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GURHAN ICOZ, SERHAN VARMA AND FATMA TASDELEN

ABSTRACT. Ozarslan gave the approximation properties of linear positive op-
erators including the g-Laguerre polynomials in [13]. In this paper, we will
give Kantorovich type generalization for this operator with the help of Rie-
mann type g-integral. We also get approximation properties for the generalized
operator with modulus.

1. INTRODUCTION

In 1960, The Meyer-Konig and Zeller operators

M (fi) = gf () (" ) am o

(0 <z < 1) were introduced by Meyer-Konig and Zeller in [11].
In order to give the monotonicity properties, Cheney and Sharma [I] modified
these operators as:

M:{(f;;v):gf(“%) (n—;k)xk (1 o)™

0<z<1).
In [I], they also introduced the operators

P, (f;x) =exp <1t__:17$) ka (kf—n) Ll(cn) (t) zk (1 —x)n-‘rl
=0

(0<z<land —oo<t<0) where L,(c") (t) denotes the Laguerre polynomials.

n k
Since L,(c ) (0) = (n—]:
Py (f;2).
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), then M (f;x) is the special case of the operators
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The g-type generalization of the linear positive operators was initiated by Phillips
n [14]. He introduced the g-type generalization of the classical Bernstein operator
and obtained the rate of convergence and the Voronovskaja type asymptotic formula
for these operators.

g-Laguerre polynomials were defined by (Hahn [7, p. 29], Jackson [8, p. 57] and
Moak [12, p. 21, eq. 23])

( a+1 — ( ) (1 _ q) (anraJrlx)k

n
s Z
—0 a+17q)k (qaq)k

LY (239) =

where

1 in=0
(a;Q)n:{ (1-a) (1—aq)...(1—aq"_1) nmeN, acC

Moak gave the following recurrence relation [12, p. 29, eq. 4.14] and generating
function [12, p. 29, eq. 4.17] for the g-Laguerre polynomials:

LD (tq) = [+ al g LY, (tq) — (K~ F L (t:q)

(Rea > —1, k=1,2,..),

(2¢*™50) o, o~ g™ e [ (1= q) at] ™

Fa (@,1) (*9) = (%:9),(@¢*T5q),
= i L\ (t; q) (Rea > 1) (1.1)
k=0
where
(@:0)p = [[(1—ad’), (acC).
j=0

Trif [I6] defined the Meyer-Konig and Zeller operators based on g-integer as follows:

ng (f;2) (1-¢'z f
~IL0-v 37 (s

) [

1 g=1"

(0 <z < 1) where

and

(k, n € N) for ¢ € (0,1].
In [13], Ozarslan defined the g-analogue for P, (f;x) operators as follow:

Pog (:2) = 5y Zf(

) L (1) * (1.2)
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where z € [0,1], ¢ € (—00,0], g € (0,1] and { F, (v,1)}, o is the generating functions
nzk] and F, (z,0) = [] (1 —qjx),
j=0
then M, , (f;x) is the special case of the operators P, 4 (f;x).
Let us recall the concepts of g-differential, g-derivative and g-integral respec-
tively.
For an arbitrary function f (x), the g-differential is given by

dyf () = f(qz) = [ (2).

For an arbitrary function f (z), the g-derivative is defined as

dof (x) _ flqz) - f(2)
D = = .

Now suppose that 0 < a < b, 0 < ¢ < 1 and f is a real-valued function. The g-
Jackson integral of f over the interval [0,b] and a general interval [a, b] are defined

by (see [])

for the q-Laguerre polynomials. Since L,(C") (0;9) = {

and

respectively.

It is clear that g-Jackson integral of f over an interval [a, b] contains two infinite
sums, so some problems are encountered in deriving the g-analogues of some well-
known integral inequalities which are used to compute order of approximation of
linear positive operators containing g-Jackson integral. In order to overcome these
problems Gauchman [5] and Marinkovié et al. [I0] introduced a new type of g-
integral. This new g-integral is called as Riemann type g-integral and defined by

b (e o)
[rodit=a-a@-a3 fa+b-ar)e
a Jj=0

where a,b and ¢ are some real numbers such that 0 < a < band 0 < ¢ < 1.
Contrary to the classical definition of g-integral, this definition includes only points
within the interval of integration.

