BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS
ISSN: 1821-1291, URL: HTTP://WWW.BMATHAA.ORG
VOLUME 5 ISSUE 1 (2013), PAGES 1-9

A NOTE ON U-BOUNDED SOLUTIONS FOR
NON-HOMOGENEOUS MATRIX DIFFERENCE EQUATIONS
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ABSTRACT. This paper deals with obtaing necessary and sufficient conditions
for the existence of at least one W-bounded solution for the non-homogeneous
matrix difference equation X (n+1) = A(n)X(n)B(n)+ F(n), where F(n) is a
U-bounded matrix valued function on Z%. Finally, we prove a result relating
to the asymptotic behavior of the ¥-bounded solutions of this equation on Z1.

1. INTRODUCTION

The theory of difference equations is a lot richer than the corresponding theory
of differential equations. Many authors have studied several problems related to
difference equations, such as existence and uniqueness theorem [11], transmission
of information [6], signal processing, oscillation [16], control and dynamic systems
[10, 14]. The application of theory of difference equations is already extended to
various fields such as numerical analysis, finite element techniques, control theory
and computer science [1, 2, 8]. This paper deals with the linear matrix difference
equation

X(n+1)=A(n)X(n)B(n)+ F(n), (1.1)
where A(n), B(n), and F'(n) are m X m matrix-valued functions on
Zt ={1,2,...}.

The W¥-bounded solutions for system of difference equations were developed by
Han and Hong [9], Diamandescu [3, 5]. The existence and uniqueness of solutions
of matrix difference equation (1.1) was studied by Murty, Anand and Lakshmi
[11]. Murty and Suresh Kumar [12, 13] and Dimandescu [4] obtained results on
U-bounded solutions for matrix Lyapunov systems. Recently in [15], we obtained
a necessary and sufficient condition for the existence of W-bounded solution of the
matrix difference equation (1.1), provided F(n) is U-summable in Z.

The aim of this paper is to provide a necessary and sufficient condition for the
existence of ¥-bounded solution of the non homogeneous matrix difference equation
(1.1) via ¥-bounded sequences. The introduction of the matrix function ¥ permits
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to obtain a mixed asymptotic behavior of the components of the solutions. Here,
¥ is a matrix-valued function. This paper include the results of Diamandescu[5] as
a particular case when B = I, X and F' are column vectors.

2. PRELIMINARIES

In this section we present some basic definitions, notations and results which are
useful for later discussion.

Let R™ be the Euclidean m-space. For u = (u1,us,us,...,un,)T € R™, let
lu]| = max{|ui], |ua|, |usl, ..., |um|} be the norm of u. Let R™*™ be the linear
space of all m x m real valued matrices. For an m x m real matrix A = [a;;], we
use the matrix norm |[A[ = sup, <1 [|Aul|.

Let Uy : Zt — R — {0} (R — {0} is the set of all nonzero real numbers),
k=1,2,...m, and let

U = diag[\Ill, \I/Q, ey \I/m]

Then the matrix ¥(n) is an invertible square matrix of order m, for all n € Z*.

Definition 2.1. A matriz function X (n) is said to be W-bounded solution of (1.1)
if X(n) satisfies the equation (1.1) and also ¥(n)X (n) is bounded for alln € Z*.

Definition 2.2. [7] Let A € R™*" and B € RP*9, then the Kronecker product of
A and B is written as A® B and is defined to be the partitioned matriz

a11B a12B . . . alnB
A ® B = a21B a22B . . . aan
am1B  GmaeB . . . GmaB

which is an mp X ng matriz and in R™MP*"™4,

Definition 2.3. [7] Let A = [a;;] € R™*™, then the vectorization operator
Vec: R™*"™ — R™" s defined as

Aa a1j

. A.Q a2;

A=VecA=| . |, where A; = ,(1< j< n)
Ay A5

L 2 ,
Lemma 2.1. The vectorization operator Vec : R™*™ — R™ | is a linear and one-
to-one operator. In addition, Vec and Vec™! are continuous operators.

