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1. Introduction

Recall the following three basic principles of the theory of functions of a
real variable sometimes known as ‘Littlewood’s three principles’ 1:

(I) Every [measurable] set is nearly a finite union of intervals.
(II) Every [measurable] function is nearly continuous.

1see [10;p.26] and [14;p.71].
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(III) Every convergent sequence of [measurable] functions is nearly
uniformly convergent.

When [measurable] is interpreted as [Lebesgue measurable] the principles
II and III are widely known as theorems of Luzin and Egoroff, respectively
(see e.g.,[11],[12],[14]). In Luzin’s theorem ‘nearly’ is interpreted as saying
that the Lebesgue measure of the difference of the starting set E and its
subset F, where a given function is continuous, can be made arbitrarily
small. Similarly, in Egoroff’s theorem ‘nearly’ is interpreted as saying that
the Lebesgue measure between the starting set E (of finite measure) and its
subset F, on which a given sequence of measurable functions is uniformly
continuous, can be made arbitrarily small.

In this note we analyze these principles from a quite different angle
motivated by other regularity properties one sometimes needs to put on the
sets E and F . For example, one sometimes work with real numbers as strings
of digits of some number-system and needs a continuity of a given function
on a set F which is regular from the point of view of this number system.
A most natural requirement is to ask the set F to include all strings that
use certain digits. (Recall, for example, the definition of the Cantor ternary
set.) It is not surprising that in order to obtain any positive result in this
direction one has to has a bit more extensive notion of a ‘number system’.
Rather than having a fixed integer n > 1 and considering real numbers (from
the unit interval) as strings of (finite or infinite) digits taken from the set
{0, 1, 2, · · · , n − 1},2 we need to fix a sequence ~n = {ni}∞i=0 of integers > 1
and consider real numbers as infinite strings ~x = {xi}∞i=0 such that xi < ni

for all i. We call this way of representing real numbers the ~n-ary number
system. (Thus, the case ni = 2 for all i corresponds to the binary system
and the case ni = 10 for all i corresponds to the decimal system.) A specific
version of the problem which we choose to address here is the following

Problem 1: Describe the smallest ~n−ary number system which has
the property that every Borel function is continuous on a set of the form
{~x : xi ∈ Ji for all i} where Ji ⊆ ni has at least two different digits for all i.

There is no real reason behind our choice of the class of Borel functions in
this Problem except that it seems like a good test-class. The general version
of the Problem 1 would ask for the description of a sufficiently rich algebra
of functions for which this version of Littlewood’s principle II is true. There
is also no real reason behind the requirement that |Ji| ≥ 2 for all i except

2the set which, from now on, will simply be denoted as n.



A new quantitative analysis of some basic principles . . . 127

that it appears to be a good test case. The general form of Problem 1 would
also ask for the description of all sequences {|Ji|}∞i=0 of cardinalities of sets of
the allowable digits that ensure the continuity of a given function. Finally,
a general form of Problem 1 would also ask for the description of all (if any)
~n−ary number system for which this version of Littlewood’s principle II is
true.

In proposition 2.2 we show that a positive answer to Problem 1 even
in the class of semi continuous function requires a number system ~n which
is double-exponential as a rate of growth. Curiously enough this example
points out that there might be a close connection between (say) Baire hier-
archy of real function and a hierarchy of rapidly growing number-theoretic
functions 3. One such hierarchy is the Ackermann hierarchy (sometimes also
called the Grzegorczyk hierarchy; see [1],[3],[6],[13]) defined by the following
double recursive formula

An+1(x + 1) = An(An+1(x))

starting from the initial function A0(x) = x+2 (x > 1); A0(0) = 1, A0(1) =
2. Thus, A1(x) = 2x (x 6= 0), A2(x) = 2x, and

A3(x) = 22..
.2

} x times, etc...

Thus, the Proposition 2.2 shows that the A2−ary system is not sufficiently
fast to give us the positive answer to problem 1 and seems unlikely (though
this remains yet to be proven) that any of the bounded iterates to A2 will be
sufficiently fast either. It turns out that the next in order number system,
the number system of the tower function A3, is sufficiently fast to give
us even the positive answer to the most general form of Problem 1. So
close connection between A3 and a mathematical problem is rather rare
though the number of places where this function shows up is increasing
(see [4] and [8] for a recent and not so recent example, respectively). In
a subsequent and more complete paper we shall give a similar analysis of
other principles from the real variable theory such as for example the two
selection theorems of E. Helly (see [11],[12]). This will require hierarchies of
number-theoretic functions that seem unrelated of any of the large spectrum
of known hierarchies.