Now, we give a Kantorovich type generalization of operators P,, M, M, 4 and
P, 4. This Kantorovich type generalization was studied by Dalmanoglu [3], Radu
[15] and etc. We consider the sequence of Kantorovich type linear positive operators
as follow:

[k+1]/[n+k]

1 n
Foal) @)= eS| [ s0aft |t b Gt
=0\ )/ [n+4]
(1.3)
where z € [0,1], t € (—00,0], ¢ € (0,1], n > 1 and {F, (x,t)},y is the generating
functions for the g-Laguerre polynomials which was given in (L)).
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2. APPROXIMATION PROPERTIES OF THE (K, ,f) (x,t) OPERATORS
We have the following theorem for the convergence of (K, qf) (x,t) operators.
Theorem 1. Let q := q, be a sequence satisfying limg, = 1 and 0 < q, < 1. If
n

fecC|o,1] and % — 0 (n — 00) then (K, qf) converges to f uniformly on [0, D]
0<b<1).
Proof. By Korovkin's theorem, it is sufficient for us to prove that (K, qf) is a

positive linear operator and that the desired convergence occurs whenever f is a
quadratic function. It is obvious that (K, qf) is linear and positive operators.

[k+1]/[n+k]
1 _ n
(Kugeo) (:0) = r—s D [t a e nL? st
’ F=0\ /()
Since
[k+1]/[n+k]
qk
dft =
0 In+k
[k]/[n-+]
and from (1), we get
(Kn,q€0) (z,t) = 1. (2.1)

By considering the function f (s) = e (s) = s, we obtain
[k+1]/[n+k]

1 _ n

(K ge1) (z,t) = e 3 / tdlt | g% n+ K LY (5 9) 2"
=0\ (k) in+k)

One can easily compute that

[k+1]/[n+k]

Ry _ q" f
b= g (9 ).
(k]/[n+k]
then we have
1 "\ o,
(Knﬁqel) ({E,t) - Fn (l’,t) kzzo [7’L+ k] ([k] + m) Lk (taq) Ik'

Since ¢* < 1 for 0 < ¢ < 1 and [k + n] > [n], we can write

1
(Knqge1) (x,t) < Py q(e1;2) + mf’n,q (eo; ).
t
If we use P, 4 (eo;x) =1 and P, 4(e1;2) <z — W from [I3], then we
get
t 1
(Kn.qe1) (z,8) — 2 < — z + . (2.2)

[n] (L —bg"*t) ~ [2][n]
On the other hand, we see

(K";qel) (,T, t) > Pn,q (61; ,T) .
If we use P, 4 (e1;2) > x from [13|, we obtain

(Knq€1) (z,t) > . (2.3)
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From (Z2) and 23), we have
tx 1

0 < (Knger) (,t) —x < — = b TR (2.4)

From (2.4), it is obvious that

It| b 1
[(Fnger) (2.6) = lleron) < Gra—pemmny * @pr

We proceed with the consideration of the function f (s) = ez (s) = s2.
[k+1]/[n+k]

1 = - n
t2dth g " n+k L,(C ) (t;q) z*.

(Kuae2) (5,1) = oo

R0\ [K)/ [+
One can easily see that
[k+1]/[n+E]
qu q2k
2aft = 1 <k2+—k+— :
o= (k] (k]
[k]/[n+k]

So, we acquire

(Kpqge2) (x,t) = 7 (13: ) Z [ —Ek]2 ([k]2 + 24 [k] + q_) L,(C") (t; q) z*.
n ) k=0 n

