STRUCTURAL THEOREMS FOR FAMILIES OF FOURIER HYPERFUNCTIONS

B. STANKOVIĆ

(Presented at the 7th Meeting, held on October 27, 2000)

 $A \ b \ s \ t \ r \ a \ c \ t.$ A structural characterization of convergent and bounded families of Fourier hyperfunctions is given.

AMS Mathematics Subject Classification (2000): 46F15 Key Words: Fourier hyperfunctions, families of hyperfunctions

1. Introduction

Let $\{f_h; h \in H\}$ be a family of Fourier hyperfunctions which is convergent or bounded. It is of interest for the theory or applications to know whether this family can be given by a unique differential operator J(D) and a family of continuous or smooth functions $\{p_h; h \in H\}$ such that $f_h = J(D)p_h, h \in H$, where $\{p_h; h \in H\}$ is convergent or bounded but in some space of functions.

This kind of results for distributions one can find already by Schwartz [9] and in [1], [4], [5], [8] for ultradistributions. In [2] some results have been proved which relate to convergent sequences of hyperfunctions with supports belonging to a compact set K. In [6], [7] convergent sequences of Fourier hyperfunctions have been treated and in [11], Fourier hyperfunctions having

the S-asymptotics. In this paper we prove a theorem for any convergent or bounded net without new conditions, which generalizes the results in [6], [7] and [11].

2. Notation and definitions

Let **O** be the sheaf of analytic functions defined on \mathbf{C}^n .

We denote by \mathbf{D}^n the radial compactification of \mathbf{R}^n , and supply it with the usual topology. The sheaf $\tilde{\mathbf{O}}^{-\delta}$, $\delta \geq 0$, on $\mathbf{D}^n + i\mathbf{R}^n$ is defined as follows: For any open set $U \subset \mathbf{D}^n + i\mathbf{R}^n$, and $\delta \geq 0$, $\tilde{\mathbf{O}}^{-\delta}(U)$ consists of those elements F of $\mathbf{O}(U \cap \mathbf{C}^n)$ which satisfy $|F(z)| \leq C_{V,\varepsilon} \exp(-(\delta - \varepsilon)|Rez|)$ uniformly for any open set $V \subset \mathbf{C}^n$, $\bar{V} \subset U$, and for every $\varepsilon > 0$. By $\tilde{\mathbf{O}}$ we denote the sheaf on $\mathbf{D}^n + i\mathbf{R}^n$, $\tilde{\mathbf{O}}(U) = \tilde{\mathbf{O}}^0(U)$. The derived sheaf $\mathcal{H}^n_{\mathbf{D}^n}(\tilde{\mathbf{O}})$, denoted by \mathcal{Q} , is called the sheaf of Fourier hyperfunctions. It is a flabby sheaf on \mathbf{D}^n .

Let I be a convex neighbourhood of $0 \in \mathbf{R}^n$ and $U_j = \{(\mathbf{D}^n + iI) \cap \{Imz_j \neq 0\}\}, j = 1, ..., n$. The family $\{\mathbf{D}^n + iI, U_j; j = 1, ..., n\}$ gives a relative Leray covering for the pair $\{\mathbf{D}^n + iI, (\mathbf{D}^n + iI) \setminus \mathbf{D}^n\}$ relative to the sheaf $\tilde{\mathbf{O}}$. Thus

$$\mathcal{Q}(\mathbf{D}^n) = \tilde{\mathbf{O}}((\mathbf{D}^n + iI) \# \mathbf{D}^n) \Big/ \sum_{j=1}^n \tilde{\mathbf{O}}((\mathbf{D}^n + iI) \#_j \mathbf{D}^n),$$
(1)

where $(\mathbf{D}^n + iI) \# \mathbf{D}^n = U_1 \cap ... \cap U_n$ and $(\mathbf{D}^n + iI) \#_j \mathbf{D}^n = U_1 \cap ... \cap U_{j-1} \cap U_{j+1} \cap ... \cap U_n$. Similarly, $\mathcal{Q}^{-\delta}$, $\delta > 0$ is defined using $\tilde{\mathbf{O}}^{-\delta}$ instead of $\tilde{\mathbf{O}}$ (cf. Definition 8.2.5. in [3]).

