
Bulletin T.CXXII de l’Académie Serbe des Sciences et des Arts - 2001
Classe des Sciences mathématiques et naturelles
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1. The function G(s)

Define, for σ = <e s > 1,

G(s) =
∑

γ>0

γ−s, (1.1)

where γ denotes ordinates of complex zeros of the Riemann zeta-function
ζ(s). The aim of this note is to provide the (unconditional) study of G(s)
and some applications to the evaluation of sums over the γ’s and some
related integrals. The function G(s) is mentioned, in a perfunctory way, in
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the work of Chakravarty [2] and in more detail by Delsarte [5]. A related
zeta-function, namely

∑

γ>0

γ−s sin(αγ) (α > 0),

was studied by Fujii [6], but its properties are different from the properties
of G(s), and we shall not consider it here. Both Chakravarty and Delsarte
(as well as Fujii) assume the Riemann Hypothesis (that all complex zeros
of ζ(s) satisfy <e s = 1

2 , RH for short) in dealing with G(s). Delsarte [5]
obtains its analytic continuation to C under the RH. This will be obtained
later in Section 3 by an argument which is different from Delsarte’s, who
employed a sort of a modular relation to deal with G(s).

To begin the study of G(s) we need some notation. As usual, let the
function

N(T ) =
∑

0<γ≤T

1

count the number of positive imaginary parts of all complex zeros which do
not exceed T . We have (see [4, Chapter 15] or [13, Section 9.3])

N(T ) =
∑

0<γ≤T

1 =
1
π

ϑ(T ) + 1 + S(T ),

ϑ(T ) = =m
{
log Γ(1

4 + 1
2 iT )

}
− 1

2T log π,

where ϑ(T ) is continuously differentiable, and if T is not an ordinate of a
zero

S(T ) =
1
π

arg ζ(1
2 + iT ) =

1
π
=m

{
log ζ(1

2 + iT )
}
¿ log T. (1.2)

Here the argument of ζ(1
2 + iT ) is obtained by continuous variation along

the straight lines joining the points 2, 2+ iT , 1
2 + iT , starting with the value

0. If T is an ordinate of a zero, then S(T ) = S(T + 0).
It is clear then that the series in (1.1) converges absolutely for σ > 1,

and to obtain its analytic continuation to the region σ ≤ 1 we use Stirling’s
formula for the gamma-function (see [8]) and write the formula for N(T ) as

N(T ) =
T

2π
log

T

2π
− T

2π
+

7
8

+S(T )+f(T ), f(T ) ¿ 1
T

, f ′(T ) ¿ 1
T 2

. (1.3)
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Since the smallest positive ordinate of a zeta-zero is 14.13 . . ., we have

G(s) =
∫ ∞

1
x−s dN(x) =

∫ ∞

1
x−s

{
1
2π

log(
x

2π
) dx + d (S(x) + f(x))

}

=
1
2π

(
x1−s

1− s
log(

x

2π
)
∣∣∣
∞
1
−

∫ ∞

1

x1−s

1− s
· dx

x

)

+x−s (S(x) + f(x))
∣∣∣
∞
1

+ s

∫ ∞

1
(S(x) + f(x))x−s−1 dx.

In view of the bounds in (1.2) and (1.3) the last integral is seen to converge
absolutely. Thus by the principle of analytic continuation we have, for σ > 0,

G(s) =
1

2π(s− 1)2
− log 2π

2π(s− 1)
+ C1 + s

∫ ∞

1
(S(x) + f(x))x−s−1 dx, (1.4)

where C1 is a suitable constant. A relation similar to (1.4) was established
by Chakravarty [3, p. 490]. Further analytic continuation will follow by
integrating by parts the last integral. This will give, for σ > −1,

G(s) =
1

2π(s− 1)2
− log 2π

2π(s− 1)
+ C1

+s

∫ ∞

1
f(x)x−s−1 dx + s(s + 1)

∫ ∞

1

∫ x

1
S(u) du · x−s−2 dx,

(1.5)

since we have the bound (see [13])
∫ T

0
S(t) dt = O(log T ). (1.6)

It follows that (1.5) gives

G(s) ¿ t2 (σ > −1, |t| ≥ t0). (1.7)