Since ¢* < 1 for 0 < ¢ < 1 and [k + n] > [n], we can write

(Kn,qe2) (:Eu t) S Pn,q (62;.’[]) + Pn,q (61;.’[]) + [3— n

(2] [n]
tr
If we use Pn,q (80;$) = 1, Pn,q (81;$) S T — W and
t(2® + ) z
P, )< o 7 )
o () S )

from [I3], then we get
t (22 + ) T 1

(Kngea) (@8) —a* <~y + 5 e

On the other hand, using the equality
= (s—x) +2s—x
we may write
(Kngez) (@,8) = 2% = (Kng (1 = 2)°) (,8) + 20 (Kn g (1 = 2)) (,1).
By [24) and positivity of K, 4, it follows that
(Kp.qge2) (2,1) — 2% > 0. (2.7)
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Thus from (26]) and (ZT), we have

2 t (2% + ) E 1
0= W Dm0 T )

2 tx
*mw@‘mu%wm)(”)

From (2.8), it is clear that
[t] (b% + b) 2t|b
[n] (1 —bg"*1) 2] [n)* (1 — bgn+?)

2\ b 1
+ (1 + m) wl + BT (2.9)

After replacing ¢ by a sequence ¢, such that lim ¢, = 1, we have from 21I), (Z5)
and Z9) (K, q€i) (2, t0) = e; (z) =2 (i =0,1,2.) on [0,0]. B

| (K qe2) (2,t) — I2HC[O,b]

3. RATES OF CONVERGENCE

In this section, we compute the rates of convergence by means of modulus of
continuity, elements of Lipschitz class and second order modulus of smoothness.
Let f € C'[0,b]. The modulus of continuity of f denotes by w(f,0d), is defined
to be
w(f,0)= sup [f(s)—f(2)].
s,2€[0,b]
|s—z|<d
It is well known that a necessary and sufficient condition for a function f € C'[0, b]
is

limw (f,0) =0.
0—0
It is also well known that for any ¢ > 0 and each s € [0, §]
s—x
Fe - f@l e (14250, (3.1)

Before giving the theorem on the rate of convergence of the operator K, ,f, let us
first examine its second moment:

(K (e = 2)%) (@) = (Kngez) (2,6) = 2 = 20 [(Knger) (2,1) — ],

[ (s ter =297) 0]

< [[(Bnge2) (@,8) = 2| 0y

+2 ||x||c[0,b] [[(Kn,qg€1) (2,t) = x”c[o,b] ‘

c[o,b]

Using (Z9) and (Z3]), we can write

, 1t] (362 + b
H(an (er=a)’) (x’t)HC[oyb] - [nf(E - b;r"gl) 2] [n]2?1|t|—bbq"+1)
4\ b 1
—l—(l—l—m)m—FW- (3.2)

The following theorem gives the rate of convergence of the operator K, ,f to the
function f by means of modulus of continuity.
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Theorem 2. Let q := g, be a sequence satisfying limg, = 1 and 0 < ¢, < 1. For
all f € C|0,b] and%—)() (n — o)
”(Kn,qf) (:C, t) —f (x)Hc[o,b] <2w(f,0n) (3'3)

where

1/2
5 |t| (3b% 4 b) N 2t b +(1+4) b1
"R T R P (1= b 21 " Bw*]
Proof. Let f € C'[0,b]. By using (31), linearity and monotonicity of K, ,f, we
obtain

IN

(Ko f) (,8) = f ()] (Kong f (s) = £ (@)]) (2,1)

w(f,9) <Kn7q (1+ 'S;ﬂ)) (,1)

w(f,d) {1—1—% (Kn,q|s—x|)(ac,t)] ) (3.4)

IN

In [2], Dalmanoglu and Dogru show that the Riemann type g-integral is a positive
operator and it satisfies the following Holder’s inequality:
Let0<a<b,0<q<1and%+%:1. Then

Ry (Ifgl;a:b) < (Ry (1F1™5a:0) ™ (Ry (|g]™ 5 a:6)) "™ (3.5)

Therefore, by using the Cauchy-Schwarz inequality for the Riemann type g-integral
with m =2 and n = 2 in (B3], we have