We shall use the notation Λ for the set of *n*-vectors with entry $\{-1, 1\}$; the corresponding open orthants in \mathbf{R}^n will be denoted by Γ_{σ} , $\sigma \in \Lambda$. A global section $f = [F] \in \mathcal{Q}(\mathbf{D}^n)$ is defined by $F \in \tilde{\mathbf{O}}((\mathbf{D}^n + iI) \# \mathbf{D}^n); F =$ $(F_{\sigma}; \sigma \in \Lambda)$, where $F_{\sigma} \in \tilde{\mathbf{O}}(\mathbf{D}^n + iI_{\sigma}), I_{\sigma} = I \cap \Gamma_{\sigma}, \sigma \in \Lambda$. F is the defining function for f.

Recall the topological structure of $\mathcal{Q}(\mathbf{D}^n)$. Let f = [F], and K be a compact set in \mathbf{R}^n then by $P_{K,\varepsilon}(F) = \sup_{z \in \mathbf{R}^n + iK} |F(z) \exp(-\varepsilon |Rez|)|, \varepsilon >$ $0, K \subset \subset I \setminus \{0\}$, is defined as the family of semi-norms in $\tilde{\mathbf{O}}((\mathbf{D}^n + iI) \# \mathbf{D}^n);$ $\tilde{\mathbf{O}}((\mathbf{D}^n + iI) \# \mathbf{D}^n)$ is a Fréchet and Montel space, as well as the quotient space $\mathcal{Q}(\mathbf{D}^n)$ with the family of seminorms $p_{K,\varepsilon}([F]) = \inf_G P_{K,\varepsilon}(F+G)$, where G belongs to the denominator in (1). In $\mathcal{Q}(\mathbf{D}^n)$ a weak bounded set Structural theorems for families of Fourier hyperfunctions

is bounded. We associate to $f = [F^*]$

$$f(x) \cong \sum_{\sigma \in \Lambda} F_{\sigma}(x + i\Gamma_{\sigma}0), \ F_{\sigma} \in \tilde{\mathbf{O}}(\mathbf{D}^n + iI_{\sigma}), \ F_{\sigma} = sgn\sigma F_{\sigma}^*.$$
(2)

Let $\mathbf{P}_* = \operatorname{ind} \lim_{I \ni 0} \operatorname{ind} \lim_{\delta \downarrow 0} \tilde{\mathbf{O}}^{-\delta}(\mathbf{D}^n + iI)$. \mathbf{P}_* and $\mathcal{Q}(\mathbf{D}^n)$ are topologically dual to each other ([3, Theorem 8.6.2]).

The Fourier transform on $\mathcal{Q}(\mathbf{D}^n)$ is defined by the use of functions $\chi_{\sigma} = \chi_{\sigma_1}...\chi_{\sigma_n}$, where $\sigma_k = \pm 1$, k = 1, ..., n, $\sigma = (\sigma_1, ..., \sigma_n)$ and $\chi_1(t) = e^t/(1 + e^t)$, $\chi_{-1}(t) = 1/(1+e^t)$, $t \in \mathbf{R}$. Let f be given by (2). The Fourier transform of f is defined by

$$\mathcal{F}(f) \cong \sum_{\sigma \in \Lambda} \sum_{\tilde{\sigma} \in \Lambda} \mathcal{F}(\chi_{\tilde{\sigma}} F_{\sigma})(\xi - i\Gamma_{\tilde{\sigma}} 0),$$
(3)

where $\mathcal{F}(\chi_{\tilde{\sigma}}F_{\sigma}) \in \tilde{\mathbf{O}}(\mathbf{D}^n - iI_{\tilde{\sigma}})$ and $\mathcal{F}(\chi_{\tilde{\sigma}}F_{\sigma})(z) = O(e^{-w|x|})$ for a suitable w > 0 along the real axis outside the closed σ -orthant (cf. Proposition 8.3.2 in [3]).

