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ON DIFFERED COPSON I-CONVERGENT SEQUENCE SPACES

MOHAMMAD IMRAN IDRISI∗, KAVITA SAINI, SHILPA MALGE, CHHAYA LANDE

Abstract. Present work is an investigation of some new sequence spaces

cI0(C∆), cI(C∆), `I∞(C∆) and `∞(C∆) as a domain of triangle Copson ma-
trix via difference sequences (∆nx) over an admissible ideal of N. Also, we

investigate some algebraic, topological properties and give inclusion relations

concerning these spaces.

1. Introduction

The hypothesis of sequence spaces has an important role in the diverse fields of
analysis. Sequence spaces have various applications in different branches of func-
tional analysis, in particular, the theory of functions, the theory of locally convex
spaces, matrix transformations etc. The set of all real (or complex) valued sequences
is symbolized by ω which turns out to be a vector space under pointwise addition
and scalar multiplication. Any vector subspace of ω is called a sequence space. Let
N, R and C be the sets of natural, real and complex numbers, respectively. Through-
out the paper, by `∞, c, and c0 we denote the spaces of all sequences which are
bounded, convergent, and convergent to zero (null sequences), respectively. After
an extensive research about usual convergence of sequences in point set topology
with respect to usual metrics, the conception of Ideal convergence or I-convergence
came into existence by well-known author Kostyrko et al. [14]. Ideal convergence is
a gereralization of statistical convergence which was introduced by well-known au-
thors Fast and Steinhaus ([8, 28]), independently. Young researchers or scholars are
suggested to go through deep analysis about the concept of usual convergence and
Ideal convergence as both the concepts are independent. There are many sequences
that are convergent but may not I-convergent. A large number of research work has
been surfaced in the field of ideal convergent sequence spaces by many researchers,
for further details on fundamental theorems in functional analysis, summability the-
ory, sequence spaces and related topics the reader can refer to the recent textbooks
[25] and [2] and, to the articles [16, 17, 18, 10, 11, 12, 13, 31, 32, 33, 1, 27] and [3].
Furter, Ideal convergence likned with summability theory by Šalát et al. [29, 30]
and develop some new ideas from the perspective of sequence spaces. To know more
about this concept one may refer to [19, 20, 21, 15, 22]. An ideal I is defined to be
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a family of a non-empty set X i.e., I ⊆ 2X if I1, I2 ∈ I implies that their union is in
I i.e., I1 ∪ I2 ∈ I, and I1 ∈ I, I2 ⊆ I1 implies that I2 ∈ I whereas a filter is a family
of sets F ⊆ 2X if and only if ∅ /∈ F , F1, F2 ∈ F implies that their intersection is in
F i.e., F1 ∩ F2 ∈ F and F1 ⊆ F2 implies that F2 ∈ F . If I 6= ∅ and X /∈ I then I is
said to be non-trivial, admissible if and only if {{x} : x ∈ X} ⊆ I and maximal if
there is no ideal J 6= I that contains I. For every I to be a non-trivial ideal there
must corresponds a filter F = F (I) = {Y : X − Y ∈ I}.

Let, T = (tnk) be an infinite matrix of real or complex numbers tnk where
n, k ∈ N, the sequence defined as

Tn(x) =

∞∑
k=0

tnkxk, for each n ∈ N (1.1)

which is a T−transform of the sequence x = (xk) ∈ ω by a matrix T also assuming
that the right of series (1) converges for each n ∈ N. The mapping of convergent
sequences into another convergent sequences is given in Kojima-Schur Theorem [7]
whose necessary and sufficient conditions are as follows:

(i)
∑∞
k=1 |tnk| ≤ N for every n > m;

(ii) limn→∞ tnk = βk for every fixed k;
(iii)

∑∞
k=1 tnk = Tn → β as n→∞.

