N2+N

Kλρ = (∇3ρ, λ1/2∇2ρ, λρ), Sλu = (∇2u, λ1/2∇u, λu)

The remaining part of this section is the proof of the Theorem 2.1. Applying
Fourier transform to the equation (2.1), we have{

λρ̂(ξ) + φ̂(ξ) = f̂(ξ) in RN ,

λû(ξ) + µ|ξ|2û(ξ)− νiξφ̂(ξ) + κiξ|ξ|2ρ̂(ξ) + γiξρ̂(ξ) = ĝ(ξ) in RN ,
(2.3)

Let φ = div u, by using Fourier transform, we have

φ̂(ξ) = iξ · û(ξ). (2.4)

For the simplicity, the first equation of (2.3) can be written as

ρ̂(ξ) =
f̂(ξ)− φ̂(ξ)

λ
. (2.5)

Then, for λ 6= 0, substituting equation (2.5) to the second equation of (2.3), we
have

λû(ξ) + µ|ξ|2û(ξ)− νiξφ̂(ξ) + κiξ|ξ|2
(
f̂(ξ)− φ̂(ξ)

λ

)
+ γiξ

(
f̂(ξ)− φ̂(ξ)

λ

)
= ĝ(ξ).

(2.6)

Multiplying equation (2.6) by λ and iξ, we have

P (λ, ξ)φ̂(ξ) = |ξ|2(κ|ξ|2 + γ)f̂(ξ) + λiξ · ĝ(ξ). (2.7)

with P (λ, ξ) = λ2 + λ(µ+ ν)|ξ|2 + |ξ|2(κ|ξ|2 + γ). By equation (2.7), we have

φ̂(ξ) =
(|ξ|2(κ|ξ|2 + γ)

P (λ, ξ)
f̂(ξ) +

N∑
j=1

λiξj
P (λ, ξ)

ĝj(ξ), (2.8)

which combined with (2.5) furnishes

ρ̂(ξ) =
(λ+ |ξ|2(µ+ ν))

P (λ, ξ)
f̂(ξ)−

N∑
j=1

iξj
P (λ, ξ)

ĝj(ξ), (2.9)
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Substituting equation (2.8) to equation (2.6), we get the solution formula of û(ξ)
as follows

û(ξ) =− (iξ(κ|ξ|2 + γ)

P (λ, ξ)
f̂(ξ)

+
1

(λ+ µ|ξ|2)

(
ĝ(ξ)−

N∑
j=1

ξξj(λν + κ|ξ|2 + γ)

P (λ, ξ)
ĝj(ξ)

)
. (2.10)

Applying Fourier transform and inverse Fourier transform to equation (2.9) and
(2.10), we have

ρ(ξ) = F−1ξ

[
(λ+ |ξ|2(µ+ ν))

P (λ, ξ)
f̂(ξ)

]
(x)−

N∑
j=1

F−1ξ

[
iξj

P (λ, ξ)
ĝj(ξ)

]
(x),

:= A0(λ)F (2.11)

and

u(ξ) =−F−1ξ

[
(iξ(κ|ξ|2 + γ)

P (λ, ξ)
f̂(ξ)

]
(x)

+ F−1ξ

[
1

(λ+ µ|ξ|2)
ĝ(ξ)

]
(x)−

N∑
j=1

F−1ξ

[
ξξj(λν + κ|ξ|2 + γ)

P (λ, ξ)
ĝj(ξ)

]
(x)

:=A1(λ)F. (2.12)

respectively. Furthermore, we consider the estimation of P (λ, ξ)

Lemma 2.2. Let µ, ν and κ are constants satisfying

µ > 0, µ+ ν > 0, κ > 0.

and γ ≥ 0, δ > 0 Then, for any 0 < ε < π/2, λ ∈ Σε,λ0 with |λ| ≥ δ and ξ ∈ RN ,
we have the following assertions hold

