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INTEGRAL TYPE MODIFICATION FOR q−LAGUERRE

POLYNOMIALS

(COMMUNICATED BY PROFESSOR F. MARCELLAN)

GÜRHAN İÇÖZ, SERHAN VARMA AND FATMA TAŞDELEN

Abstract. Özarslan gave the approximation properties of linear positive op-
erators including the q-Laguerre polynomials in [13]. In this paper, we will
give Kantorovich type generalization for this operator with the help of Rie-
mann type q-integral. We also get approximation properties for the generalized
operator with modulus.

1. Introduction

In 1960, The Meyer-König and Zeller operators

Mn (f ;x) =

∞
∑

k=0

f

(

k

k + n+ 1

)(

n+ k

k

)

xk (1− x)
n+1

(0 ≤ x < 1) were introduced by Meyer-König and Zeller in [11].
In order to give the monotonicity properties, Cheney and Sharma [1] modified

these operators as:

M∗
n (f ;x) =

∞
∑

k=0

f

(

k

k + n

)(

n+ k

k

)

xk (1− x)
n+1

(0 ≤ x < 1).
In [1], they also introduced the operators

Pn (f ;x) = exp

(

tx

1− x

) ∞
∑

k=0

f

(

k

k + n

)

L
(n)
k (t) xk (1− x)n+1

(0 ≤ x < 1 and −∞ < t ≤ 0) where L
(n)
k (t) denotes the Laguerre polynomials.

Since L
(n)
k (0) =

(

n+ k

k

)

, then M∗
n (f ;x) is the special case of the operators

Pn (f ;x).
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The q-type generalization of the linear positive operators was initiated by Phillips
in [14]. He introduced the q-type generalization of the classical Bernstein operator
and obtained the rate of convergence and the Voronovskaja type asymptotic formula
for these operators.

q-Laguerre polynomials were defined by (Hahn [7, p. 29], Jackson [8, p. 57] and
Moak [12, p. 21, eq. 23])

L(α)
n (x; q) =

(

qα+1; q
)

n

(q; q)n

n
∑

k=0

(q−n; q)k q
(k2) (1− q)

k (
qn+α+1x

)k

(qα+1; q)k (q; q)k

where

(α; q)n =

{

1 ;n = 0
(1− α) (1− αq) ...

(

1− αqn−1
)

;n ∈ N, α ∈ C
.

Moak gave the following recurrence relation [12, p. 29, eq. 4.14] and generating
function [12, p. 29, eq. 4.17] for the q-Laguerre polynomials:

tL
(α+1)
k−1 (t; q) = [k + α] q−α−kL

(α)
k−1 (t; q)− [k] q−α−kL

(α)
k (t; q)

(Reα > −1, k = 1, 2, ...) ,

Fα (x, t) =

(

xqα+1; q
)

∞
(x; q)∞

∞
∑

m=0

qm
2+αm [− (1− q)xt]m

(q; q)m (xqα+1; q)m

=

∞
∑

k=0

L
(α)
k (t; q)xk (Reα > 1) (1.1)

where

(a; q)∞ =

∞
∏

j=0

(

1− aqj
)

, (a ∈ C) .

Trif [16] defined the Meyer-König and Zeller operators based on q-integer as follows:

Mn,q (f ;x) =
n
∏

j=0

(

1− qjx
)

∞
∑

k=0

f

(

[k]

[k + n]

)[

n+ k
k

]

xk

(0 ≤ x < 1) where

[k] =

{ (

1− qk
)

/ (1− q) ; q 6= 1
1 ; q = 1

,

[k]! =

{

[1] [2] ... [k] ; k ≥ 1
1 ; k = 0

and
[

n+ k
k

]

=
[n+ k]!

[n]! [k]!

(k, n ∈ N) for q ∈ (0, 1].