Also, if tnk = 0 for k > n and tnn 6= 0 for all n ∈ N, then T = (tnk) is known to
be trangle matrix which has a unique inverse T−1 for |T | 6= 0 and T−1 is a triangle
matrix. The domain λT of an infinite matrix T in a sequence space λ is defined by

λT := {x = (xk) ∈ ω : Tx ∈ λ}
which is a sequense space. λT is a BK-space normed by ‖x‖λT

= ‖Tx‖λ for x ∈ λT
[5] only if λ is a BK-space and T is triangle matrix. A number of research papers
have been published on this idea and its generalization [4, 6, 23, 24] which motivated
us to investigate some of the new sequence spaces by using a well-known Copson
matrix via diference sequences over admissible ideals.
Recalling, the Copson matrix of order n, Cn = (cnj,k) is an infinite matrix defined
as,

cnj,k =


(n+k−j−1

k−j )
(n+k

k )
, if j ≤ k,

0, otherwise

where all subscripts in N. The Copson matrix has been used in the analysis of
sequence spaces and also over `p-space it is contemplated as bounded linear oper-
ator. According to Helinger-Toeplitz theorem, the `p-norm is defined as ‖Cn‖`p =
Γ(n+1)Γ(1/p)

Γ(n+1/p) . Recently, by using the Copson square matrix of order n, Roopaei [26]

has investigated c0(Cn), c(Cn) and `p(C
n) as sequence spaces with all sequences

whose Copson-transform of the sequence x = (xk) are in c0, c, `p which are also
sequence spaces respectively i.e.,

λ(Cn) =

x = (xj) ∈ ω : lim
j→∞

 ∞∑
k=j

(
n+k−j−1

k−j
)(

n+k
k

)
xk ∈ λ


for λ ∈ {c0, c, `p}. Throughout the paper cI0, cI and `I∞ denote the sequence spaces
of all sequences which are null, convergent and bounded via an ideal I.
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In this paper, by using Copson matrix of order n and via difference sequences (∆nx)
through ideal convergence, we investigated cI0(C∆), cI(C∆), `I∞(C∆) and `∞(C∆)
as sequences spaces with all sequences whose C−transform of (∆nx) are in cI0, cI ,
`I∞ and `∞, respectively. We define the sequence Cn(∆nx) as C−transform of a
sequence (∆nx) as follows:

Cn(∆nx) = lim
j→∞

 ∞∑
k=j

(
n+k−j−1

k−j
)(

n+k
k

)
∆nxk

where, ∆0x = (xk),∆x = (xk − xk+1),∆nx = (∆n−1xk − ∆n−1xk+1) and this
generalized difference notion has the following binomial representation:

∆nxk =

n∑
i=0

(−1)i
(
n

i

)
xk+i, k ∈ N.

In order to define main results, we recall some useful definitions and lemmas related
to this investigation.

Definition 1.1 ([28]). If E = {s ∈ E : s ≤ n} ⊂ N, then the natural density of the
set E is defined as

d(E) = lim
n→∞

1

n
|E| exists

where, |E| is the cardinality of pre-defined set E.

Definition 1.2 ([9]). A sequence x = (xk) is said t be ∆n−statistically converges to
a number ζ ∈ R if, for every ε > 0 however small, d({k ∈ N : |∆nxk − ζ| ≥ ε}) = 0
and represented as ∆n-st– limxk = ζ. In case ζ = 0, then the sequence x = (xk) is
said to be ∆n-st-null.

Definition 1.3 ([9]). A sequence x = (xk) is said to be ∆n-I-Cauchy if, for every
ε > 0 however small, ∃ a number m = m(ε) such that the set
{k ∈ N : |∆nxk − xm| ≥ ε} belongs to an ideal I.

Definition 1.4 ([9]). A sequence x = (xk) is said to be ∆n-I-convergent to a
number ζ ∈ R if, for every ε > 0 however small, the set {k ∈ N : |∆nxk − ζ| ≥ ε}
belongs to an ideal I and represented as ∆n-I– limxk = ζ. In case ζ = 0, then (xk)
is said to be ∆n-I-null.