Proof. The fact that the vectorization operator is linear and one-to-one is immedi-
ate. Now, forA = [a;;] € R™*™, we have

m
IVee(A)ll = max {lai[} < max ‘1|au| Al
=

Thus, the vectorization operator is continuous and ||[Vec|| < 1.
In addition, for A = I,,, (identity m x m matrix) we have||[Vec(Iy,)|| =1 = |I,,]
and then ||Vec| = 1.
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Obviously, the inverse of the vectorization operator, Vec™? (R™ R™>™ g
defined by

Ul Umil - - - U2l
Uy Umia - - - Um2_mi2
Veelu)= | - . Lo . 7
U Uzm . . U2
where u = (u1, u2, U3, ..., um2) " € R™ . We have
m—1
Veer ] = s, € 3 ] p < m Gl = m

Thus, Vec™! is a continuous operator. Also, if we take v = VecA in the above
inequality, then the following inequality holds

|A] < m[VecAl,
for every A € R"™*™, (]

Regarding properties and rules for Kronecker product of matrices we refer to [7].

Now by applying the Vec operator to the linear nonhomogeneous matrix differ-
ence equation (1.1) and using Kronecker product properties, we have

X(n+1)=Gn)X(n)+ F(n), (2.1)

where G(n) = BT (n) ® A(n) is a m? x m? matrix and F'(n) = VecF(n) is a column
matrix of order m?. The equation (2.1) is called the Kronecker product difference
equation associated with (1.1).

The corresponding homogeneous difference equation of (2.1) is

X(n+1) = Gn)X(n). (2.2)

Definition 2.4. [3] A function ¢ : Z+ — R™ is said to be U- bounded on Z1 if
U(n)p(n) is bounded on Z* (i.e., there exists L > 0 such that | ¥(n)¢(n)|| < L, for
alln € Z7).

Extend this definition for matrix functions.

Definition 2.5. A matriz function F : ZT — R™*™ s said to be V-bounded on
7 if the matriz function WF is bounded on Z* (i.e., there exists L > 0 such that
|U(n)F(n)| < L, for alln € Z*).

Now we shall assume that A(n) and B(n) are invertable m x m matrices on ZT
and F(n) is a ¥-bounded matrix function on Z™.
The following lemmas play a vital role in the proof of main result.

Lemma 2.2. The matriz function F : ZT — R™X™ 4s U-bounded on ZT if and
only if the vector function VecF(n) is I, @ ¥-bounded on Z™.

Proof. From the proof of Lemma 2.1, it follows that
1
— A < |[VecAlgme < |A]
m

for every A € R™*™,
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Put A = ¥(n)F(n) in the above inequality, we have
1
— ) E@) < [|(Im @ ¥(n)).VecE (n)|gm: < [¥(n)F(n)], (2:3)

n € Z7, for all matrix functions F(n).
Suppose that F(n) is U-bounded on ZT. From (2.3)

[(Im @ ¥ (n)).VecEF (n)|gn2 < [¥(n)F(n)|,

From Definitions 2.4 and 2.5, F'(n) is I,, ® U-bounded on Z+.

Conversely, suppose that ﬁ‘(n) is I, ® U-bounded on Z*. Again from (2.3), we
have

[W(n)F(n)| <m||(In ®¥(n)).VecF(n)|lgm2 -
From, Definitions 2.4 and 2.5, F(n) is ¥-bounded on Z*. Now the proof is complete.
O

Lemma 2.3. Let Y(n) and Z(n) be the fundamental matrices for the matriz dif-
ference equations

X(n+1)=A(n)X(n), neZ" (2.4)
and

X(n+1)=BT"(n)X(n), necz" (2.5)
respectively. Then the matriz Z(n) @ Y (n) is a fundamental matriz of (2.2).
Proof. Consider

Zn+1)@Y(n+1) = T(n)Z(n) A(n)Y(n)

foralln € Z7.
On the other hand, the matrix Z(n)®Y (n) is an invertible matrix for all n € Z*
(because Z(n) and Y (n) are invertible matrices for all n € Z1). O

Let X1 denote the subspace of R"*™ consisting of all matrices which are values
of W-bounded solution of X(n + 1) = A(n)X(n)B(n) on ZT at n = 1 and let X,
an arbitrary fixed subspace of R™*™, supplementary to X;. Let P;, P, denote the
corresponding projections of R™*"™ onto X1, X, respectively.

Then X; denote the subspace of R consisting of all vectors which are values
of I, ® U-bounded solution of (2.2) on Z* at n = 1 and X, a fixed subspace of
]R”Q, supplementary to X;. Let Qi, Q2 denote the corresponding projections of
R™ onto X1, Xo respectively.