In [13], Özarslan defined the q-analogue for Pn (f ;x) operators as follow:

Pn,q (f ;x) =
1

Fn (x, t)

∞
∑

k=0

f

(

[k]

[k + n]

)

L
(n)
k (t; q)xk (1.2)
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where x ∈ [0, 1], t ∈ (−∞, 0], q ∈ (0, 1] and {Fn (x, t)}n∈N
is the generating functions

for the q-Laguerre polynomials. Since L
(n)
k (0; q) =

[

n+ k
k

]

and Fn (x, 0) =
n
∏

j=0

(

1− qjx
)

,

then Mn,q (f ;x) is the special case of the operators Pn,q (f ;x).
Let us recall the concepts of q-differential, q-derivative and q-integral respec-

tively.
For an arbitrary function f (x), the q-differential is given by

dqf (x) = f (qx)− f (x) .

For an arbitrary function f (x), the q-derivative is defined as

Dqf (x) =
dqf (x)

dqx
=

f (qx)− f (x)

(q − 1)x
.

Now suppose that 0 < a < b, 0 < q < 1 and f is a real-valued function. The q-
Jackson integral of f over the interval [0, b] and a general interval [a, b] are defined
by (see [9])

a
∫

0

f (t) dqt = (1− q) a

∞
∑

j=0

f
(

qja
)

qj

and
b

∫

a

f (t) dqt =

b
∫

0

f (t) dqt−
a

∫

0

f (t) dqt

respectively.
It is clear that q-Jackson integral of f over an interval [a, b] contains two infinite

sums, so some problems are encountered in deriving the q-analogues of some well-
known integral inequalities which are used to compute order of approximation of
linear positive operators containing q-Jackson integral. In order to overcome these
problems Gauchman [5] and Marinković et al. [10] introduced a new type of q-
integral. This new q-integral is called as Riemann type q-integral and defined by

b
∫

a

f (t) dRq t = (1− q) (b− a)

∞
∑

j=0

f
(

a+ (b− a) qj
)

qj

where a, b and q are some real numbers such that 0 < a < b and 0 < q < 1.
Contrary to the classical definition of q-integral, this definition includes only points
within the interval of integration.

Now, we give a Kantorovich type generalization of operators Pn, M
∗
n, Mn,q and

Pn,q. This Kantorovich type generalization was studied by Dalmanoğlu [3], Radu
[15] and etc. We consider the sequence of Kantorovich type linear positive operators
as follow:

(Kn,qf) (x, t) =
1

Fn,q (x, t)

∞
∑

k=0







[k+1]/[n+k]
∫

[k]/[n+k]

f (t) dRq t






q−k [n+ k]L

(n)
k (t; q)xk,

(1.3)
where x ∈ [0, 1] , t ∈ (−∞, 0] , q ∈ (0, 1], n > 1 and {Fn (x, t)}n∈N

is the generating
functions for the q-Laguerre polynomials which was given in (1.1).
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2. Approximation Properties of the (Kn,qf) (x, t) Operators

We have the following theorem for the convergence of (Kn,qf) (x, t) operators.

Theorem 1. Let q := qn be a sequence satisfying lim
n
qn = 1 and 0 < qn < 1. If

f ∈ C [0, 1] and |t|
[n] → 0 (n → ∞) then (Kn,qf) converges to f uniformly on [0, b]

(0 < b < 1) .

Proof. By Korovkin’s theorem, it is sufficient for us to prove that (Kn,qf) is a
positive linear operator and that the desired convergence occurs whenever f is a
quadratic function. It is obvious that (Kn,qf) is linear and positive operators.

(Kn,qe0) (x, t) =
1

Fn,q (x, t)

∞
∑

k=0







[k+1]/[n+k]
∫

[k]/[n+k]

dRq t






q−k [n+ k]L

(n)
k (t; q)xk.

Since
[k+1]/[n+k]

∫

[k]/[n+k]

dRq t =
qk

[n+ k]

and from (1.1), we get
(Kn,qe0) (x, t) = 1. (2.1)

By considering the function f (s) = e1 (s) = s, we obtain

(Kn,qe1) (x, t) =
1

Fn (x, t)

∞
∑

k=0







[k+1]/[n+k]
∫

[k]/[n+k]

tdRq t






q−k [n+ k]L

(n)
k (t; q)xk.