Definition 1.5 ([9]). A sequence x = (xk) is said to be ∆n-I-bounded if there exists
a positive real number M > 0 however large, such that, the set {k ∈ N : |∆nxk| >
M} belongs to an ideal I.

Definition 1.6 ([9]). A sequence space S is said to be normal or solid, if the
Cauchy product (αk∆nxk) belongs to S, whenever (∆nxk) ∈ S and for any sequence
of scalars (αk) with the condition |αk| < 1, for every k ∈ N.

Definition 1.7 ([9]). Let S = {si ∈ N : s1 < s2 < · · · } ⊆ N and K be a sequence
space. A S-step space of K is a sequence space

λKS = {(xsi) ∈ ω : (xs) ∈ K}.



106 MOHAMMAD IMRAN IDRISI∗,KAVITA SAINI, SHILPA MALGE, CHHAYA LANDE

A canonical pre-image of a sequence (xsi) ∈ λKS is a sequence (ys) ∈ ω defined as
follows:

ys =

{
∆nxs, if s ∈ S,
0, otherwise.

A canonical pre-image of a step space λKS is a set of canonical pre-images of all
elements in λKS , i.e., y is in canonical pre-image of λKS iff y is canonical pre-image
of some element x ∈ λKS .

Definition 1.8 ([29]). A sequence space S is said to be monotone, if it contains
the canonical pre-images of its step space.

Lemma 1.1 ([29]). Every solid space =⇒ monotone space.

Lemma 1.2 ([30]). Let K1 ∈ F(I) and K2 ⊆ N. If K2 /∈ I, then K1 ∩K2 /∈ I.

2. Main results

In this section, we investigated some new sequence spaces cI0(C∆), cI(C∆),
`I∞(C∆) and `∞(C∆) defined by a Copson transformation via difference sequences
(∆nx) over an admissible ideal I of subsets of N and study some algebraic, topo-
logical properties and prove some inclusion relations on these spaces.

cI0(C∆) := {x = (xk) ∈ ω : {n ∈ N : |Cn(∆nx)| ≥ ε} ∈ I} ,
cI(C∆) := {x = (xk) ∈ ω : {n ∈ N : |Cn(∆nx)− ζ| ≥ ε, for some ζ ∈ R} ∈ I} ,
`I∞(C∆) := {x = (xk) ∈ ω : ∃M > 0 s.t {n ∈ N : |Cn(∆nx)| ≥M} ∈ I} ,
`∞(C∆) := {x = (xk) ∈ ω : sup

n
|Cn(∆nx)| <∞}.

Also,

mI
0(C∆) := cI0(C∆) ∩ `∞(C∆) and mI(C∆) := cI(C∆) ∩ `∞(C∆).

Sequence spaces cI0(C∆), cI(C∆), `I∞(C∆), mI(C∆), andmI
0(C∆) can be redefined

as follows:

cI0(C∆) = (cI0)C∆, c
I(C∆) = (cI)C∆, `

I
∞(C∆) = (`I∞)C∆,

mI(C∆) = (mI)C∆ and mI
0(C∆) = (mI

0)C∆. (2.1)

Definition 2.1 ([14]). A sequence x = (xk) is said to be Copson ∆n-I-convergent to
a number ζ ∈ R if, for every ε > 0 however small, the set {k ∈ N : |Cn(∆nxk)−ζ| ≥
ε} belongs to an ideal I and represented as Cn∆-I– limxk = ζ. In case ζ = 0, then
(xk) is said to be Cn∆-I-null.

Definition 2.2. A sequence x = (xk) is said to be Copson ∆n-I-Cauchy if for each
ε > 0, however small, there exists a positive integer m(ε) ∈ N such that

{n ∈ N : |Cn(∆nx)− Cm(∆nx)| ≥ ε}

belongs to I, where I ⊆ N be an admissible ideal.