(1)

|P (λ, ξ)| ≥ Cε,µ,ν,κ{(|λ|1/2 + |ξ|)2 +
√
γ|ξ|}2

(2) Let α = (α1, α2, · · · , αN ) ∈ NN0 . Then there exists a positive constant.
C = C(α, δ) such that

|∂αξ P (λ, ξ)−1| ≥ Cε,µ,ν,κ{(|λ|1/2 + |ξ|)2 +
√
γ|ξ|}−2(|λ|1/2 + |ξ|)−|α|

Proof. Proof of the Lemma 2.2 for γ = 0 can be seen in [5, Lemma 2.2]. Meanwhile,
for γ > 0 has been proven by [12, Lemma 5.4, Proposition 5.8]. �

Furthermore, it follows from (2.11) and (2.12) that for k, l,m = 1, . . . , N , we
have

∂k∂l∂mA0(λ)F =−F−1ξ

[
iξkξlξm(λ+ |ξ|2(µ+ ν))

P (λ, ξ)
f̂(ξ)

]
(x)

−
N∑
j=1

F−1ξ

[
ξjξkξlξm
P (λ, ξ)

ĝj(ξ)

]
(x), (2.13)
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λ1/2∂k∂lA0(λ)F =F−1ξ

[
ξkξlλ

1/2(λ+ |ξ|2(µ+ ν))

P (λ, ξ)
f̂(ξ)

]
(x)

+

N∑
j=1

F−1ξ

[
iξjξkξlλ

1/2

P (λ, ξ)
ĝj(ξ)

]
(x), (2.14)

λA1(λ)F =−F−1ξ

[
(iξλ(κ|ξ|2 + γ)

P (λ, ξ)
f̂(ξ)

]
(x) + F−1ξ

[
λ

(λ+ µ|ξ|2)
ĝ(ξ)

]
(x)

−
N∑
j=1

F−1ξ

[
ξξjλ(λν + κ|ξ|2 + γ)

P (λ, ξ)
ĝj(ξ)

]
(x) (2.15)

λ1/2∂kA1(λ)F =F−1ξ

[
(ξξkλ

1/2(κ|ξ|2 + γ)

P (λ, ξ)
f̂(ξ)

]
(x) + F−1ξ

[
iξkλ

1/2

(λ+ µ|ξ|2)
ĝ(ξ)

]
(x)

−
N∑
j=1

F−1ξ

[
iξξjξkλ

1/2(λν + κ|ξ|2 + γ)

P (λ, ξ)
ĝj(ξ)

]
(x) (2.16)

∂k∂lA1(λ)F =F−1ξ

[
(iξξkξl(κ|ξ|2 + γ)

P (λ, ξ)
f̂(ξ)

]
(x)−F−1ξ

[
ξkξl

(λ+ µ|ξ|2)
ĝ(ξ)

]
(x)

+

N∑
j=1

F−1ξ

[
ξξjξkξl(λν + κ|ξ|2 + γ)

P (λ, ξ)
ĝj(ξ)

]
(x) (2.17)

Lemma 2.3. Let 1 < q <∞, δ > 0 and 0 < ε < π/2. Assume that k(λ, ε), l(λ, ε)
and m(λ, ε) are functions on RN \ {0}×Σε,0 such that for any multi-index α ∈ NN0
there exists a positive constant Mα,ε such that

|∂αξ k(ξ, λ)| ≤Mα,ε|ξ|1−|α|, |∂αξ l(ξ, λ)| ≤Mα,ε|ξ|−|α|,

|∂αξm(ξ, λ)| ≤Mα,ε(|λ|1/2 + |ξ|)−1|α|−|α|,

for any (ξ, λ) ∈ RN \ {0} × Σε,0. Let K(λ), L(λ), M(λ) be operators given for

[K(λ)f ](x) = F−1[k(ξ, λ)f̂(ξ)](x) (λ ∈ Σε,λ0
),

[L(λ)f ](x) = F−1[l(ξ, λ)f̂(ξ)](x) (λ ∈ Σε,λ0),

[M(λ)f ](x) = F−1[m(ξ, λ)f̂(ξ)](x) (λ ∈ Σε,λ0
).