One can easily compute that

[k+1]/[n+k]
∫

[k]/[n+k]

tdRq t =
qk

[n+ k]
2

(

[k] +
qk

[2]

)

,

then we have

(Kn,qe1) (x, t) =
1

Fn (x, t)

∞
∑

k=0

1

[n+ k]

(

[k] +
qk

[2]

)

L
(n)
k (t; q)xk.

Since qk < 1 for 0 < q < 1 and [k + n] ≥ [n], we can write

(Kn,qe1) (x, t) ≤ Pn,q (e1;x) +
1

[2] [n]
Pn,q (e0;x) .

If we use Pn,q (e0;x) = 1 and Pn,q (e1;x) ≤ x − tx

[n] (1− bqn+1)
from [13], then we

get

(Kn,qe1) (x, t)− x ≤ − tx

[n] (1− bqn+1)
+

1

[2] [n]
. (2.2)

On the other hand, we see

(Kn,qe1) (x, t) ≥ Pn,q (e1;x) .

If we use Pn,q (e1;x) ≥ x from [13], we obtain

(Kn,qe1) (x, t) ≥ x. (2.3)
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From (2.2) and (2.3), we have

0 ≤ (Kn,qe1) (x, t)− x ≤ − tx

[n] (1− bqn+1)
+

1

[2] [n]
. (2.4)

From (2.4) , it is obvious that

‖(Kn,qe1) (x, t)− x‖C[0,b] ≤
|t| b

[n] (1− bqn+1)
+

1

[2] [n]
. (2.5)

We proceed with the consideration of the function f (s) = e2 (s) = s2.

(Kn,qe2) (x, t) =
1

Fn (x, t)

∞
∑

k=0







[k+1]/[n+k]
∫

[k]/[n+k]

t2dRq t






q−k [n+ k]L

(n)
k (t; q)xk.

One can easily see that

[k+1]/[n+k]
∫

[k]/[n+k]

t2dRq t =
qk

[n+ k]
3

(

[k]
2
+

2qk

[2]
[k] +

q2k

[3]

)

.

So, we acquire

(Kn,qe2) (x, t) =
1

Fn (x, t)

∞
∑

k=0

1

[n+ k]
2

(

[k]
2
+

2qk

[2]
[k] +

q2k

[3]

)

L
(n)
k (t; q)xk.

Since qk < 1 for 0 < q < 1 and [k + n] ≥ [n], we can write

(Kn,qe2) (x, t) ≤ Pn,q (e2;x) +
2

[2] [n]
Pn,q (e1;x) +

1

[3] [n]2
Pn,q (e0;x) .

If we use Pn,q (e0;x) = 1, Pn,q (e1;x) ≤ x− tx

[n] (1− bqn+1)
and

Pn,q (e2;x) ≤ x2 − t
(

x2 + x
)

[n] (1− bqn+1)
+

x

[n]
,

from [13], then we get

(Kn,qe2) (x, t)− x2 ≤ − t
(

x2 + x
)

[n] (1− bqn+1)
+

x

[n]
+

1

[3] [n]
2

+
2

[2] [n]

(

x− tx

[n] (1− bqn+1)

)

. (2.6)

On the other hand, using the equality

s2 = (s− x)
2
+ 2xs− x2

we may write

(Kn,qe2) (x, t)− x2 =
(

Kn,q (e1 − x)2
)

(x, t) + 2x (Kn,q (e1 − x)) (x, t) .