Theorem 2.1. Let Y(n) and Z(n) be the fundamental matrices for the systems
(2.4) and (2.5). If

%) = S (Z(n) @ Ym)QuZ ™ (k+ 1) @ YL (k + 1) (k)
k=1
_Z Q2 Z  k+1) @Y Lk +1)F(k)  (26)

is convergent, then it is a solution of (2.1) on Z*.
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Proof. Tt is easily seen that X (n) is the solution of (2.1) on Z*. O

The following theorems are useful in the proofs of our main results.

Theorem 2.2. [5] The equation
£(n+1) = A@)e(n) + f(n) (2.7)

has at least one U-bounded solution on N = {1,2,...} for every U-bounded sequence
f on N if and only if there is a positive constant K such that, for alln € N,

ZI‘I’ e+ 1) |+Z|‘I’ e+ 1D)UTH(E)| < K.
(2.8)

Theorem 2.3. [5] Suppose that:

(1) The fundamental matriz Y (n) of x(n+1) = A(n)x(n) satisfies the inequality
(2.8), for allm > 1, where K is positive constant.

(2) The matriz ¥ satisfies the condition [¥(n)¥~ (n+1)| <T, for alln € N,
where T is positive constant.

(3) The V-bounded function f: N — R™ is such that nhﬁn;o 1% (n)f(n)|| = 0.

Then, every ¥-bounded solution x(n) of (2.7) satisfies

lim || (n)z(n)|| = 0.

n—oo

3. MAIN RESULTS

Our first theorem is as follows.

Theorem 3.1. Let A(n) and B(n) be bounded matrices on 77, then (1.1) has at
least one W-bounded solution on Z for every ¥-bounded matriz function F : Z+ —
R™*™ on Z7T if and only if there exists a positive constant K such that

n—1

D2 @ ¥ ()Y (n)Q1(Z  (k+1) @Y (k+ 1)U (k)]
= (3.1)

+) 1(Zn) @)Y (n)Q2Z 7 (k+1) @Y ! (k+ 1)¥ (k)| < K.
k=n

Proof. Suppose that the equation (1.1) has at least one ¥-bounded solution on
Z* for every W-bounded matrix function F : Zt — R™X™m_ Let [ : Z+ — R™
be I,, ® U-bounded function on Z*. From Lemma 2.2, it follows that the matrix
function F(n) = Vec 'F(n) is ¥ - bounded matrix function on Z*. From the
hypothesis, the system (1.1) has at least one ¥ - bounded solution X (n) on Z*.
From Lemma 2.2, it follows that the vector valued function X (n) = VecX(n) is a
I,,, ® U-bounded solution of (2.1) on Z*.

Thus, equation (2.1) has at least one I, ® ¥-bounded solution on Z™ for every
I,, ® U-bounded function F on Z*. From Theorem 2.2, there exists a positive
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number K, the fundamental matrix U(n) of (2.2) satisfies
n—1

ST @ T(n))U ()T (k + 1) (L, ® T (K)))|
k=1

+ 3 (T @ () U (n)QoT (ki + 1)(In, @ T(K))| < K
k=n

From Lemma 2.3, U(n) = Z(n) ® Y(n) and using Kronecker product properties,
(3.1) holds. Conversely suppose that (3.1) holds for some K > 0.

Let F : ZT — R™*" be a ¥-bounded matrix function on Z*. From Lemma 2.2,
it follows that the vector valued function F(n) = VecF(n) is a I,, ® W-bounded
function on Z*.

Since A(n), B(n) are invertible, then G(n) = BT (n) ® A(n) is also invertible.
Now from Theorem 2.2, the difference equation (2.1) has at least one I, ® ¥ -
bounded solution on Z*. Let z(n) be this solution.

From Lemma 2.2, it follows that the matrix function X(n) = Vec lz(n) is a
WU-bounded solution of the equation (1.1) on Z* (because F(n) = Vec ' F(n)).

Thus, the matrix difference equation (1.1) has at least one W-bounded solution
on Z% for every WU-bounded matrix function F' on Z*. O

Finally, we give a result in which we will see that the asymptotic behavior of
solution of (1.1) is completely determined by the asymptotic behavior of F'.

