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DISK CHARACTERIZATIONS OF PRINGSHEIM AND

STATISTICAL CORES FOR COMPLEX DOUBLE SEQUENCES

SAMI M. HAMID, RICHARD F. PATTERSON

Abstract. In this paper, we prove the equivalence between two characteri-

zations of the Pringsheim core for bounded double sequences using the Hahn-
Banach Separation Theorem. We establish that the classical convex hull def-

inition equals the intersection of disk sets determined by Pringsheim limit

superior distances. We further extend this approach to the statistical setting,
proving an analogous equivalence for the statistical Pringsheim core.

1. Introduction

The core of a sequence, first introduced by Knopp [5] as the intersection
of closed convex hulls of sequence tails, provides valuable insights into sequence
behavior and convergence properties. Shcherbakov [14] advanced this concept with
an alternative characterization using intersections of closed disks.

For double sequences, Patterson [10] introduced core theory in the context of
Pringsheim convergence, defining the Pringsheim core as the intersection of closed
convex hulls of sequence tails. His subsequent work on four-dimensional matrix
characterizations [11] further developed this theory. Sever and Altay [13] provided
another significant contribution by demonstrating the equivalence between alterna-
tive characterizations of the Pringsheim core using barriers and disks. Comprehen-
sive treatments of these and related developments can be found in Başar [1] and
Mursaleen and Mohiuddine [8].

A parallel development in sequence analysis began with Fast [3] and Steinhaus
[15], who introduced the concept of statistical convergence. This approach filters out
exceptional behavior occurring on sets of indices with zero density. Fridy and Orhan
[4] extended this to core theory for statistically convergent sequences, while Morič
[6] systematically studied statistical convergence of multiple sequences. Further
contributions by Çakan and Altay [2] and Mursaleen and Edely [7] investigated
statistical convergence in the context of double sequences.

Core theory for double sequences encompasses several fundamental concepts.
The Pringsheim core, defined as the intersection of closed convex hulls of sequence
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tails, characterizes limiting behavior for sequences that may not converge classically.
This has been extended to M -cores based on almost convergence, R-cores utilizing
Riesz methods, and statistical cores employing natural density. Four-dimensional
matrix transformations, including regular, strongly regular, and almost regular ma-
trices, serve as essential tools for studying how these core properties behave under
transformation. The theory of α-, β-, and γ-duals provides additional structural
understanding of these sequence spaces and their relationships.

In this paper, we accomplish three significant extensions to core theory. First,
we extend Shcherbakov’s characterization to double sequences, proving the equiva-
lence between convex hull and disk-based definitions of the Pringsheim core using
the Hahn-Banach Separation Theorem. Second, following Fridy and Orhan’s half-
plane approach for single sequences [4], we extend their definition to the statistical
Pringsheim core for double sequences using double natural density δ2, generalizing
the convex hull characterization to the statistical setting. Third, we establish an
analogous equivalence for this statistical Pringsheim core, demonstrating that our
disk-based characterization extends naturally to the statistical framework. Our
functional-analytic approach provides direct, unified proofs of both characteriza-
tions, bridging classical and statistical convergence theories in the context of double
sequences.

The structure of this paper is as follows: Section 2 establishes preliminary con-
cepts and definitions. Section 3 presents our equivalence theorem for Pringsheim
core characterizations. Section 4 extends these results to the statistical setting,
establishing the equivalence of convex hull and disk-based characterizations for the
statistical Pringsheim core. Section 5 provides concluding remarks and identifies
directions for future research.

2. Preliminaries

We begin by establishing the mathematical background necessary for prov-
ing our main results on the Pringsheim core. We first review basic notions of
Pringsheim convergence for double sequences, then introduce the Hahn-Banach
Separation Theorem which will serve as our primary functional analysis tool.

2.1. Pringsheim Convergence Concepts. We begin with the fundamental no-
tion of convergence for double sequences introduced by Pringsheim.