By (2.4) and positivity of Kn,q, it follows that

(Kn,qe2) (x, t)− x2 ≥ 0. (2.7)
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Thus from (2.6) and (2.7), we have

0 ≤ (Kn,qe2) (x, t)− x2 ≤ − t
(

x2 + x
)

[n] (1− bqn+1)
+

x

[n]
+

1

[3] [n]
2

+
2

[2] [n]

(

x− tx

[n] (1− bqn+1)

)

. (2.8)

From (2.8), it is clear that

∥

∥(Kn,qe2) (x, t) − x2
∥

∥

C[0,b]
≤ |t|

(

b2 + b
)

[n] (1− bqn+1)
+

2 |t| b
[2] [n]

2
(1− bqn+1)

+

(

1 +
2

[2]

)

b

[n]
+

1

[3] [n]
2 . (2.9)

After replacing q by a sequence qn such that lim
n

qn = 1, we have from (2.1), (2.5)

and (2.9) (Kn,qei) (x, t0) ⇒ ei (x) = xi (i = 0, 1, 2.) on [0, b] .

3. Rates of Convergence

In this section, we compute the rates of convergence by means of modulus of
continuity, elements of Lipschitz class and second order modulus of smoothness.

Let f ∈ C [0, b]. The modulus of continuity of f denotes by ω (f, δ), is defined
to be

ω (f, δ) = sup
s,x∈[0,b]

|s−x|<δ

|f (s)− f (x)| .

It is well known that a necessary and sufficient condition for a function f ∈ C [0, b]
is

lim
δ→0

ω (f, δ) = 0.

It is also well known that for any δ > 0 and each s ∈ [0, b]

|f (s)− f (x)| ≤ ω (f, δ)

(

1 +
|s− x|

δ

)

. (3.1)

Before giving the theorem on the rate of convergence of the operator Kn,qf , let us
first examine its second moment:

(

Kn,q (e1 − x)
2
)

(x, t) = (Kn,qe2) (x, t)− x2 − 2x [(Kn,qe1) (x, t)− x] ,

∥

∥

∥

(

Kn,q (e1 − x)2
)

(x, t)
∥

∥

∥

C[0,b]
≤

∥

∥(Kn,qe2) (x, t)− x2
∥

∥

C[0,b]

+2 ‖x‖C[0,b] ‖(Kn,qe1) (x, t) − x‖C[0,b] .

Using (2.9) and (2.5), we can write

∥

∥

∥

(

Kn,q (e1 − x)2
)

(x, t)
∥

∥

∥

C[0,b]
≤ |t|

(

3b2 + b
)

[n] (1− bqn+1)
+

2 |t| b
[2] [n]2 (1− bqn+1)

+

(

1 +
4

[2]

)

b

[n]
+

1

[3] [n]
2 . (3.2)

The following theorem gives the rate of convergence of the operator Kn,qf to the
function f by means of modulus of continuity.
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Theorem 2. Let q := qn be a sequence satisfying lim
n
qn = 1 and 0 < qn < 1. For

all f ∈ C [0, b] and |t|
[n] → 0 (n → ∞)

‖(Kn,qf) (x, t)− f (x)‖C[0,b] ≤ 2ω (f, δn) (3.3)

where

δn =

[

|t|
(

3b2 + b
)

[n] (1− bqn+1)
+

2 |t| b
[2] [n]

2
(1− bqn+1)

+

(

1 +
4

[2]

)

b

[n]
+

1

[3] [n]
2

]1/2

.

Proof. Let f ∈ C [0, b]. By using (3.1), linearity and monotonicity of Kn,qf , we
obtain

|(Kn,qf) (x, t)− f (x)| ≤ (Kn,q |f (s)− f (x)|) (x, t)

≤ ω (f, δ)

(

Kn,q

(

1 +
|s− x|

δ

))

(x, t)

= ω (f, δ)

[

1 +
1

δ
(Kn,q |s− x|) (x, t)

]

. (3.4)

In [2], Dalmanoğlu and Doğru show that the Riemann type q-integral is a positive
operator and it satisfies the following Hölder’s inequality:

Let 0 < a < b, 0 < q < 1 and 1
m + 1

n = 1. Then

Rq (|fg| ; a; b) ≤ (Rq (|f |m ; a; b))
1/m

(Rq (|g|n ; a; b))1/n . (3.5)

Therefore, by using the Cauchy-Schwarz inequality for the Riemann type q-integral
with m = 2 and n = 2 in (3.5), we have

[k+1]/[n+k]
∫

[k]/[n+k]

|t− x| dRq t ≤







[k+1]/[n+k]
∫

[k]/[n+k]

(t− x)
2
dRq t







1/2 





[k+1]/[n+k]
∫

[k]/[n+k]

dRq t







1/2

.