Example 2.1. Define a class of finite subsets of N i.e If = {N ⊆ N : N is finite}
is an admissible ideal in N and cI

f

(C∆) = Cc∆.
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Example 2.2. Let Sc denotes the space of all Copson ∆n−statistically convergent
sequences i.e.,

Sc :=
{
x = (xk) : d

(
{n ∈ N : |Cn(∆nx)− ζ| ≥ ε}

)
= 0, for any real ζ

}
.

We define Id = {N ⊆ N : d(N) = 0} a non trivial ideal that imples that

cI
d

(C∆) = Sc∆, where d(N) represents natural density of the set N.

This follows from the following example:

Example 2.3. Every usual Copson difference sequence converges Copson
∆n−statistically but the converse may not be true. To prove this result we consider
the sequence x = (xk) defined by:

{Cn(∆nx)}n =

{
1, if n is a square,

0, otherwise.

That is Cn(∆nx) = {1, 0, 0, 1, 0, 0, 0, 0, 1, 0, . . . } and taking the limit ζ = 0. Then
we have the inclusion

{n ∈ N : |Cn(∆nx)− ζ| ≥ ε} ⊂ {1, 4, 9, 16, . . . ,m2, (m+ 1)2 . . . }

Since, Natural density of the set on right of above equation is zero i.e., the set of
squares of natural numbers, so as a result we get,

d({n ∈ N : |Cn(∆nx)− ζ| ≥ ε}) = 0.

This implies that, the difference sequence is Copson statistically convergent, but is
not usual Copson convergent.

Theorem 2.1. The spaces cI(C∆), cI0(C∆), `I∞(C∆), mI
0(C∆), and mI(C∆) are

linear spaces over the real field R.

Proof. Let x = (∆nxk), y = (∆nyk) ∈ cI(C∆) be two arbitrary sequences and
α1, α2 are scalars. Now, since x, y ∈ cI(C∆), then for given ε > 0, there exist
ζ1, ζ2 ∈ R, such that{

n ∈ N : |Cn(∆nx)− ζ1| ≥
ε

2

}
∈ I and

{
n ∈ N : |Cn(∆ny)− ζ2| ≥

ε

2

}
∈ I.

Now, let

A1 =

{
n ∈ N : |Cn(∆nx)− ζ1| <

ε

2|α1|

}
∈ F(I),

A2 =

{
n ∈ N : |Cn(∆ny)− ζ2| <

ε

2|α2|

}
∈ F(I)

be such that Ac1, A
c
2 ∈ I. Then

A3 = {n ∈ N : |Cn(α1x+ α2y)− (α1ζ1 + α2ζ2)| < ε}

⊇
{{

n ∈ N : |Cn(∆nx)− ζ1| <
ε

2|α1|

}
∩
{
n ∈ N : |Cn(∆ny)− ζ2| <

ε

2|α2|

}}
.

(2.2)

As a result, we see that the right side of above equality (2.2) belongs to the to
the filter F(I) associated with I over the set of natural numbers which implies that
its complement set always belongs to Ideal I and hence we get (α1x+α2y) ∈ cI(C).
Hence, cI(C∆) is a linear space over the field R.
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The proof for the remaining spaces cI0(C∆), `I∞(C∆), mI
0(C∆), and mI(C∆) can

be proven by the similar way used, above.
�

Theorem 2.2. λ(C∆) are normed spaces with respect to the sup-norm defined by

‖x‖λ(C∆) = sup
n
|Cn(∆nx)|, where λ ∈

{
cI , cI0, `

I
∞, `∞

}
. (2.3)

Theorem 2.3. A sequence x = (xk) is said to be Copson ∆n-I-convergent if and
only if for every ε > 0, ∃ m = m(ε) ∈ N, such that

{n ∈ N : |Cn(∆nx)− Cm(∆nx)| < ε} ∈ F(I). (2.4)

Proof. Let, the sequence x = (xk) is Copson ∆n-I-convergent to some number
ζ ∈ R, then for a given ε > 0 however small, we have

Aε =
{
n ∈ N : |Cn(∆nx)− ζ| < ε

2

}
∈ F(I).