Hence by convexity (the Phragmén-Lindelöf principle, see [8]) we have

G(s) ¿ε |t|ε(1 + |t|1−σ) (σ > −1, |t| ≥ t0), (1.8)

since G(s) ¿ 1 for σ > 1. A sharper bound than (1.8), at least for 0 ≤ σ ≤ 1,
can be obtained as follows. We have (initially for σ > 1, then by analytic
continuation for σ > 0)

G(s) =
∑

0<γ≤X

γ−s +
∑

γ>X

γ−s =
∑

1
(s,X) +

∑
2
(s,X), (1.9)
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say. The function
∑

1(s,X) is entire, and we have by partial summation
(since N(T ) ¿ T log T )

∑
1
(s,X) ¿ X1−σ log X + log2 X (0 ≤ σ ≤ 1).

Henceforth we suppose that T ≤ t ≤ 2T and we shall choose X = X(T ) (≥
2) appropriately a little later. Integration by parts gives

∑
2(s,X) =

∫ ∞

X
x−s

(
1
2π

log
(

x

2π

)
dx + d(S(x) + f(x))

)

=
X1−σ

s− 1
· 1
2π

log
(

X

2π

)
+

1
s− 1

∫ ∞

X

x−s

2π
dx (1.10)

+O(X−σ log2 X) + s

∫ ∞

X
(S(x) + f(x))x−s−1 dx.

This gives

G(s) ¿
¿ X1−σ log X + X−σ log2 X + X1−σ|t|−2 log X + X−σ|t| log log X + log2 X

¿ |t|1−σ log |t|+ log2 |t| (X = T, 0 < σ < 1).

Therefore by continuity we obtain a sharpening of (1.8) for 0 ≤ σ ≤ 1,
namely

G(s) ¿ |t|1−σ log |t|+ log2 |t| (0 ≤ σ ≤ 1, |t| ≥ t0 > 0). (1.11)

In estimating the last integral in (1.10) we used the Cauchy-Schwarz in-
equality for integrals and the mean square bound for S(t) (see (4.3)).

2. Mean square estimates for G(s)

We pass now to mean square estimates for G(s), for which as usual we
expect to smoothen the irregularites of the integrand. If 0 ≤ σ ≤ 1, then we
can write

∫ 2T

T
|G(σ + it)|2 dt ¿

∫ 2T

T
|
∑

1
(σ + it,X)|2 dt+

+
∫ 2T

T
|
∑

2
(σ + it,X)|2 dt = I1(T ) + I2(T ),

(2.1)
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say, where
∑

1 and
∑

2 are defined by (1.9). To bound I1(T ) we use the
mean value theorem for Dirichlet polynomials (see e.g., [8, Th. 5.2]) in the
form ∫ T

0
|
∑

n≤N

ann−it|2 dt = T
∑

n≤N

|an|2 + O(
∑

n≤N

n|an|2). (2.2)

If 0 < γ1 ≤ γ2 ≤ · · · denote positive ordinates of zeta zeros, then we can
write ∑

1
(σ + it,X) =

∑

γn≤X

γ−σ
n γ−it

n , γn ³ n log n.

Hence with X = T and an = γ−σ
n we obtain from (2.2)

I1(T ) ¿





T (σ > 1
2),

T log2 T (σ = 1
2),

T 2−2σ log T (σ < 1
2).

(2.3)

To bound I2(T ), we recall Parseval’s formula for Mellin transforms (see [12])
in the form

∫ ∞

0
f(x)g(x)x2σ−1 dx =

1
2πi

∫

(σ)
F (s)G(s) ds, (2.4)

provided that

H(s) =
∫ ∞

0
h(x)xs−1 dx, xσ− 1

2 h(x) ∈ L2(0,∞)

with h(x) = f(x) or h(x) = g(x). As usual
∫
(c) denotes limT→∞

∫ c+iT
c−iT . From

(2.4) one obtains
∫ ∞

1
f(x)g(x)x1−2σ dx =

1
2πi

∫

(σ)
F ∗(s)G∗(s) ds, (2.5)

provided that

H∗(s) =
∫ ∞

1
h(x)x−s dx, x

1
2
−σh(x) ∈ L2(0,∞)

with h(x) = f(x) or h(x) = g(x). Setting in (2.5) f(x) = g(x) if a ≤ x ≤
b (1 ≤ a < b) and f(x) = 0 otherwise, it follows that