Now applying the Cauchy-Schwarz inequality for the sum with p = 1
2 and q = 1

2
and taking into consideration (3.2), one can write

(Kn,q |s− x|) (x, t) ≤










∞
∑

k=0

1

Fn,q (x, t)







[k+1]/[n+k]
∫

[k]/[n+k]

(t− x)2 dRq t






q−k [n+ k]L

(n)
k (t; q)xk











1/2

×











∞
∑

k=0

1

Fn,q (x, t)







[k+1]/[n+k]
∫

[k]/[n+k]

dRq t






q−k [n+ k]L

(n)
k (t; q) xk











1/2

=
((

Kn,q (e1 − x)
2
)

(x, t)
)1/2

((Kn,qe0) (x, t))
1/2

≤
[

− t
(

3b2 + b
)

[n] (1− bqn+1)
− 2tb

[2] [n]2 (1− bqn+1)
+

(

1 +
4

[2]

)

b

[n]
+

1

[3] [n]2

]1/2

.(3.6)

If we write (3.6) in (3.4) and choose δ = δn, then we arrive at the desired result.
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Next, we compute the approximation order of operator Kn,qf in term of the
elements of the usual Lipschitz class.

Let f ∈ C [0, b] and 0 < α ≤ 1. We recall that f belongs to LipM (α) if the
inequality

|f (ζ)− f (η)| ≤ M |ζ − η|α ; ζ, η ∈ [0, b] (3.7)

holds.

Theorem 3. Let q := qn be a sequence satisfying lim
n
qn = 1 and 0 < qn < 1. For

all f ∈ LipM (α) and |t|
[n] → 0 (n → ∞)

‖(Kn,qf) (x, t)− f (x)‖C[0,b] ≤ Mδαn (3.8)

where δn is the same as in Theorem 2.

Proof. Let f ∈ C [0, b]. By (3.7), linearity and monotonicity of Kn,qf , we have

|(Kn,qf) (x, t)− f (x)| ≤ (Kn,q |f (s)− f (x)|) (x, t)

≤ M

Fn,q (x, t)

×
∞
∑

k=0







[k+1]/[n+k]
∫

[k]/[n+k]

|t− x|α dRq t






q−k [n+ k]L

(n)
k (t; q)xk.

(3.9)

On the other hand, by using the Hölder inequality for the Riemann type q-integral
with m = 2

α and n = 2
2−α , we have

[k+1]/[n+k]
∫

[k]/[n+k]

|t− x|α dRq t ≤







[k+1]/[n+k]
∫

[k]/[n+k]

(t− x)
2
dRq t







α/2 





[k+1]/[n+k]
∫

[k]/[n+k]

dRq t







(2−α)/2

.

If we write above inequality in (3.9) and then apply the Hölder inequality for the
sum with p = 2

α and q = 2
2−α , we get

|(Kn,qf) (x, t)− f (x)| ≤

M







∞
∑

k=0

1

Fn,q (x, t)







[k+1]/[n+k]
∫

[k]/[n+k]

(t− x)
2
dRq t






q−k [n+ k]L

(n)
k (t; q)xk







α/2

×







∞
∑

k=0

1

Fn,q (x, t)







[k+1]/[n+k]
∫

[k]/[n+k]

dRq t






q−k [n+ k]L

(n)
k (t; q)xk







(2−α)/2

and so we have

|(Kn,qf) (x, t)− f (x)| ≤ M
((

Kn,q (e1 − x)
2
)

(x, t)
)α/2

.