A function v defined on \mathbf{R}^n (on \mathbf{C}^n) is of infra-exponential type if for every $\varepsilon > 0$ there exists $C_{\varepsilon} > 0$ such that $|v(z)| \leq C_{\varepsilon} e^{\varepsilon |x|}$, $z \in \mathbf{R}^n$ $(z \in \mathbf{C}^n)$. A local operator $J(D) = \sum_{|\alpha| \geq 0} b_{\alpha} D^{\alpha}$ with $\lim_{|\alpha| \to \infty} \sqrt[|\alpha|]{|b_{\alpha}|\alpha|} = 0$ acts on $\mathcal{Q}(\mathbf{D}^n)$ as a sheaf homomorphism and continuously on $\mathcal{Q}(\mathbf{D}^n)$.

3. Main results

Theorem 1.Let $f_h = [F_h^*] \in \mathcal{Q}(\mathbf{D}^n), \ F_h^* \in \tilde{\mathbf{O}}((\mathbf{D}^n + iI) \# \mathbf{D}^n), \ h \in H.$ If:

a) The net $\{f_h\}_{h\in H}$ converges in $\mathcal{Q}(\mathbf{D}^n)$ or

b) $\{f_h; h \in H\}$ is a bounded set in $\mathcal{Q}(\mathbf{D}^n)$.

Then there exist an elliptic local operator J(D) and nets of functions $\{q_{h,s}\}_{h\in H}, s \in \Lambda$, such that:

1. $q_{h,s}(x), h \in H, s \in \Lambda$, are smooth functions and of exponential type on \mathbb{R}^n .

2. $q_{h,s}(z) \in \tilde{\mathbf{O}}(\mathbf{D}^n + iI_s), s \in \Lambda, h \in H, where I_s, s \in \Lambda, does not depend on <math>h \in H$.

3. $f_h = J(D) \sum_{s \in \Lambda} q_{h,s}, \ (x + i\varepsilon s), \ h \in H, \ 0 < \varepsilon \le \varepsilon_0.$

4. There exists $\epsilon_0 > 0$ such that for any compact sets $K_1 \subset \mathbb{R}^n$ and $K_2 \subset (0, \epsilon_0)$:

In case a) nets $\{q_{h,s}(x+i\epsilon s)\}_{h\in H}$, $s \in \Lambda$ converge uniformly in $x \in K_1$ and $\epsilon \in K_2$;

In case b) sets $\{q_{h,s}(x + i\epsilon s)\}_{h \in H}$, $s \in \Lambda$, are uniformly bounded for $x \in K_1$ and $\epsilon \in K_2$.

Pr o o f. The idea of the proof is the same as in [11]. Let $f_h = [F_h^*]$ be given by (2) and their Fourier transform by (3). Let φ be a monotone increasing continuous, positive valued function $\varphi(r)$, $r \ge 0$, which satisfies $\varphi(0) = 1, \ \varphi(r) \to \infty, \ r \to \infty$.

By Lemma 1.2 in [2] there exists an elliptic local operator J(D) whose Fourier transform $J(\zeta)$ satisfies the estimate:

$$|J(\zeta)| \ge C \exp(|\zeta|/\varphi(|\zeta|), \quad |Im\zeta| \le 1.$$
(4)

By (4), $J^{-2}(\zeta) \in \tilde{\mathbf{O}}(\mathbf{D}^n + i\{|\mu| < 1\})$. Denote by $g = \mathcal{F}^{-1}(1/J^2)$. By Theorem 8.2.6 in [3], $g \in \mathcal{Q}^{-1}(\mathbf{D}^n)$. Consequently $\delta = J_0(D)g, J_0 = J^2$, and

$$f_h = J_0(D)(g * f_h), \quad h \in H.$$
(5)

By the properties of the Fourier transform, cited properties of $\chi_{\tilde{\sigma}}, \tilde{\sigma} \in \Lambda$, and supposition on $F_h^*, h \in H$, we have for every $h \in H$:

(a) $\mathcal{F}(F_{h,\sigma}\chi_{\tilde{\sigma}})J^{-2} \in \mathbf{O}(x-iI_{\tilde{\sigma}})$ and decreases exponentially outside any cone containing $\overline{\Gamma}_{\sigma}$ as a proper subcone.

(b) $\mathcal{F}(F_{h,\sigma}\chi_{\tilde{\sigma}})J^{-2}\chi_s \in \mathbf{O}(x-iI_{\tilde{\sigma}})$ and decreases exponentially outside any cone containing $\overline{\Gamma}_{\sigma}$ and $\overline{\Gamma}_s$ as proper subcones.