Fix an integer m = m(ε) ∈ Aε. Then we have

|Cn(∆nx)− Cm(∆nx)| ≤ |Cn(∆nx)− ζ|+ |ζ − Cm(∆nx)| < ε

2
+
ε

2
= ε

for all n ∈ Aε. Hence (2.4) holds.
Conversely, suppose that (2.4) holds for all ε > 0. Then

Bε = {n ∈ N : Cn(∆nx) ∈ [Cn(∆nx)− ε, Cn(∆nx) + ε]} ∈ F(I), for all ε > 0.

Let Jε = [Cn(∆nx)− ε, Cn(∆nx) + ε]. Fixing ε > 0, we have Bε ∈ F(I) and
B ε

2
∈ F(I). Hence Bε ∩B ε

2
∈ F(I) provided

J = Jε ∩ J ε
2
6= ∅,

which implies that,

{n ∈ N : Cn(∆nx) ∈ J} ∈ F(I)

and hence

diam (J) ≤ 1

2
diam (Jε),

where, diam(J) denotes the length of the interval J and by induction we get se-
quence of closed intervals as follows: Jε = I0 ⊇ I1 ⊇ · · · ⊇ In ⊇ · · · s.t

diam (In) ≤ 1

2
diam (In−1), for n = (2, 3, . . . ).

As a result we get,

{n ∈ N : Cn(∆nx) ∈ In} ∈ F(I).

This implies that ∃ ζ ∈
⋂
n∈N In and it is a routine work to verify that ζ =

I– limCn(x) which shows that x = (xk) is Copson ∆n-I-convergent. This com-
pletes the proof. �

Theorem 2.4. The inclusions `I∞(C∆) ⊃ cI(C∆) ⊃ cI0(C∆) strictly hold.

Proof. The inclusion cI(C∆) ⊃ cI0(C∆) is obviously true. We show only its strict-
ness. To do this, let us consider the sequence x = (∆nxk) such that Cn(∆nx) = 2
which implies that Cn(∆nx) belongs to cI but not belongs to cI0.
Moreover, if x = (∆nxk) ∈ cI(C∆) then there exists a real number ζ such that

I– limCn(∆nx) = ζ
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i.e.,
{n ∈ N : |Cn(∆nx)− ζ| ≥ ε} ∈ I.

We have
|Cn(∆nx)| = |Cn(∆nx)− ζ + ζ| ≤ |Cn(∆nx)− ζ|+ |ζ| .

From the above result we can say that the sequence (∆nxk) must be an element of
`I∞(C∆).
Also to show the strictness of the inclusion `I∞(C∆) ⊃ cI(C∆), we give the following
example:

Example 2.4. Define the sequence x = (xk) such that

{Cn(∆nx)}n =


1, if n is odd non-square,

0, if n is even non-square
√
n, if n is square.

Although the sequence Cn(∆nx) belongs to `I∞, the Cn(∆nx) does not belongs to cI

which means that the sequence x ∈ `I∞(C∆)\cI(C∆).

As a result, we get that the inclusion relations `I∞(C∆) ⊃ cI(C∆) ⊃ cI0(C∆)
strictly hold. �

This follows from the following example:

Example 2.5. Every Copson bounded difference sequence is Copson ∆n-I-bounded
but the converse may not be true. To prove this, we consider the following example.
For this, we define the sequence x = (xk) by

{Cn(∆nx)}n =

{
n2

n+1 , for prime n,

0, otherwise

which proves that Cn(∆nx) is not bounded sequence but the set {n ∈ N : |Cn(∆nx)| ≥
1} belongs to ideal. Hence the sequence (xk) is Copson ∆n-I-bounded.

Theorem 2.5. The following statements are satisfied:

(a) The sequence spaces cI(C∆) and `∞(C∆) are overlap but neither contains
the other.

(b) The sequence spaces cI0(C∆) and `∞(C∆) are overlap but neither contains
the other.