∫ 2T

T

∣∣∣
∫ b

a
g(x)x−σ−it dx

∣∣∣
2
dt ≤ 2π

∫ b

a
g2(x)x1−2σ dx. (2.6)
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Applying (1.10), (2.6) and (4.3) we obtain (X = T, 0 < σ ≤ 1)

I2(T ) ¿ T−1X2−2σ log2 X + TX−2σ log4 X+

+T 2
∫ ∞

X
(S2(x) + x−2)x−1−2σ dx

¿ T 2−2σ log log T.

(2.7)

Combining (2.3) and (2.7), replacing T by T2−j and summing all the results
we finally deduce

Theorem 1. For σ fixed we have

∫ T

1
|G(σ + it)|2 dt ¿





T (1
2 < σ ≤ 1),

T log2 T (σ = 1
2),

T 2−2σ log T (0 < σ < 1
2).

(2.8)

The lower limit of integration in (2.8) is 1 and not 0 to avoid the pole of
G(s) at s = 1. It is not difficult to see that, by using (1.5), the validity of
the last bound in (2.8) can be extended to the range −1 < σ < 1

2 , and the
first bound in (2.8) to σ > 1 as well. A natural problem is to try to show
that for σ = 1

2 the integral in (2.8) is asymptotic to CT log2 T .

3. A multiple sum over zeta-zeros

For a fixed n ∈ N, let γ(1), . . . , γ(n) denote ordinates of zeta-zeros. By
absolute convergence and the classical integral

e−z =
1

2πi

∫

(c)
w−zΓ(w) dw (<e z > 0, c > 0),

we have
∑

γ(1)>0,...,γ(n)>0

e−γ(1)...γ(n)/X =
1

2πi

∫

(2)

∑

γ(1)>0,...,γ(n)>0

(γ(1) . . . γ(n)/X)−sΓ(s) ds

=
1

2πi

∫

(2)
Γ(s)Gn(s)Xs ds. (3.1)

Since G(s) has a double pole at s = 1, the function Gn(s) will have a pole
of order 2n at s = 1, but otherwise it is regular for σ > −1 and Gn(s) ¿
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(1+|t|)4n in this region. Hence by the residue theorem and Stirling’s formula
for the gamma-function we obtain

1
2πi

∫

(2)
Γ(s)Gn(s)Xs ds = X(A2n−1,n log2n−1 X + · · ·+ A1,n log X + A0,n)

+Gn(0) +
1

2πi

∫

(ε−1)
Γ(s)Gn(s)Xs ds

= X(A2n−1,n log2n−1 X + · · ·+ A1,n log X + A0,n) + Gn(0) + Oε(Xε−1),

where A2n−1,n 6= 0, . . . , A0,n are effectively computable constants. Thus we
have

Theorem 2. For fixed n ∈ N there exist effectively computable constants
A2n−1,n 6= 0, . . . , A0,n such that

∑

γ(1)>0,...,γ(n)>0

e−γ(1)...γ(n)/X = X(A2n−1,n log2n−1 X + · · ·+ A1,n log X + A0,n)

+Gn(0) + Oε(Xε−1), (3.2)

where γ(1), . . . , γ(n) denote ordinates of complex zeros of ζ(s).