If we use (3.2) and choose δ = δn, then the proof is completed.
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Finally, we establish a local approximation theorem for the operator Kn,qf .
Let Ω2 := {g ∈ C [0, b] : g′, g′′ ∈ C [0, b]}. For any δ > 0, the Peetre’s K-

functional is defined by

K2 (ϕ; δ) = inf
g∈Ω2

{‖ϕ− g‖+ δ ‖g′′‖}

where ‖.‖ is the uniform norm on C [0, b] (see [6]). From [4](p.177, Theorem 2.4),
there exists an absolute constant C > 0 such that

K2 (f ; δ) ≤ Cω2

(

f ;
√
δ
)

(3.10)

where the second order modulus of smoothness of f ∈ C [0, b] is denoted by

ω2

(

f ;
√
δ
)

= sup
0<h≤

√
δ

sup
x,x+2h∈[0,b]

|f (x+ 2h)− 2f (x+ h) + f (x)| .

We recall the usual modulus of continuity of f ∈ C [0, b] by

ω
(

f ;
√
δ
)

= sup
0<h≤

√
δ

sup
x,x+h∈[0,b]

|f (x+ h)− f (x)| .

Now consider the following operator

(Ln,qf) (x, t) = (Kn,qf) (x, t)− f

(

x− tx

[n] (1− bqn+1)
+

1

[2] [n]

)

+ f (x) (3.11)

for x ∈ [0, 1] .

Lemma 4. Let g ∈ Ω2. Then we have

|(Ln,qg) (x, t)− g (x)| ≤
{

−t
(

3x2 + x
)

[n] (1− bqn+1)
− 2tx

[2] [n]
2
(1− bqn+1)

+

(

1 +
4

[2]

)

x

[n]

+
1

[3] [n]
2 +

( −tx

[n] (1− bqn+1)
+

1

[2] [n]

)2
}

‖g′′‖ . (3.12)

Proof. By definition of the operator Ln,qf , (2.1) and (2.4), it is seen that

(Ln,q (s− x)) (x, t) = (Kn,q (s− x)) (x, t) +
tx

[n] (1− bqn+1)
− 1

[2] [n]

= 0. (3.13)

Let x ∈ [0, 1] and g ∈ Ω2. Then by using the Taylor formula

g (s)− g (x) = (s− x) g′ (x) +

s
∫

x

(s− u) g′′ (u) du

and (3.13), we have
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(Ln,qg) (x, t)− g (x) =

g′ (x) (Ln,q (s− x)) (x, t) + (Ln,q(

s
∫

x

(s− u) g′′ (u) du)) (x, t)

≤ (Ln,q(

s
∫

x

(s− u) g′′ (u) du)) (x, t)

= (Kn,q(

s
∫

x

(s− u) g′′ (u) du)) (x, t)

−

x− tx

[n](1−bqn+1)
+ 1

[2][n]
∫

x

(x − tx

[n] (1− bqn+1)
+

1

[2] [n]
− u)g′′ (u) du.

The monotonicity of Kn,qf gives
|(Ln,qg) (x, t) − g (x)| ≤

∣

∣

∣

∣

∣

∣

∣

∣

x− tx

[n](1−bqn+1)
+ 1

[2][n]
∫

x

(x− tx

[n] (1− bqn+1)
+

1

[2] [n]
− u)g′′ (u) du

∣

∣

∣

∣

∣

∣

∣

∣

+(Kn,q

∣

∣

∣

∣

∣

∣

s
∫

x

(s− u) g′′ (u)du

∣

∣

∣

∣

∣

∣

) (x, t) . (3.14)

On the other hand, it is clear that
∣

∣

∣

∣

∣

∣

s
∫

x

(s− u) g′′ (u) du

∣

∣

∣

∣

∣

∣

≤ (s− x)
2 ‖g′′‖ . (3.15)

Now let

I :=

x− tx

[n](1−bqn+1)
+ 1

[2][n]
∫

x

(

x− tx

[n] (1− bqn+1)
+

1

[2] [n]
− u

)

g′′ (u)du.