Definition 2.1 (Pringsheim [12]). A double sequence x = (xk,l) has Pringsheim
limit L (denoted by P -lim

k,l
xk,l = L) provided that given ε > 0 there exists N ∈ N

such that |xk,l − L| < ε whenever k, l > N . We shall describe such a sequence more
briefly as “P-convergent.”

For sequences that do not converge, we require the notions of limit superior and
limit inferior in the Pringsheim sense.

Definition 2.2 (Patterson [10]). For a double sequence x = (xk,l) of real numbers:
Let αn = sup{xk,l : k, l ≥ n}. The Pringsheim limit superior (denoted by P -

lim sup) of x is defined as

P - lim sup
k,l

xk,l =

{
+∞ if αn = +∞ for each n,

inf
n
{αn} if αn <∞ for some n.
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Let βn = inf{xk,l : k, l ≥ n}. The Pringsheim limit inferior (denoted by P -
lim inf) of x is defined as

P - lim inf
k,l

xk,l =

−∞ if βn = −∞ for each n,

sup
n
{βn} if βn > −∞ for some n.

2.2. Hahn-Banach Separation Theorem. For our purposes, we need a specific
form of the separation theorem for locally convex spaces. The following theorem is
a standard result in functional analysis.

Theorem 2.3 (Hahn-Banach Separation Theorem [9]). Let X be a locally convex
topological vector space over C. If C is a non-empty closed convex subset of X and
x0 ∈ X \ C, then there exists a continuous linear functional φ : X → C and α ∈ R
such that

Re (φ(x0)) < α < Re (φ(y)) for all y ∈ C.

Local convexity ensures the existence of sufficiently many continuous linear func-
tionals to separate points from closed convex sets. A key consequence of the Hahn-
Banach Separation Theorem that we will use in our proof is the following:

Corollary 2.4. The closed convex hull of a set S in a locally convex topological
vector space X is the intersection of all closed half-planes containing S.

This follows from the fact that any point outside the closed convex hull can be
separated from it by a hyperplane, defining a closed half-plane containing the hull
but not the point. This corollary is central to our proof of the equivalence between
convex hull and disk-based core characterizations in Section 3, as it allows us to
represent convex hulls via bounding hyperplanes.

2.3. Definitions for Pringsheim Core. Building on the concepts of Pringsheim
convergence, we now present the standard definition of the Pringsheim core, fol-
lowed by the construction of specific disk sets that will lead to an alternative char-
acterization.

Definition 2.5 (Patterson [10]). Let x = (xk,l) be a bounded double sequence in
C. For each n ∈ N, let P -Cn{x} be the least closed convex set containing all points
xk,l for k, l > n. The Pringsheim core of x is defined as

P -C{x} =

∞⋂
n=1

P -Cn{x}.

Definition 2.6 (Sever and Altay [13]). Let x = (xk,l) be a bounded double sequence
in C. For each z ∈ C, define

Bx(z) =

{
w ∈ C : |w − z| ≤ P - lim sup

k,l
|xk,l − z|

}
,

where P - lim sup
k,l

|xk,l − z| = inf
n∈N

sup
k,l>n

|xk,l − z|.

Remark 1. The boundedness of the sequence ensures that infinite intersections
in our characterizations are well-defined in C, allowing our equivalence proof to
proceed via separation arguments.
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3. Equivalence of Pringsheim Core Characterizations

Having established the necessary background concepts, we now present our
first main result. This theorem demonstrates that the Pringsheim core, defined
via the intersection of closed convex hulls in Definition 2.5, can be equivalently
characterized as the intersection of all disk sets Bx(z) as z ranges over the complex
plane.

Theorem 3.1. For any bounded double sequence x = (xk,l) in C,

P -C{x} =
⋂
z∈C

Bx(z).