(c) $\mathcal{F}^{-1}(\mathcal{F}(F_{h,\sigma}\chi_{\tilde{\sigma}})J^{-2}\chi_s) \in \tilde{\mathbf{O}}(x+i(I_{\sigma}\cup I_s))$ and decreases exponentially outside any cone containing $\overline{\Gamma}_{\tilde{\sigma}}$ as a proper subcone. We shall use these properties considering Fourier hyperfunctions $f_h * g$, $h \in H$, given in (5). The analysis of $f_h * g$ is very similar to the analysis of f * g in [11]. However we give it because of the integrity of the proof.

$$f_h * g = \mathcal{F}^{-1}(\mathcal{F}(f_h)\mathcal{F}(g))$$
$$\cong \frac{1}{(2\pi)^n} \sum_{\sigma \in \Lambda} \sum_{\tilde{\sigma} \in \Lambda_{\mathbf{R}^n}} \int_{\sigma \in \Lambda} e^{iz_\sigma \zeta_{\tilde{\sigma}}} \mathcal{F}(\chi_{\tilde{\sigma}} F_{h,\sigma})(\zeta_{\tilde{\sigma}})/J^2(\zeta_{\tilde{\sigma}})d\xi, h \in H,$$

where $\zeta_{\tilde{\sigma}} = \xi + i\eta_{\tilde{\sigma}}, \ \eta_{\tilde{\sigma}} \in -I_{\tilde{\sigma}} \text{ and } z_{\sigma} \in \mathbf{R}^n + iI_{\sigma}.$

For fixed σ , for all $\tilde{\sigma} \in \Lambda$ and $z_{\sigma} \in \mathbf{R}^n + iI_{\sigma}$

$$S_{h,\sigma,\tilde{\sigma}}(z_{\sigma}) = \frac{1}{(2\pi)^n} \int_{\mathbf{R}^n} e^{iz_{\sigma}\zeta_{\tilde{\sigma}}} \mathcal{F}(\chi_{\tilde{\sigma}}F_{h,\sigma})(\zeta_{\tilde{\sigma}})/J^2(\zeta_{\tilde{\sigma}})d\xi;$$

34

Structural theorems for families of Fourier hyperfunctions

$$|S_{h,\sigma,\tilde{\sigma}}(z_{\sigma})| \leq \frac{1}{(2\pi)^n} \int_{\mathbf{R}^n} e^{-x\eta_{\tilde{\sigma}} - y_{\sigma}\xi} |\mathcal{F}(\chi_{\tilde{\sigma}}F_{h,\sigma})(\zeta_{\tilde{\sigma}})/J^2(\zeta_{\tilde{\sigma}})|d\xi, h \in H.$$

One can see that $S_{h,\sigma,\tilde{\sigma}}(z_{\sigma}), h \in H$, are continuable to the real axis. The obtained functions $S_{h,\sigma,\tilde{\sigma}}(x)$ are continuous and of infra exponential type on \mathbf{R}^n . By Lemma 8.4.7 in [3], $S_{h,\sigma,\tilde{\sigma}}(x) \cong S_{h,\sigma,\tilde{\sigma}}(x+i\Gamma_{\sigma}0), \ \tilde{\sigma} \in \Lambda, \ h \in H$ and

$$(f_h * g)(x) = \sum_{\sigma \in \Lambda} \sum_{\tilde{\sigma} \in \Lambda} S_{h,\sigma,\tilde{\sigma}}(x), \ h \in H.$$
(6)

The functions $S_{h,\sigma,\tilde{\sigma}}(z_{\sigma})$ can be written in the following form

$$S_{h,\sigma,\tilde{\sigma}}(z_{\sigma}) = \frac{1}{(2\pi)^n} \sum_{s \in \Lambda} \int_{\mathbf{R}^n} e^{i z_{\sigma} \zeta_{\tilde{\sigma}}} \mathcal{F}(\chi_{\tilde{\sigma}} F_{h,\sigma})(\zeta_{\tilde{\sigma}}) \chi_s(\zeta_{\tilde{\sigma}}) / J^2(\zeta_{\tilde{\sigma}}) d\xi, \ h \in H.$$