Then we may write

I ≤
(

− tx

[n] (1− bqn+1)
+

1

[2] [n]

)2

‖g′′‖ . (3.16)

Substituting (3.15) and (3.16) into (3.14), we have

|(Ln,qg) (x, t)− g (x)| ≤
{(

Kn,q (s− x)
2
)

(x, t)

+

(

− tx

[n] (1− bqn+1)
+

1

[2] [n]

)2
}

‖g′′‖ . (3.17)
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Using (3.2) in (3.17), it follows that

|(Ln,qg) (x, t)− g (x)| ≤
{

−t
(

3x2 + x
)

[n] (1− bqn+1)
− 2tx

[2] [n]2 (1− bqn+1)

+
1

[3] [n]
2 +

(

1 +
4

[2]

)

x

[n]

+

( −tx

[n] (1− bqn+1)
+

1

[2] [n]

)2
}

‖g′′‖ .

This completes the proof.

Theorem 5. Let q := qn be a sequence satisfying lim
n
qn = 1 and 0 < qn < 1. For

each f ∈ C [0, 1] and x ∈ [0, 1], we have

|(Kn,qf) (x, t)− f (x)| ≤ Cω2

(

f ;
√

δn (x)
)

+ ω

(

f ;

∣

∣

∣

∣

−tx

[n] (1− bqn+1)
+

1

[2] [n]

∣

∣

∣

∣

)

where

δn (x) =
−t

(

3x2 + x
)

[n] (1− bqn+1)
− 2tx

[2] [n]2 (1− bqn+1)
+

(

1 +
4

[2]

)

x

[n]

+
1

[3] [n]
2 +

( −tx

[n] (1− bqn+1)
+

1

[2] [n]

)2

and C is a positive constant.

Proof. From (3.11), we have

|(Ln,qf) (x, t)| ≤ 3 ‖f‖ . (3.18)

In view of (3.12) and (3.18), the equality (3.11) implies that

|(Kn,qf) (x, t)− f (x)| ≤ |(Ln,q (f − g)) (x, t)|+ |(f − g) (x)|+ |(Ln,qg − g (x)) (x, t)|

+

∣

∣

∣

∣

f

(

x− tx

[n] (1− bqn+1)
+

1

[2] [n]

)

− f (x)

∣

∣

∣

∣

≤ 4 ‖f − g‖+ |(Ln,qg) (x, t)− g (x)|

+ω

(

f ;

∣

∣

∣

∣

− tx

[n] (1− bqn+1)
+

1

[2] [n]

∣

∣

∣

∣

)

≤ 4 ‖f − g‖+
{

−t
(

3x2 + x
)

[n] (1− bqn+1)
− 2tx

[2] [n]2 (1− bqn+1)

+

(

1 +
4

[2]

)

x

[n]
+

1

[3] [n]
2

+

( −tx

[n] (1− bqn+1)
+

1

[2] [n]

)2
}

‖g′′‖

+ω

(

f ;

∣

∣

∣

∣

− tx

[n] (1− bqn+1)
+

1

[2] [n]

∣

∣

∣

∣

)

≤ 4 ‖f − g‖+ 4δn (x) ‖g′′‖+ ω

(

f ;

∣

∣

∣

∣

−tx

[n] (1− bqn+1)
+

1

[2] [n]

∣

∣

∣

∣

)

.
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Hence taking infimum on two-hand side of above inequality over all g ∈ Ω2 and
considering (3.10), we get

|(Kn,qf) (x, t0)− f (x)| ≤ 4K2 (f ; δn (x)) + ω

(

f ;

∣

∣

∣

∣

−tx

[n] (1− bqn+1)
+

1

[2] [n]

∣

∣

∣

∣

)

≤ Cω2

(

f ;
√

δn (x)
)

+ ω

(

f ;

∣

∣

∣

∣

−tx

[n] (1− bqn+1)
+

1

[2] [n]

∣

∣

∣

∣

)

which is the desired result.

References

[1] Cheney, E.W. and Sharma, A., Bernstein Power series, Canad. J. Math., 16(1964), 241-252.
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