If the Riemann Hypothesis holds, then the asymptotic formula (3.2) can be
considerably sharpened. Namely we have (see [13, eq. (14.13.8)])

Sn(t) = O

(
log t

(log log t)n+1

)
,

where
Sn(t) :=

∫ t

0
Sn−1(u) du (n ≥ 1, S0(t) ≡ S(t)).

On the other hand, the function f(x) in (1.3) admits (unconditionally) an
asymptotic expansion in terms of negative odd powers of x, in view of Stir-
ling’s formula for the gamma-function. Thus from (1.5) we obtain, by suc-
cessive integrations by parts and the above bound for Sn(T ), that on the RH
the function G(s) admits analytic continuation to C, and is of polynomial
growth in =m |s|, provided that s stays away from its poles: the double pole
at s = 1 and simple poles at s = −1,−3, . . . . As mentioned in Section
1, these facts have been established by a different method in Delsarte [5,
p. 431]. The converse problem seems to be interesting, namely what can
be deduced about the location of zeros of ζ(s) from the fact that G(s) has
analytic continuation to, say, σ > −A (1 < A < ∞)?
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It transpires that if in the above proof we shift the line of integration
(assuming RH) to <e s = −A, where A = k+ 1

2 ≥ 3
2 is half of an odd natural

number, then we shall obtain in (3.2) additional main terms coming from
the poles at s = −1,−2, . . . ,−k of the integrand, plus an error term which
will be ¿ X−A.

We can obtain an unconditional result analogous to (3.2), namely
∑

ρ(1),...,ρ(n)

e−|ρ
(1)...ρ(n)|/X = X(α2n−1,n log2n−1 X + · · ·+ α1,n log X + a0,n)

+Rn(0) + Oε(Xε−1), (3.3)

where α2n−1,n 6= 0, . . . , α0,n are effectively computable constants, ρ(1), . . . , ρ(n)

denote complex zeros of ζ(s) and, for σ > 1,

R(s) =
∑
ρ

|ρ|−s = 2
∑

γ>0

|ρ|−s,

and otherwise R(s) is defined by analytic continuation. This can be obtained
in the region σ > −1 by writing

R(s) = 2G(s) + 2
∑

γ>0

(|ρ|−s − γ−s)

= 2G(s)− 2s
∑

γ>0

∫ |ρ|

γ
x−s−1 dx.

(3.4)

But with ρ = β + iγ, γ > 0 we have
∣∣∣∣∣
∫ |ρ|

γ
x−s−1 dx

∣∣∣∣∣ ≤ (|ρ| − γ)γ−σ−1 = (
√

β2 + γ2 − γ)γ−σ−1 ≤ 1
2γ−σ−2

since 0 < β < 1. Hence

H(s) := 2s
∑

γ>0

(|ρ|−s − γ−s)

is regular for σ > −1 and in that region it satisfies

H(s) ¿ |s|.
Therefore (3.4) provides analytic continuation of R(s) to σ > −1. By using
the method of proof of Theorem 1 we obtain

R(s) ¿ε |t|1−σ+ε (−1 < σ ≤ 1, |t| ≥ t0 > 0) (3.5)
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and also
∫ T

1
|R(σ + it)|2 dt ¿ε

{
T 2−2σ+ε (−1 < σ ≤ 1

2),
T 1+ε (σ ≥ 1

2).
(3.6)

Using then (3.5) (or (3.6)) one obtains (3.3) similarly to the way (3.2) was
obtained.

4. Some integrals involving S(T )

Certain types of integrals involving the function S(T ) (see (1.2)) are
closely related to sums over zeta-zeros, and thus to G(s). In this section we
shall investigate the evaluation of some such integrals, which do not appear
to have been treated in the literature before. We start by proving

Theorem 3. Let f(t) ∈ C[1, T ] satisfy
∫ T

1
f2(t) dt ¿ T logC T (C ≥ 0). (4.1)

Then for fixed r ∈ N we have
∫ T

1
Sr(t)f(t) dt

¿ε min

(
T log

C
2 T (log log T )

r
2 , T + (log log T )

3
2
r+ε

∫ T

1
|f(t)| dt

)
.

(4.2)

P r o o f. The first bound in (4.2) follows from (4.1), the Cauchy-Schwarz
inequality and the bound of K.-M. Tsang [14]

∫ 2T

T
S2k(t) dt ¿ T (ck)2k(log log T )k (C > 0), (4.3)

which is uniform in k ∈ N. To obtain the second bound in (4.2) let, for a
given constant δ > 0,

Hδ(T ) :=
{

t : T ≤ t ≤ 2T, |S(t)| ≥ (log log T )
1
2
+δ

}
.