Then the following assertions hold true:

(1) The set {K(λ) | λ ∈ Σε,λ0} is R-bounded on L(W 1
q (RN ), Lq(RN )) and there

exists a positive constant CN,q such that

RL(W 1
q (RN ),Lq(RN ))({K(λ) | λ ∈ Σε,λ0

}) ≤ Cq,N max
|α|≤N+1

Mα,λ0

(2) Let n = 0, 1. Then the set {L(λ) | λ ∈ Σε,λ0
} is R-bounded on L(Wn

q (RN ))
and there exists a positive constant CN,q such that

RL(Wn
q (RN ))({L(λ) | λ ∈ Σε,λ0}) ≤ Cq,N max

|α|≤N+1
Mα,λ0
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(3) The set {M(λ) | λ ∈ Σε,λ0
} is R-bounded on L(Lq(RN ),W 1

q (RN )) and
there exists a positive constant CN,q,δ such that

RL(Lq(RN ),W 1
q (RN ))({M(λ) | λ ∈ Σε,λ0

}) ≤ Cq,N,δ max
|α|≤N+1

Mα,λ0
.

Proof. Lemma 2.3 has been proven by Saito [5, Lemma 2.5]. �

Lemma 2.4. For any 0 < ε < π/2 and s ∈ R. Set N0 = N ∪ {0}. Then, for
λ ∈ Σε,λ0

and multi-index α = (α1, . . . , αn) ∈ Nn0 , there is a positive constant
Ca,b,s,α,ε such that

|∂αξ (aλ+ b|ξ|2)s| ≤ Ca,b,s,α,ε(|λ|1/2 + |ξ|)2s−|α|,

for any λ ∈ (0, π/2) and ξ ∈ RN

Proof. Proof of the Lemma 2.4 has been proven by Shibata [13, Lemma 3.4]. �

Furthermore, we consider the estimation of the formula (2.13). By using Lemma
2.2, Lemma 2.4 and Leibniz’s rule, for (ξ, λ) ∈ RN \ {0} × Σε,λ0

we have∣∣∣∣∂αξ {(λ d

dλ

)n(
iξkξlξm(λ+ |ξ|2(µ+ ν))

P (λ, ξ)
f̂(ξ)

)}∣∣∣∣ ≤ Ca,b,s,α,ε|ξ|1−|α|,∣∣∣∣∂αξ {(λ d

dλ

)n(
ξjξkξlξm
P (λ, ξ)

ĝj(ξ)

)}∣∣∣∣ ≤ Ca,b,s,α,ε|ξ|−|α|,
which combined with Lemma 2.3, furnishes

RL(Yq(RN),Lq(RN)N3 )({(λ∂λ)n(∇3A0(λ)) | λ ∈ Σε,λ0
}) ≤ Ca,b,s,α,ε. (2.18)

Moreover, the estimation of equation (2.14), we have∣∣∣∣∂αξ {(λ d

dλ

)n(
ξkξlλ

1/2(λ+ |ξ|2(µ+ ν))

P (λ, ξ)
f̂(ξ)

)}∣∣∣∣ ≤ Ca,b,s,α,ε(|λ|1/2 + |ξ|)−1|ξ|−|α|,∣∣∣∣∂αξ {(λ d

dλ

)n(
iξjξkξlλ

1/2

P (λ, ξ)
ĝj(ξ)

)}∣∣∣∣ ≤ Ca,b,s,α,ε(|λ|1/2 + |ξ|)−1|ξ|−|α|,

the same manner combined with Lemma 2.3, furnishes, we have

RL(Yq(RN),Lq(RN)N2 )({(λ∂λ)n(λ1/2∇2A0(λ)) | λ ∈ Σε,λ0
}) ≤ Ca,b,s,α,ε. (2.19)