Denote by

$$S_{h,\sigma,\tilde{\sigma},s}(z_{\sigma}) = \frac{1}{(2\pi)^n} \int_{\mathbf{R}^n} e^{i z_{\sigma} \zeta_{\tilde{\sigma}}} \mathcal{F}(\chi_{\tilde{\sigma}} F_{h,\sigma})(\zeta_{\tilde{\sigma}}) \chi_s(\zeta_{\tilde{\sigma}}) / J^2(\zeta_{\tilde{\sigma}}) d\xi, \quad h \in H.$$

Functions $S_{h,\sigma,\tilde{\sigma},s}(z_{\sigma}), \sigma, \tilde{\sigma}, s \in \Lambda, h \in H$, are also continuable to the real axis and the obtained functions $S_{h,\sigma,\tilde{\sigma},s}(x)$ are continuous and of infra exponential type on \mathbf{R}^n . Moreover, for every $h \in H$

$$S_{h,\sigma,\tilde{\sigma},s}(x) \cong S_{h,\sigma,\tilde{\sigma},s}(x+i\Gamma_{\sigma}0) \text{ and } S_{h,\sigma,\tilde{\sigma}}(x) = \sum_{s\in\Lambda} S_{h,\sigma,\tilde{\sigma},s}(x).$$
 (7)

Let us analyse the functions

$$I_{s,\epsilon}(\zeta) = J^{-2}(\zeta)e^{-\epsilon s\zeta}\chi_s(\zeta), \ \zeta \in \mathbf{R}^n + i\{|\eta| < 1\},$$

where $0 < \epsilon < 1$. These functions are elements of \mathbf{P}_* because of

$$\begin{aligned} |I_{s,\epsilon}(\zeta)| &= |J^{-2}(\zeta)| \exp(-\epsilon \sum_{i=1}^n s_i \xi_i) \prod_{i=1}^n |\chi_{s_i}(\zeta_i)| \\ &\leq |J^{-2}(\zeta)| \prod_{i=1}^n |\chi_{s_i}(\zeta_i)| \exp(-\epsilon s_i \xi_i) \\ &\leq C \exp(-\epsilon \sum_{i=1}^n |\xi_i|), \ |\eta| < 1, \ \zeta = \xi + i\eta, \ s \in \Lambda. \end{aligned}$$

Therefore, $I_{s,\epsilon} \in \tilde{\mathbf{O}}^{-\epsilon}(\mathbf{D}^n + i\{|\eta| < 1\}), s \in \Lambda$. Since the Fourier transform maps \mathbf{P}_* onto \mathbf{P}_* , there exists $\psi_{s,\epsilon} \in \mathbf{P}_*$ such that $\mathcal{F}(\psi_{s,\epsilon}) = I_{s,\epsilon}, s \in \Lambda$. By Proposition 8.2.2 in [3],

$$\psi_{s,\epsilon} \in \tilde{\mathbf{O}}^{-1}(\mathbf{D}^n + i\{|y| < \epsilon\}), \ s \in \Lambda.$$
(8)

Denote by

$$q_{h,s}(x) = \sum_{\sigma \in \Lambda} \sum_{\tilde{\sigma} \in \Lambda} S_{h,\sigma,\tilde{\sigma},s}(x)$$
$$\cong \sum_{\sigma \in \Lambda} \sum_{\tilde{\sigma} \in \Lambda} \mathcal{F}^{-1}(\mathcal{F}(F_{h,\sigma}\chi_{\tilde{\sigma}})J^{-2}\chi_s)(x+i(\Gamma_{\sigma} \cup \Gamma_s)0), s \in \Lambda, h \in H.$$
(9)

Let us prove that the functions $q_{h,s}$, $s \in \Lambda$, $h \in H$ have properties 1. - 4. cited in Theorem.

Property 1 follows from (9) and (c). Property 2 is satisfied because of (6) and (7). Property 3 follows by (5), (6) and (9). It remains only the property 4. Let us prove it.

If $f_h \in \mathcal{Q}(\mathbf{D}^n)$, $h \in H$, and $\varphi \in \mathbf{P}_*$, then, because of the supposition on $F_h^*, h \in H, f_h * \varphi \in \tilde{\mathbf{O}}(\mathbf{D}^n + iI')$ (cf. [10)], where I' is an interval containing zero. We shall use this fact and the properties of the functions $I_{s,\epsilon}$, we analysed.