Proof. For necessity part, we show that P -C{x} ⊆
⋂
z∈C

Bx(z). Let w ∈ P -C{x} and

fix an arbitrary z ∈ C. Setting L = P - lim sup
k,l

|xk,l − z| = inf
m,n

sup
k>m,l>n

|xk,l − z|, we

aim to show |w − z| ≤ L, which implies w ∈ Bx(z). For any n ∈ N, the point w
belongs to P -Cn{x}, the closed convex hull of {xk,l : k, l > n}. By Carathéodory’s
theorem in C (which is isomorphic to R2), we can approximate w arbitrarily closely
using convex combinations of at most three points from this set. Since w belongs
to the closed convex hull, for any ε > 0, we can find points xk1,l1 , xk2,l2 , xk3,l3 with
ki, li > n for 1 ≤ i ≤ 3, and non-negative coefficients λ1, λ2, λ3 summing to unity,

such that

∣∣∣∣∣w −
3∑
i=1

λixki,li

∣∣∣∣∣ < ε. Using the triangle inequality and the condition

3∑
i=1

λi = 1, we obtain

|w − z| ≤

∣∣∣∣∣w −
3∑
i=1

λixki,li

∣∣∣∣∣+

∣∣∣∣∣
3∑
i=1

λixki,li − z

∣∣∣∣∣
< ε+

∣∣∣∣∣
3∑
i=1

λixki,li −
3∑
i=1

λiz

∣∣∣∣∣ = ε+

∣∣∣∣∣
3∑
i=1

λi(xki,li − z)

∣∣∣∣∣
≤ ε+

3∑
i=1

λi |xki,li − z| ≤ ε+ max
1≤i≤3

|xki,li − z| ≤ ε+ sup
k,l>n

|xk,l − z| .

Since this inequality holds for any ε > 0, we conclude that |w − z| ≤ sup
k,l>n

|xk,l − z|.

As this bound is valid for every n ∈ N, we can take the infimum over all n to obtain

|w − z| ≤ inf
n∈N

sup
k,l>n

|xk,l − z| = P - lim sup
k,l

|xk,l − z| = L.

This establishes that w ∈ Bx(z) for all z ∈ C, and consequently, w ∈
⋂
z∈C

Bx(z).

To establish the sufficiency part, suppose w /∈ P -C{x}, then by definition of P -

C{x} =

∞⋂
n=1

P -Cn{x}, there exists N ∈ N such that w /∈ P -CN{x}. Since P -CN{x}

is closed and convex in C, and {w} is compact, the Hahn-Banach Separation The-
orem (Theorem 2.3) yields a continuous linear functional φ : C → C and a real
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number α such that

Re(φ(w)) < α < Re(φ(y)) ∀y ∈ P -CN{x}.
In the finite-dimensional complex space C, every continuous linear functional admits
a representation via the standard inner product. Specifically, there exists u ∈ C\{0}
such that φ(z) = 〈z, u〉 for all z ∈ C, where 〈z, u〉 = zu is the standard inner
product. Note that the separation inequality applies specifically to the real part of
this functional, giving us Re(φ(w)) < α < Re(φ(y)) for all y ∈ P -CN{x}.

We now construct a special point z0 = w + r
u

|u|
, where r =

α− Re(φ(w))

|u|
> 0.

This point z0 has the property that Re(φ(z0)) = α, which we verify through the
following calculation

Re(φ(z0)) = Re

(
φ

(
w + r

u

|u|

))
= Re(φ(w)) + Re

(
φ

(
r
u

|u|

))
= Re(φ(w)) + rRe

(
φ

(
u

|u|

))
= Re(φ(w)) + rRe

(〈
u

|u|
, u

〉)
= Re(φ(w)) + r

Re(〈u, u〉)
|u|

= Re(φ(w)) + r
|u|2

|u|
= Re(φ(w)) + r |u| = Re(φ(w)) +

α− Re(φ(w))

|u|
· |u|

= Re(φ(w)) + α− Re(φ(w)) = α.

Therefore, z0 lies precisely on the hyperplane defined by Re(φ(z)) = α.
Now we define L = P - lim sup

k,l
|xk,l − z0|. By the definition of the Pringsheim

limit superior (Definition 2.2), for any ε > 0, there exists n0 ∈ N such that

sup
k,l>n0

|xk,l − z0| < L+ ε.