[k+1]/[n+H] [k+1/ [n+H] V2 iy nn O\ V2
|t — x| dlt < / (t—a)*dlt / dlit
[k fntH] [k fn+H] [K]/fn+H]

Now applying the Cauchy-Schwarz inequality for the sum with p = % and g = %
and taking into consideration ([B.2)), one can write
(Ko g ls — x]) (z,1) <

© [k 1]/ [nk] 1/
2 IR —k (n) k
t— d't k| L t:
qu ((E,t) ( 'r) q q [n+ ] k ( 7Q)x
k=0 [K]/ [ntk]
. . (k1] [nt-k] /2
X Z D nex / dft g% n+k L,(cn) (t; q) z*
k=0 [K]/ [nt-k]

= ((Knaler—22) @) " (o) (2,

t (3% +b) o AN b ) 1/2
[_ [ (1=bg"1)  [2][n]? (1 — bg"*Y) + <1 + m) T W] (3.6)

If we write ([B.6]) in 4] and choose § = d,,, then we arrive at the desired result. I
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Next, we compute the approximation order of operator K, 4f in term of the
elements of the usual Lipschitz class.

Let f € C'[0,b] and 0 < a < 1. We recall that f belongs to Lipas (o) if the
inequality

IF Q)= fml<MIC—nl"; ¢nel0,] (3.7)
holds.
Theorem 3. Let q := g, be a sequence satisfying limg, = 1 and 0 < ¢, < 1. For

all f € Lipp (@) and% =0 (n— )

H(Kn,qf) (x,t) - f (x)”C[o,b] < Méy, (3'8)

where §,, is the same as in Theorem 2.

Proof. Let f € C[0,b]. By B7), linearity and monotonicity of K, ,f, we have
|(Kngf) (@,t) = f(2)] < (Knglf(s)— f(2)])(2,t)

< M
T Fh4(z,t)
o [ [kH+11/[n+k]
X Z / t— | dit | ¢ [n+ k] L;C") (t;q) z*.
F=0\ [K]/[n+k)

(3.9)

On the other hand, by using the Holder inequality for the Riemann type g-integral

with m = % and n = ﬁ, we have
[k+1]/[n+K] [k+1]/[n+k] /2 1) k) (2—a)/2
R N R [
[K]/[n+k] [K]/[n+k] [K]/[n+k]

If we write above inequality in ([B.9) and then apply the Hélder inequality for the

sum with p = 2 and ¢ = 52—, we get
|(Knof) (z,t) = f ()] <
o [k+1]/[n+-k] a/2
. 2 4By | ok (n) k
;anq (Iat) / ( J/') q q [TL+ ] k ( ,q).’II
- [k k]
o . [k+1]/[n+k] (2—a)/2
T (7 dit | ¢7* ELL™ (¢ o) 2F
i ;Fn,q(w,t) / gt ¢ In+k L (Bg)x
- [k]/fntk]

and so we have

(Ko (0) = £ @) < M (K e = 2) (0) "

If we use ([B.2) and choose 6 = §,,, then the proof is completed. I
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Finally, we establish a local approximation theorem for the operator K, 4 f.
Let Q2 := {ge€C[0,b]: ¢',g" € C[0,b]}. For any § > 0, the Peetre’s K-
functional is defined by

K (¢;6) = inf {[lo—gll+0lg"II}
geN?

where ||.|| is the uniform norm on C[0,b] (see [6]). From [4](p.177, Theorem 2.4),
there exists an absolute constant C' > 0 such that

K> (f;0) < Cwe (f; \/5) (3.10)
where the second order modulus of smoothness of f € C'[0,b] is denoted by

w (fiV3) = swp s |f (et 20) = 2f (@ )+ f (@)

0<h<V3  x,x+2he(0,b]

We recall the usual modulus of continuity of f € C'[0,b] by

w(fiVo) = s swp [f(x+h) = f (o).

0<h<v§ z,x+h€(0,}]
Now consider the following operator

tx 1

(Loaf) 0:8) = (Fonaf) (00) = f (2= st ) 47 @) (310

for x € [0,1].