Then (4.3) gives (µ(·) denotes measure)

µ(Hδ(T ))(log log T )k+2kδ ¿ T (ck)2k(log log T )k,
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and consequently

µ(Hδ(T )) ¿ T

(
ck

(log log T )δ

)2k

. (4.4)

Choose
k =

[
1
2c

(log log T )δ
]
.

Then for T large enough k ∈ N, and (4.4) implies

µ(Hδ(T )) ¿ T2−2k ≤ Te−A(log log T )δ
(

A =
log 4
4c

)
. (4.5)

Thus if δ > 1, then for any fixed C1 > 0 we have from (4.5)

µ(Hδ(T )) ¿ T (log T )−C1 . (4.6)

Now suppose that δ > 1. Then using (1.2) and (4.6) we have

∫ 2T

T
Sr(t)f(t) dt =

∫

Hδ(T )
+

∫

[T,2T ]\Hδ(T )

¿
(∫

Hδ(T )
S2r(t) dt

)1/2 (∫ 2T

T
f2(t) dt

)1/2

+(log log T )r( 1
2
+δ)

∫ 2T

T
|f(t)|dt

¿ (T (log T )2r−C1)1/2(T logC T )1/2 + (log log T )r( 1
2
+δ)

∫ 2T

T
|f(t)| dt

¿ T + (log log T )
3r
2

+ε
∫ 2T

T
|f(t)| dt

with C1 = 2r + C, δ = 1 + ε/r. Replacing T by T2−j (j ∈ N) and adding up
the resulting estimates we complete the proof of (4.2).

The integrals which seem of interest are e.g.,

∫ T

1
S(t)|ζ(1

2 + it)|2 dt,

∫ T

1
S2(t)|ζ(1

2 + it)|2 dt (4.7)

and ∫ T

1
|ζ(1

2 + it)|2 dS(t). (4.8)
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An integration by parts shows that the integral in (4.8) equals

|ζ(1
2 + it)|2S(t)

∣∣∣
T

1
− 2

∫ T

1
S(t)Z(t)Z ′(t) dt,

where Hardy’s function Z(t) (see [8], [11]) is a real-valued function of t
satisfying |Z(t)| = |ζ(1

2 + it)|, and given by

Z(t) := ζ(1
2 + it)χ−1/2(1

2 + it), χ(s) =
ζ(s)

ζ(1− s)
= 2sπs−1 sin(1

2πs)Γ(1−s).

Since
∫ T

0
|Z(t)Z ′(t)| dt ≤

(∫ T

0
|ζ(1

2 + it)|2 dt

)1/2 (∫ T

0
|Z ′(t)|2 dt

)1/2

¿ T log2 T,

it follows on using Theorem 3 that
∫ T

1
|ζ(1

2 + it)|2 dS(t) ¿ε T log2 T (log log T )
3
2
+ε. (4.9)

Similarly we have
∫ T

1
|ζ(1

2 + it)|2S(t) dt ¿ε T log T (log log T )
3
2
+ε, (4.10)

and ∫ T

1
|ζ(1

2 + it)|2S2(t) dt ¿ε T log T (log log T )3+ε. (4.11)

The bounds (4.9)–(4.11) appear to be, at present, the strongest uncondi-
tional bounds that can be obtained.

On the other hand, the above integrals can be related to sums over
zeta-zeros. For example, the integral in (4.8) is

∫ T
1 |ζ(1

2 + it)|2 dN(t) −
∫ T

1

1
2π

log
t

2π
· |ζ(1

2 + it)|2 dt + O(1)

=
∑

0<γ≤T

|ζ(1
2 + iγ)|2 − T

2π
log2 T + O(T log T ).

This gives, on using (4.9),

∑

0<γ≤T

|ζ(1
2 + iγ)|2 =

T

2π
log2 T + O(T log T ) +

∫ T

1
|ζ(1

2 + it)|2 dS(t)

¿ε T log2 T (log log T )
3
2
+ε.