For any k, l > max{n0, N}, we have xk,l ∈ P -CN{x} and |xk,l − z0| < L + ε.
Furthermore, from our application of the Hahn-Banach separation theorem, we
know that

Re(φ(xk,l)) > α = Re(φ(z0)).

These properties allow us to construct a point y in the closure of {xk,l : k, l > N}
with two properties: |y − z0| ≤ L and Re(φ(y)) ≥ α. To construct a point with the
desired properties, we first define a sequence of sets. For each positive integer n,
let

An =

{
xk,l : k, l > max{N,n0, n} and |xk,l − z0| ≤ L+

1

n

}
.

Let Bn = {xk,l ∈ An : Re(φ(xk,l)) ≥ α}. We first verify that each Bn is non-empty.
From the definition of the Pringsheim limit superior L = P - lim sup

k,l
|xk,l − z0|,

for any n there exist indices k, l > max{N,n0, n} such that |xk,l − z0| ≤ L +
1

n
.

Additionally, for all k, l > N , our separation result guarantees that Re(φ(xk,l)) > α
since xk,l ∈ P -CN{x}. Therefore, such points xk,l belong to both An and Bn,
confirming that Bn is non-empty. Moreover, these sets form a nested sequence
Bn+1 ⊆ Bn because any element xk,l ∈ Bn+1 must be some xk,l where k, l >
max{N,n0, n + 1}, which implies k, l > max{N,n0, n}. Moreover, |xk,l − z0| ≤
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L +
1

n+ 1
< L +

1

n
since the upper bound becomes stricter with increasing n.

The condition Re(φ(xk,l)) ≥ α holds for elements in both sets. Thus, any element
in Bn+1 satisfies all conditions to be in Bn as well. Each Bn is bounded because
the double sequence x is a bounded sequence, and the sequence of sets {Bn}n∈N is
nested.

For each n, the closure Bn is compact. By the nested compact set theorem,
∞⋂
n=1

Bn 6= ∅. Let y ∈
∞⋂
n=1

Bn. Then y is in the closure of {xk,l : k, l > N},

so y ∈ P -CN{x} since P -CN{x} is closed. Furthermore, |y − z0| ≤ L follows

from the definition of y as an element of
∞⋂
n=1

Bn. By continuity of φ and the

fact that Re(φ(xk,l)) ≥ α for all xk,l ∈ Bn, we have Re(φ(y)) ≥ α. Moreover,
since y ∈ P -CN{x}, the Hahn-Banach separation gives us Re(φ(y)) > α. We now
establish the key contradiction that completes our proof. Recalling that

|w − z0| = r =
α− Re(φ(w))

|u|
> 0,

we will demonstrate that |w − z0| > L, which implies w /∈ Bx(z0). Assume that
|w − z0| ≤ L. Consider the line segment from w to y given by γ(t) = (1− t)w + ty
for t ∈ [0, 1]. Since Re(φ(w)) < α < Re(φ(y)), the intermediate value theorem
guarantees the existence of t0 ∈ (0, 1) such that Re(φ(γ(t0))) = α. Define v =
γ(t0) = (1 − t0)w + t0y. The triangle inequality, combined with our assumptions,
yields

|v − z0| = |(1− t0)w + t0y − z0| = |(1− t0)(w − z0) + t0(y − z0)|
≤ (1− t0) |w − z0|+ t0 |y − z0| ≤ (1− t0)L+ t0L = L.

Thus, we have a point v with Re(φ(v)) = α by construction and |v − z0| ≤ L.
We now demonstrate that v /∈ P -CN{x}. Suppose v ∈ P -CN{x}, then we can
express v = (1− t0)w + t0y where y ∈ P -CN{x}. Solving for w, we get

w =
v

1− t0
− t0y

1− t0
.