Lemma 4. Let g € Q2. Then we have

e —t (322 + z) B 2tz 4\ z
|(Lnq9) (z,t) —g(x)] < { [n] (1 — bgnt1) 2] [n]2 (1 — bgnt1) + <1 * [2]> [n)]

_ —t 1 ’ "
+[3] [”]2 i <[n] (1 —bgnt1) + 2] [n]) } llg”Il. (3.12)

Proof. By definition of the operator L, ,f, (ZI)) and (2.4)), it is seen that

tx 1
(Lng (s =) (2,t) = (Kng(s—2))(x,t)+ [n] (1 —bg" ™) [2][n]

= 0. (3.13)

Let # € [0,1] and g € Q2. Then by using the Taylor formula

S

g(S)-Q(I):(S—I)g’(IH/(S—U)g”(U)du

x

and (BI3]), we have
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(Ln,q9) (z,1) — g (2) =

(@) (Lo (5= 2)) (@.6) + (Lo [ (5 =) 9" () ) (21

x
S

(Lol [ (5= 09" () dw) (21

x

IN

S

:<m4ﬂ%m¢wmmw>

tx 1
T (i bgn ¥ ) T 2]

t 1
* + —u)g” (u) du.

- @ i T A

x

The monotonicity of K, ,f gives
|(Ln,q9) (z,1) — g ()] <

T 1

..
bt 1) T

tx 1
(z —

(= b ) 2]

x

S

Js=wg wdu

x

+(Kn.q ) (z,t). (3.14)

On the other hand, it is clear that

S

Js=wg wau

x

< (s—2)"llg"]- (3.15)

Now let

T 1

..
T bt 1) T

t= [ (et ) e

x

Then we may write

tx 1 2 ,
= <_ [n] (1 — bgnt1) + [2] [”]) llg"l- (3.16)

Substituting BI5]) and BI0) into (BI4), we have
(Enag) @0 =g @] < {(Kng(s=2)) @1)

tw 1 ? 1"
" <_ [n] (1 — bgnt1) T 2] [n]) }Ilg . (3.17)
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Using 32)) in BI7), it follows that
—t (3:172 + a:) B 2tx
n] (1 =0g" 1) [2][n)? (1 — bgn+?)

+m+(1+%})[‘%

—tx 1 2 I
+(Fraaem * 7w }'g I

Theorem 5. Let q := g, be a sequence satisfying limg, = 1 and 0 < ¢, < 1. For
each f € C[0,1] and x € [0,1], we have

|(Ln,q9) (z,t) —g ($)| < { [

This completes the proof. I

—tx 1
(af) 020) = 1 @) < Con (£ V50 o (| ey * |
where
R (3332 + 3:) 3 2tx 4\
@) = T e T () B
I ( — L1 )2
8][n)*  \[In](L—bg"™) ~ [2][n]
and C' is a positive constant.
Proof. From (B.II]), we have
|(Lngf) (z, 0)] <3l (3.18)

In view of (B12)) and BI8), the equality (BI1) implies that

[(Kngf) (@,t) = f(@)] < [(Lng (f=9) (@ O] +](f = g) @)+ |(Lnqgg — g(@)) (x,1)]
tx 1

* ‘f ( BOEGOREr [n]) —f@
40 f = gll + [(Ln,qg) (x,t) — g ()]

v (4| et * o

1f - gl + { [Qt(i?’fzb;ﬂ) - T
+ (1 + %) % + m

+ (e * [211[n1)2} "l

tx 1
e (f ’ “ (= b)) T 2] )
—tx 1
W= b)) T 2]

41f = gl + 46, @) g + <f;

IN

IN

IN

).
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Hence taking infimum on two-hand side of above inequality over all g € Q2 and
considering (B10), we get

(B )= S0 5 482153600+ (5 = imen *
—tx 1
< Can(r m)“’(f T a—se ) T 2 >

which is the desired result. i
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