Proof.
(a) We shall prove the spaces cI(C∆) and `∞(C∆) are not disjoint spaces for this we
consider a sequence x = (xk) s.t Cn(∆nx) = 1

n for n belongs to N then x ∈ cI(C∆n)
and x ∈ `∞(C∆n) both. Moreover, we define the sequence x = (xk) by

{Cn(∆nx)}n =

{√
n, n is a square,

0, otherwise

so that, x ∈ cI(C∆) but x /∈ `∞(C∆). Moreover, we again define the sequence
x = (xk) as follows

{Cn(∆nx)}n =

{
n, n is even,

0, otherwise.

Therefore, we conclude that (x) ∈ `∞(C∆) but x /∈ cI(C∆).
Since the proof of Part (b) is similar to that of Part (a), we omit detail. �
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Theorem 2.6. The spaces mI
0(C∆) and mI(C∆) are defined, as follows:

mI
0(C∆) := cI0(C∆) ∩ `∞(C∆) and mI(C∆) := cI(C∆) ∩ `∞(C∆).

are closed in `∞(C∆) as a subspace.

Proof. We consider a Cauchy sequence (∆nx
(i)
k ) in mI(C∆) ⊂ `∞(C∆). Then

(∆nx
(i)
k ) converges to a point in `∞(C∆) and limi→∞ Cn(i)(∆nx) = Cn(∆nx). Let

I − limCn(i)(∆nx) = ζi for every i ∈ N. Then we only need to show that

(a) Sequence (ζi) converges to ζ;
(b) The limit, I − limCn(∆nx) = ζ exists.

(a) As (∆nx
(i)
k ) is a Cauchy sequence then for each ε > 0 however small, there

always exists a positive integer m ∈ N such that∣∣∣Cn(i)(∆nx)− Cn(j)(∆nx)
∣∣∣ < ε

3
, for all i, j ≥ m. (2.5)

Now, consider two sets Ai and Aj in an ideal I defined as:

Ai =
{
n ∈ N : |Cn(i)(∆nx)− ζi| ≥

ε

3

}
(2.6)

and

Aj =
{
n ∈ N : |Cn(j)(∆nx)− ζj | ≥

ε

3

}
. (2.7)

Moreover, let us suppose that n /∈ Ai ∩Aj for all i, j ≥ m. Then we get

|ζi − ζj | ≤ |Cn(i)(∆nx)− ζi|+ |Cn(j)(∆nx)− ζj |+ |Cn(i)(∆nx)− Cn(j)(∆nx)| < ε

by (2.5), (2.6),and(2.7). Thus (ζi) is a Cauchy sequence and hence converges to
ζ ∈ R i.e., limi→∞ ζi = ζ.

(b) Let δ > 0 however small, be given. Then, we have a positive integer n0 such
that

|ζi − ζ| <
δ

3
, for every i > n0. (2.8)

This implies that (∆nx
(i)
k )→ ∆nxk as i→∞. Thus

|Cn(i)(∆nx)− Cn(∆nx)| < δ

3
, for every i > n0. (2.9)

Since (Cn(j)(∆nx)) is I-convergent to ζj ∈ R then ∃ E ∈ I such that for every
n /∈ E so we get,

|Cn(j)(∆nx)− ζj | <
δ

3
. (2.10)

Moreover, let j > n0 then ∀ n /∈ E , we get by (2.8), (2.9), and (2.10) such that

|Cn(∆nx)− ζ| ≤ |Cn(∆nx)− Cn(j)(∆nx)|+ |Cn(j)(∆nx)− ζj |+ |ζj − ζ| < δ.