This gives us w = λ1v + λ2y where λ1 =
1

1− t0
> 0 and λ2 =

−t0
1− t0

< 0. Since

λ2 < 0, this is not a convex combination of v and y. This negative coefficient
is crucial because if v ∈ P -CN{x}, then the convex set P -CN{x} contains both
v and y. Since P -CN{x} is convex, it contains all convex combinations of these
points. However, our expression for w involves w = λ1v+ λ2y where λ2 < 0, which
means w lies outside the convex hull of v and y. Since w cannot be represented
as a convex combination of points in P -CN{x}, we have contradicted our original
assumption that w ∈ P -CN{x}. Thus, v /∈ P -CN{x}. Since v /∈ P -CN{x}, by the
Hahn-Banach separation theorem, we must have

Re(φ(v)) < α.

But we constructed v precisely to satisfy Re(φ(v)) = α. This contradiction estab-
lishes that our assumption |w − z0| ≤ L must be false. Therefore, |w − z0| > L =
P - lim sup

k,l
|xk,l − z0|, which means w /∈ Bx(z0), and consequently, w /∈

⋂
z∈C

Bx(z).

Having established both inclusions, we conclude that P -C{x} =
⋂
z∈C

Bx(z). �



DISK CHARACTERIZATIONS OF PRINGSHEIM AND STATISTICAL CORES 121

Remark 2. Theorem 3.1 extends Shcherbakov’s work on kernels of complex se-
quences [14] to double sequences. Our proof uses the Hahn-Banach Separation
Theorem to demonstrate equivalence between the convex hull definition and disk
intersection characterization, offering complementary analytical perspectives on the
Pringsheim core.

4. Statistical Cores for Double Sequences

We now extend our functional analytic approach to the statistical setting.
Statistical convergence, which originated with the work of Fast [3] and Steinhaus
[15], offers a more general notion of convergence by effectively ignoring exceptional
behavior occurring on sets of indices with zero density. This approach allows us to
capture limiting behavior even when traditional convergence fails.

4.1. Definitions for Statistical Convergence. We begin by establishing the
necessary definitions for our treatment of statistical cores.

Definition 4.1 (Natural Density for Double Sequences). For E ⊆ N × N, the
natural density of E is defined as

δ2(E) = P - lim
m,n→∞

|E ∩ ({1, 2, . . . ,m} × {1, 2, . . . , n}) |
mn

,

provided the Pringsheim limit exists.

This concept, studied by Mursaleen and Edely [7], extends the natural density
from single sequences to double sequences. Our formulation retains the mathemat-
ical essence while adopting slightly different notation for clarity in our context.

For convenience, we say that a property holds for “statistically almost all indices”
to indicate that it holds for a set of indices with density one.

Building on the work of Çakan and Altay [2] for real double sequences, we extend
their statistical concepts to complex double sequences as follows:

Definition 4.2 (Statistical Boundedness). A double sequence x = (xk,l) is said to
be statistically bounded if there exists M > 0 such that

δ2 ({(k, l) : |xk,l| > M}) = 0.

We denote the space of all statistically bounded double sequences by st∞2 .

Definition 4.3 (Statistical Limit Superior). For a statistically bounded double se-
quence x = (xk,l) of complex numbers and any z ∈ C,

st2-P - lim sup
k,l

|xk,l − z| = inf {r ∈ R : δ2 ({(k, l) : |xk,l − z| > r}) = 0} .

Following Fridy and Orhan’s half-plane approach for single sequences in [4], we
extend their definition to the statistical Pringsheim core for double sequences using
double natural density δ2, analogous to the classical Pringsheim core [10]. This
generalizes the convex hull characterization of cores to the statistical setting, where
closed half-planes contain xk,l for statistically almost all indices (k, l).

Definition 4.4 (Statistical Pringsheim Core - Convex Hull Definition). For a sta-
tistically bounded double sequence x = (xk,l) in C, let H(x) be the collection of all
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closed half-planes that contain xk,l for statistically almost all indices. The statistical
Pringsheim core of x is defined as

st2-P -C{x} =
⋂

H∈H(x)

H.

Definition 4.5 (Statistical Disk Sets). For a statistically bounded double sequence
x = (xk,l) in C and any z ∈ C, define

Bstx (z) =

{
w ∈ C : |w − z| ≤ st2-P - lim sup

k,l
|xk,l − z|

}
.