For a fixed $s \in \Lambda$ and $h \in H$ there exists $\epsilon_0 > 0$, such that ϵs belongs to all infinitesimal wedges of the form $\mathbf{R}^n + i(\Gamma_{\sigma} \cup \Gamma_s)0$ which appear in (9). For ϵ , $0 < \epsilon \leq \epsilon_0$ we have

$$q_{h,s}(x+i\epsilon s) =$$

$$= \sum_{\sigma\in\Lambda} \sum_{\tilde{\sigma}\in\Lambda} \frac{1}{(2\pi)^n} \int_{\mathbf{R}^n} e^{i(x+i\epsilon s)\zeta_{\tilde{\sigma}}} \mathcal{F}(F_{h,\sigma}\chi_{\tilde{\sigma}})(\zeta_{\tilde{\sigma}}) J^{-2}(\zeta_{\tilde{\sigma}})\chi_s(\zeta_{\tilde{\sigma}})d\xi$$

$$= \sum_{\sigma\in\Lambda} \sum_{\tilde{\sigma}\in\Lambda} \frac{1}{(2\pi)^n} \int_{\mathbf{R}^n} e^{ix\zeta_{\tilde{\sigma}}} \mathcal{F}(F_{h,\sigma}\chi_{\tilde{\sigma}})(\zeta_{\tilde{\sigma}}) \mathcal{F}(\psi_{s,\epsilon})(\zeta_{\tilde{\sigma}})d\xi$$

$$= \sum_{\sigma\in\Lambda} \sum_{\tilde{\sigma}\in\Lambda} ((F_{h,\sigma}\chi_{\tilde{\sigma}}) * \psi_{s,\epsilon})(x) = ((\sum_{\sigma\in\Lambda} F_{h,\sigma}) * \psi_{s,\epsilon})(x)$$

$$= (f_h * \psi_{s,\epsilon})(x) = \langle f_h(t), \ \psi_{s,\epsilon}(x-t) \rangle, \ s \in \Lambda, h \in H$$

$$(10)$$

Now, 4. a) and 4. b) follows from (10).

36

Structural theorems for families of Fourier hyperfunctions

REFERENCES

- A. Cioranescu, The charactetization of the almost-periodic ultradistributions of Beurling type, Proc. Amer. Math. Soc. 116 (1992), 127–134.
- [2] A. K a n e k o, Representation of hyperfunctions by measures and some of its applications, J. Fac. Sci. Univ. Tokyo, Sec. IA, 19 (3), (1972), 321–352.
- [3] A. K a n e k o, Introduction to hyperfunctions, Kluwer Academic Publishers, Dordrecht 1988.
- [4] H. K o m a t s u, Microlocal analysis in Gevrey classes and in complex domains, Springer Lec. Notes in Math. 1495 (1991), 161–236.
- [5] S. Pilipović, Characterizations of bounded sets in space of ultradistributions, Proc. Amer. Math. Soc. 120 (1994), 1191–1206.
- [6] S. Pilipović, B. Stanković, Convergence in the space of Fourier hyperfunctions, Proc. Japan Acad., Vol. 73, Ser. A, N⁰ 3 (1997), 33–35.
- [7] S. Pilipović, B. Stanković, *The structure of a convergent family of Fourier hyperfunctions*, Integral Transforms and Spec. Func., V.6, N⁰ 1-4 (1997), 257–267.
- [8] S. Pilipović, B. Stanković, Properties of ultradistributions having the S-asymptotics, Bull. Acad. Serbe Sc. Arts, N⁰ 21 (1996), 47–59.
- [9] L. S c h w a r t z, Théorie des distributions, I, II, 2nd ed., Hermann, Paris, 1966.
- [10] B. S t a n k o v i ć, Convergence structures and S-asymptotic behaviour of Fourier hyperfunctions, Publ. Inst. Math. Belgrade, T. 64 (78) (1998), 98–106.
- B. Stanković, Fourier hyperfunctions having the S-asymptotics, Bul. Acad. Serbe Sc. Arts, N⁰ 24 (1999), 67–75.

Institute of Mathematics University of Novi Sad Trg Dositeja Obradovića 4 21000 Novi Sad Yugoslavia