Theorem 3.2. Suppose that:
(1) The fundamental matrices Y (n) and Z(n) of (2.4) and (2.5) satisfies:

(a) [¥(n)¥~L(n+1)| < M, where M is a positive constant

(b) condition (3.1), for some K > 0.
(2) The matriz function F : ZT — R™*™ s U-bounded on Z* such that
lim |¥(n)F(n)| =0.
n—oo

Then, every ¥-bounded solution X of (1.1) is such that

nh_{rgo |[¥(n)X(n)| =0.

Proof. Let X (n) be a U-bounded solution of (1.1). From Lemma 2.2, the function
X(n) =VecX(n) is a I, ® U- bounded solution of the difference equation (2.1) on
Z*. Also from hypothis (2), Lemma 2.2, the function F'(n) is I,, ® U-bounded on

Z* and lim (I, ® ®(n))EF(n)| =0 . From the Theorem 2.3, it follows that
n—oo

Tim H(Im © U(n)) X(n)H —0.

n— oo

Now, from the inequality (2.3) we have
W)X ()] < m|(Ln @ W) X ()|, € 2
and, then

lim |¥(n)X(n)| =0.

n—oQ

The following examples illustrate the above theorems.
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Example 3.1. Consider the matrix difference equation (1.1) with

ntl 1 nntl)
] , B(n)= [(2) J and F(n)=| ©" 2

A(n) = { 5

Then,

0

wl= O

Y(n):[g 310_4 and Z(n) = Flon ﬂ

are the fundamental matrices for (2.4) and (2.5) respectively. Consider

3"
U(n) = |ntl 0 , forall neZ™.
0 1
If we take projections
0 0 0 0 1 0 0 0
01 0 O 0 0 0 O
@=1g 00 o M@=y g1 ¢
0 0 01 0 0 0 O

then condition (1) is satisfied with M =1 and K = 7.5.
In addition, the hypothesis (2) of Theorem 3.2 is satisfied. Because

n 1
|¥(n)F(n)| = oS3
and
lim [¥(n)F(n)] = lim RU—

2m

] |

From Theorems 3.1 and 3.2, the difference equation has at least one W-bounded

solution and every W-bounded solution X of (1.1) is such that li_>m |¥(n)

X(n)|=0.

Remark 3.1. In Theorem 3.2, if we do not have lim |¥(n)F(n)| = 0, then the
n—r oo

solution X (n) of (1.1) may be such that lim |[¥(n)X(n)| # 0.
n— oo

The following example illustrates Remark 3.1, that the Theorem 3.2 fail if the

matrix function F' is U-bounded and li_>m [T (n)F(n)| # 0.
n o0

Example 3.2. Consider the matrix difference equation (1.1) with

3 2
n__ 0 (n+1) 0
A(n) = [(n-gl)s . |, Bn)= [ 7(1)2 ntl
n+1 n
and
2" e
F n) = n+1 n+1 .
() 6"(n+1) 37"
Then,
= 0 n? 0
— n3
Y(n { le and Z(n {0 n}
are the fundamental matrices for (2.4) and (2.5) respectively. Consider
1)2—"
U(n) = {(n +1) 30 ] , forall nezZ™.
0 n+1
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If we take projections

100 0 000 0
000 0 0100
Q=1g ¢ 1 of @@=y ¢ ¢ o
000 0 000 1

then condition (1) is satisfied with M = 2 and K = 2.5. Also |¥(n)F(n)| = 1, for
n € Z*. Therefore, F' is U-bounded on Z* and lim |¥(n)F(n)] =1 #0.
n—oo

The solutions of the equation (1.1) are

(2" —2+4c1)  Sh(1-3"+2)
X(n) = {(1—61 4 Ses)  B(1-31m ey |

where c¢1, ¢, c3 and ¢4 are arbitrary constants and

ZEL[1 4+ 277 (cq — 2)] ] [(2 "(1+42¢2) = 3(67")]
L(n)X(n) = Ld;l)[ff"(l +5eg) — 6(2-)] 37(1 + 2¢4) — 3] }

2(n+1) +1)

It is easily seen that, there exist ¥-bounded solutions of (1.1) for c3 = —% and
¢y = —3. But li_{n | (n)X (n)| # 0.
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