Before proceeding to our main equivalence theorem, we establish several measure-
theoretic and structural properties that form the foundation for extending con-
ventional core theory to the statistical setting. The following lemma addresses
three essential aspects: the behavior of density-one sets under intersections, the
preservation of convex hull properties, and the topological characteristics needed
for functional analytic arguments. These properties collectively establish the bridge
between traditional Pringsheim core theory and its statistical counterpart, enabling
us to apply separation techniques in the measure-theoretic framework of statistical
convergence.

Lemma 4.6 (Measure-Theoretic Foundations for Statistical Cores). Let x = (xk,l)
be a statistically bounded double sequence in C. The following properties hold:

(i) Finite Intersections: If E1, E2, . . . , En ⊆ N× N each having δ2(Ei) = 1

for all i ∈ {1, 2, . . . , n}, then δ2

(
n⋂
i=1

Ei

)
= 1.

(ii) Convex Hull Preservation: If E ⊆ N × N satisfies δ2(E) = 1 and
S ⊆ C contains {xk,l : (k, l) ∈ E}, then st2-P-C{x} is contained in the
closed convex hull conv(S).

(iii) Infinite Intersections: The statistical Pringsheim core st2-P -C{x}, de-

fined as
⋂

H∈H(x)

H, is closed under arbitrary intersections in C.

Proof. (i) Let E1, E2, . . . , En ⊆ N × N be sets each having δ2(Ei) = 1 for all
i ∈ {1, 2, . . . , n}. From the definition of double natural density (Definition 4.1),
δ2(Eci ) = 0 for each i ∈ {1, 2, . . . , n}. Using the subadditivity of the natural density
measure, we obtain

δ2

(
n⋃
i=1

Eci

)
≤

n∑
i=1

δ2(Eci ) = 0.

Therefore

δ2

(
n⋂
i=1

Ei

)
= 1− δ2

(
n⋃
i=1

Eci

)
= 1.

(ii) Suppose, for contradiction, that there exists p ∈ st2-P -C{x} with p /∈
conv(S). By Theorem 2.3, there exists a continuous linear functional φ : C → C
and α ∈ R such that Re(φ(p)) < α < Re(φ(y)) for all y ∈ conv(S). Define
H = {z ∈ C : Re(φ(z)) ≥ α}, a closed half-plane containing S but not p. Since S
contains {xk,l : (k, l) ∈ E} where δ2(E) = 1, we have δ2({(k, l) : xk,l ∈ H}) = 1. By
Definition 4.4, st2-P -C{x} is contained in every closed half-plane that contains the
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sequence values on a set of indices with density one. Since H is such a half-plane
but p /∈ H, we have reached a contradiction, and therefore, st2-P -C{x} ⊆ conv(S).

(iii) We need to prove that the statistical Pringsheim core st2-P -C{x} =
⋂

H∈H(x)

H

is a non-empty, closed, and convex subset of C. To establish non-emptiness, we
utilize the statistical boundedness of x (Definition 4.2). Since x is statistically
bounded, there exists M > 0 such that δ2({(k, l) : |xk,l| > M}) = 0. Consequently,
the set E = {(k, l) : |xk,l| ≤ M} has δ2(E) = 1. Let DM = {z ∈ C : |z| ≤ M}
be the closed disk of radius M . This disk DM is compact as it is both closed
and bounded in C, and contains xk,l for all (k, l) ∈ E. For any finite collection
{H1, H2, . . . ,Hn} ⊂ H(x), each Hi contains xk,l for indices in some set Ei with
δ2(Ei) = 1. By Lemma 4.6(i), the intersection E′ = E ∩ E1 ∩ E2 ∩ . . . ∩ En
has δ2(E′) = 1, making E′ non-empty. This means there exist indices (k, l) such
that xk,l ∈ DM ∩ H1 ∩ H2 ∩ . . . ∩ Hn, proving that any finite intersection of
sets from {DM ∩ Hα}α∈A is non-empty. Now consider any collection {Hα}α∈A
in H(x) and the corresponding family {DM ∩ Hα}α∈A. Each DM ∩ Hα is closed
as the intersection of two closed sets. Moreover, each DM ∩ Hα is compact be-
cause it is a closed subset of the compact set DM . Since we have established that
any finite subcollection of {DM ∩ Hα}α∈A has non-empty intersection, the finite
intersection property of compact spaces guarantees that the infinite intersection⋂
α∈A

(DM ∩Hα) = DM ∩

(⋂
α∈A

Hα

)
is non-empty. This intersection is contained in⋂

α∈A
Hα = st2-P -C{x}, proving that the statistical Pringsheim core is non-empty.