(4.12)
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We recall the standard notation (see [8] and [9])

∫ T

0
|ζ(1

2 + it)|2 dt = T log
(

T

2π

)
+ (2C0 − 1)T + E(T ),

where C0 denotes Euler’s constant. Then by using integration by parts,
(1.6) and the bound E(T ) ¿ T c with suitable c < 1/3 (see [8]) we have

∫ T

0
S(t)|ζ(1

2 + it)|2 dt =
∫ T

0
S(t)

(
log

t

2π
+ 2C0 + E′(t)

)
dt

= O(log2 T ) +
∫ T

0
S(t)E′(t) dt = O(T 1/3)−

∫ T

0
E(t) dS(t)

= O(T 1/3)−
∫ T

0
E(t)

(
dN(t)− 1

2π
log

t

2π
dt + dO(

1
t
)
)

= −
∑

0<γ≤T

E(γ) + O(T 1/3) +
1
2π

∫ T

0
E(t) log

t

2π
dt.

The last integral equals

∫ T
0 (E(t)− π + π) log t

2π dt = O(T 3/4 log T ) + π

∫ T

0
log

t

2π
dt

= πT log T + O(T ),

since we have (see [9])

∫ T

0
(E(t)− π) dt ¿ T 3/4.

Therefore by using (4.10) we obtain

∑

0<γ≤T

E(γ) = 1
2T log T + O(T )−

∫ T

0
S(t)|ζ(1

2 + it)|2 dt

¿ε T log T (log log T )
3
2
+ε.

(4.13)

A similar calculation will also give (see [9] and [10])
∑

0<γ≤T

E2(γ) ¿ T 3/2 log T,
∑

0<γ≤T

E2(γ) = Ω±(T 3/2 log T ), (4.14)

where E2(T ) is the error term in the asymptotic formula for the fourth power
of |ζ(1

2 + it)|.
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The importance of the sum
∑

0<γ≤T

|ζ(1
2 + iγ)|2 (4.15)

lies in the fact that it identically vanishes if the Riemann Hypothesis holds.
The unconditional bound (4.12) seems to be very weak. However this reflects
the enormous difficulty of settling the Riemann Hypothesis. It may be
remarked that a more general sum than the one in (4.15) was treated by
S.M. Gonek [7]. He proved, assuming the Riemann Hypothesis, that

∑

0<γ≤T

∣∣∣∣ζ
(

1
2

+ i

(
γ +

α

L

))∣∣∣∣
2

=

(
1−

(
sinπα

πα

)2
)

T

2π
log2 T + O(T log T )

(4.16)
holds uniformly for |α| ≤ 1

2L, where L = 1
2π log( T

2π ). It would be interesting
to recover this result unconditionally, but our method of proof does not seem
capable of achieving this.

One can treat the integrals in (4.9)-(4.11) by using Lemma 2 of Bombieri-
Hejhal [1], which (after taking the imaginary part) provides an explicit ex-
pression for S(T ). The best this could give (in view of O(1) in the error
term) for the integral in (4.9) is the bound O(T log2 T ), which is still quite
weak. Assuming the RH Lemma 2 of [1] will yield

∫ T

0
S(t)|ζ(1

2 + it)|2 dt = O(T log T ). (4.17)

It remains elusive whether the bound in (4.17) gives the correct order of mag-
nitude for the integral on the left-hand side. Is the integral Ω±(T log T )?
This seems to be difficult to settle, even if the Riemann Hypothesis is as-
sumed.
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[10] A. I v i ć, On the error term for the fourth moment of the Riemann zeta-function,
Journal London Math. Society 60(2) (1999), 21–32.

[11] A. A. K a r a t s u b a, S. M. V o r o n i n, The Riemann zeta-function, Walter de
Gruyter, Berlin-New York, 1992.

[12] E. C. T i t c h m a r s h, Introduction to the Theory of Fourier Integrals, Clarendon
Press, Oxford, 1948.

[13] E. C. T i t c h m a r s h, The theory of the Riemann zeta-function, 2nd edition,
Oxford University Press, Oxford, 1986.

[14] K.-M. T s a n g, Some Ω-theorems for the Riemann zeta-function, Acta Arith. 46
(1986), 369–395.

Katedra za matematiku RGF-a
Univerzitet u Beogradu
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