Moreover, the estimation of equation (2.15), we have∣∣∣∣∂αξ {(λ d

dλ

)n(
(iξλ(κ|ξ|2 + γ)

P (λ, ξ)
f̂(ξ)

)}∣∣∣∣ ≤ Ca,b,s,α,ε(|λ|1/2 + |ξ|)−1|ξ|−|α|,∣∣∣∣∂αξ {(λ d

dλ

)n(
λ

(λ+ µ|ξ|2)
ĝ(ξ)

)}∣∣∣∣ ≤ Ca,b,s,α,ε(|λ|1/2 + |ξ|)1−|α|,∣∣∣∣∂αξ {(λ d

dλ

)n(
ξξjλ(λν + κ|ξ|2 + γ)

P (λ, ξ)
ĝj(ξ)

)}∣∣∣∣ ≤ Ca,b,s,α,ε(|λ|1/2 + |ξ|)2−|α|,

with similar technique and thanks to Lemma 2.3 which furnishes,

RL(Yq(RN),Lq(RN)N3 )({(λ∂λ)n(λA1(λ)) | λ ∈ Σε,λ0
}) ≤ Ca,b,s,α,ε. (2.20)
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Next, the estimation of equation (2.16), we have also∣∣∣∣∂αξ {(λ d

dλ

)n(
(ξξkλ

1/2(κ|ξ|2 + γ)

P (λ, ξ)
f̂(ξ)

)}∣∣∣∣ ≤ Ca,b,s,α,ε(|λ|1/2 + |ξ|)−1|ξ||α|,∣∣∣∣∂αξ {(λ d

dλ

)n(
iξkλ

1/2

(λ+ µ|ξ|2)
ĝ(ξ)

)}∣∣∣∣ ≤ Ca,b,s,α,ε(|λ|1/2 + |ξ|)−1|ξ|−1−|α|,∣∣∣∣∂αξ {(λ d

dλ

)n(
iξξjξkλ

1/2(λν + κ|ξ|2 + γ)

P (λ, ξ)
ĝj(ξ)

)}∣∣∣∣ ≤ Ca,b,s,α,ε(|λ|1/2 + |ξ|)−1|ξ|1−|α|.

Then by Lemma 2.3, we have

RL(Yq(RN),Lq(RN)N3 )({(λ∂λ)n(λ1/2∇A1(λ)) | λ ∈ Σε,λ0
}) ≤ Ca,b,s,α,ε. (2.21)

Lastly, we estimate the equation (2.17). By using Lemma 2.2, Lemma 2.4 and
Leibniz’s rule, we have∣∣∣∣∂αξ {(λ d

dλ

)n(
(iξξkξl(κ|ξ|2 + γ)

P (λ, ξ)
f̂(ξ)

)}∣∣∣∣ ≤ Ca,b,s,α,ε|ξ|1−|α|,∣∣∣∣∂αξ {(λ d

dλ

)n(
ξkξl

(λ+ µ|ξ|2)
ĝ(ξ)

)}∣∣∣∣ ≤ Ca,b,s,α,ε|ξ|−|α|,∣∣∣∣∂αξ {(λ d

dλ

)n(
ξξjξkξl(λν + κ|ξ|2 + γ)

P (λ, ξ)
ĝj(ξ)

)}∣∣∣∣ ≤ Ca,b,s,α,ε|ξ|−|α|,
Then by Lemma 2.3, we have also

RL(Yq(RN),Lq(RN)N)({(λ∂λ)n(∇2A1(λ)) | λ ∈ Σε,λ0
}) ≤ Ca,b,s,α,ε. (2.22)

Therefore, equations (2.18), (2.19), (2.20), (2.21) and (2.22) imply theR-boundedness
of KλA0 and SλA1 in Theorem 2.1.

The proof of uniquenes property of the solution (2.3) follows similar technique
as in [5, Sec.2]. This completes the proof of Theorem 2.1.
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