For closedness and convexity, we observe that each H ∈ H(x) is both closed and
convex by definition, being a closed half-plane. Since the intersection of any col-
lection of closed convex sets preserves both properties, st2-P -C{x} is both closed
and convex in C. Thus, the statistical Pringsheim core st2-P -C{x} is a non-empty,
closed, and convex subset of C. �

4.2. Equivalence of Statistical Core Characterizations. We now establish
the equivalence between the two characterizations of the statistical Pringsheim
core, extending our analysis from the Pringsheim core to the statistical setting.

Theorem 4.7. For any statistically bounded double sequence x = (xk,l) in C,

st2-P -C{x} =
⋂
z∈C

Bstx (z).

Proof. The proof extends our approach from Theorem 3.1 to the statistical setting,
utilizing the measure-theoretic foundations established in Lemma 4.6. The key
modification involves replacing tail sets {(k, l) : k, l > n} with sets of indices having
density one.

For necessity part, we show that st2-P -C{x} ⊆
⋂
z∈C

Bstx (z). Let w ∈ st2-P -

C{x} and fix an arbitrary z ∈ C. Setting L = st2-P -lim sup
k,l

|xk,l − z|, we aim to

show |w − z| ≤ L. For any ε > 0, the set Eε = {(k, l) : |xk,l − z| ≤ L + ε} has
δ2(Eε) = 1. This follows from the definition of statistical limit superior (Definition
4.3), which gives us δ2({(k, l) : |xk,l − z| > L + ε}) = 0, and thus its complement
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Eε has density 1. By Definition 4.4, st2-P -C{x} is contained in every closed half-
plane that contains xk,l for statistically almost all indices. The closed disk of radius
L + ε centered at z can be expressed as an intersection of closed half-planes, each
containing xk,l for all (k, l) ∈ Eε. Since Eε has density 1, and any finite intersection
of density-one sets maintains density one by Lemma 4.6(i), each of these half-planes
must contain w. Therefore |w − z| ≤ L+ ε for any ε > 0, implying |w − z| ≤ L.

To establish the sufficiency part, suppose w /∈ st2-P -C{x}, then by Definition 4.4
and Lemma 4.6(ii), there exists a closed half-plane H containing xk,l for statistically
almost all indices with w /∈ H. Applying the Hahn-Banach Separation Theorem
(Theorem 2.3), we obtain a continuous linear functional φ and construct a point z0
as in Theorem 3.1. Following the separation procedure and utilizing Lemma 4.6(iii),
we establish that |w − z0| > st2-P -lim sup

k,l
|xk,l − z0|, which means w /∈ Bstx (z0), and

consequently, w /∈
⋂
z∈C

Bstx (z). �

5. Conclusion

In this paper, we have established equivalence theorems for both classical and
statistical Pringsheim cores of complex double sequences using the Hahn-Banach
Separation Theorem. Our main contributions demonstrate that the traditional
convex hull characterizations can be equivalently expressed through intersections
of closed disk sets, adapting Shcherbakov’s disk-based approach to the double se-
quence setting and providing the first rigorous disk characterizations for statistical
Pringsheim cores. Our approach uses the Hahn-Banach Separation Theorem to
connect convex hull and disk-based definitions.

The disk characterization approach may extend to other sequence spaces where
geometric separation arguments apply. Recent developments in [16] suggests that
disk-based characterizations could potentially be adapted to fuzzy number spaces,
though the endograph metric structure and partial ordering of fuzzy numbers would
require fundamental modifications to our separation theorem approach.
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