Therefore, (∆nxk) is Copson I-convergent to ζ ∈ R. Thus mI(C∆) is closed in
`∞(C∆) as a subspace. The other part can be established by the following similar
technique. �

Theorem 2.7. Sequence spaces cI(C∆), cI0(C∆), and `I∞(C∆) are BK-spaces with
respect to the sup-norm as follows:

‖x‖λ(C∆n) = sup
n
|Cn(∆nx)|, where λ ∈

{
cI , cI0, `

I
∞, `∞

}
.
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Proof. It is known that the spaces cI , cI0, and `I∞ are BK-spaces. Moreover, (2.1)
satisfies and the Copson matrix is a triangle matrix. Now, by considering all these
three facts and also by Theorem 4.3.12 of Wilansky [34], we conclude that the
spaces are BK-spaces. This completes the proof. �

In the view of Theorem 2.6 and since the inclusions mI(C∆) ⊂ `∞(C∆) and
mI

0(C∆) ⊂ `∞(C∆) are strict, we formulate the following result without proof.

Theorem 2.8. Spaces mI(C∆) and mI
0(C∆) are nowhere dense in `∞(C∆) as a

subset.

Theorem 2.9. Spaces cI0(C∆) and mI
0(C∆) are monotone and solid respectively.

Proof. First we shall prove the result only for cI0(C∆).
Let x = (∆nxk) ∈ cI0(C∆). For ε > 0 however small, we have

{n ∈ N : |Cn(x)| ≥ ε} ∈ I. (2.11)

Let a = (∆nak) be a scalar sequence satisfies |∆na| ≤ 1 for all k ∈ N. Then, we
have

|Cn(ax)| = |aCn(x)| ≤ |a| |Cn(x)| ≤ |Cn(x)| ,∀n ∈ N. (2.12)

From the relations (2.11), (2.12), we conclude that

{n ∈ N : |Cn(ax)| ≥ ε} ⊆ {n ∈ N : |Cn(x)| ≥ ε} ∈ I
This implies that the set

{n ∈ N : |Cn(αx)| ≥ ε}belongs to ideal I.

Therefore as a result we get the sequence (ax) ∈ cI0(C∆).
=⇒ Space cI0(C) is a solid space.
Also, as we know that every solid space is monotone by Lemma 1.1. This implies
that the space cI0(C∆) is monotone.

�

Corollary 2.10. If the ideal I is neither maximal nor I = If , then the sequence
spaces cI(C∆n) and mI(C∆n) are neither solid nor monotone.

Proof. We shall prove the above corollary by introducing an example as follows: �

Example 2.6. Let I = If and let S = {n ∈ N : n is an odd integer}. Consider the
S-step space SK of K as:

SK = {(xk) ∈ ω : (xk) ∈ S}.
Let us define the sequence (yk) ∈ SK by

Cn(y) =

{
Cn(∆nx), if n ∈ S,
0, otherwise.

Moreover, we consider the sequence (∆nxk) defined by {Cn(∆nx)}n = 3 for all
n ∈ N. Then, the sequence (∆nxk) ∈ E(C∆), but its S-step space preimage does
not belongs to E(C∆), where E = cI and mI .
In this way, as a result we find E(C∆) are not monotone and by following lemma
1.1, the space E(C∆) is not solid.

Theorem 2.11. Let, for a sequence x = (∆nxk) and a non-trivial admissible ideal
I in N if there exists a sequence y = (∆nyk) ∈ cI(C) such that Cn(x) = Cn(y) for
almost all n relative to I, then x ∈ cI(C∆).
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Proof. Suppose that Cn(x) = Cn(y) for almost all n relative to I i.e.,

{n ∈ N : Cn(x) 6= Cn(y)} ∈ I.

Consider the sequence (∆nyk) which is Copson ∆n − I-convergent to ζ. Then, for
every ε > 0 however small, we have the following set belongs to ideal I i.e.,

{n ∈ N : |Cn(y)− ζ| ≥ ε} ∈ I.

Since, we have considered I as an admissible ideal of set of natural numbers so we
derive the following inclusion relation

{n ∈ N : |Cn(x)− ζ| ≥ ε} ⊆ {n ∈ N : Cn(x) 6= Cn(y)} ∪ {n ∈ N : |Cn(y)− ζ| ≥ ε}.
�
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