3‘Order’s of infinity’ in the sense of [7]
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2. Some Examples

Our results can best be stated if one (via continued fractions) identifies
the reals from the unit interval with infinite strings of integers. This of course
ignores the rational numbers which, much like in the theories of Lebesgue
measure and Baire category, can indeed be ignored. Some caution is in
order however, especially when we make a claim, like for example the one
in Proposition 2.2 below, that some function is continuous. What we really
mean is the continuity on the irrationals. This does not affect the intended
application of Proposition 2.2 which claims the existence of an essentially
double-exponential number system for which the Problem 1 has a negative
solution in the class of semi-continuous functions.

In this section we give two examples. The first example shows that the
notion of [measurability] that would positively resolve the general form of
Problem 1 must necessarily be quite different from any of the two classical
notions due to H. Lebesgue and R. Baire.

Proposition 1.1. There is a function f , measurable in the sense on
Lebesgue and Baire, which is not continuous on any set of the form

∏∞
i=0 Ji

such that |Ji| ≥ 2 for all but finitely many i’s.

P r o o f. For each positive integer i define an equivalence relation vi

between infinite strings of integers by letting ~x vi ~y if x2i(2j+1) = y2i(2j+1)

for all but finitely many j’s. For each i and each equivalence class e of vi

pick a representative ~zi
e ∈ e. Let di(~x) be the distance between ~x and the

representative ~z = ~zi
e of its vi −equivalence class e = [~x] i.e., the cardinality

of the set
{j : x2i(2j+1) 6= z2i(2j+1)}.

The function f(~x) = ~y is defined according to the following two cases:
Case 1: xi = xi+1 for infinitely many i. In this case put yi = 0 for all i.
Case 2: xi 6= xi+1 for all but finitely many i. In this case put

yi = max{n : 2n|di(~x)}.

Note that the set of all ~x which fall into the Case 1 is at the same time
of full Lebesgue measure and of full Baire category. It follows that f is
Lebesgue as well as Baire-measurable.

To show that f satisfies the conclusion of Proposition 1 it suffices to
show that f takes a dense-set of values on any product

∏∞
i=0 Ji such that

|Ji| ≥ 2 for all but finitely many i. Choose ~w ∈ ∏∞
i=0 Ji such that wi 6= wi+1
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for all but finitely many i’s. Let ei be the vi −equivalence class of ~w. Then
for every finite sequence n0, · · · , nk of integers we can find ~x ∈ ∏∞

i=0 Ji such
that for all i ≤ k :
(1) ~x ∈ ei,
(2) ni = max{n : 2n|di(~x)}.

It follows that f(~x) extends the given finite sequence n0, · · · , nk of inte-
gers. This shows that the f−image of

∏∞
i=0 Ji is a dense set of reals and

finishes the proof. 2

Proposition 2.2. Suppose that {ni}∞i=0 is an infinite sequence of posi-
tive integers which is eventually dominated by any of the linear shifts
{22i−l}∞i=0 (l = 1, 2, · · ·) of the double-exponential sequence. Then there
is continuous function f :

∏∞
i=0 ni → [0, 1] which takes all the values from

the unit interval on any subproduct
∏∞

i=0 Ji such that |Ji| = 2 for all i.

P r o o f. Define a strictly increasing sequence {lp} of nonnegative
integers and maps cp :

∏lp+1−1
i=lp

ni → {0, 1} as follows. Let l0 = 0 and suppose

l0, · · · lp have been determined. Fix l > lp such that ni ≤ 22i−lp−1
for all

i ≥ l. For k > l, the probability that a given partition c :
∏k−1

i=lp
ni → {0, 1}

is constant on a given subproduct
∏k−1

i=lp
Ji such that |Ji| = 2 for all i ∈ [l0, k)

is equal to 2/22k−lp
. Hence the probability that there is such a subproduct

on which c is constant is equal to

2
22k−lp

k−1∏

i=lp

(
ni

2

)
.

This quantity is dominated by

M
2

22k−lp

k−1∏

i=lp

(
22i−lp−1

2

)
≤ M

2
22k−lp

2
∑k−1

i=lp
2i−lp

2k−lp
=

M

2k−lp
,

where M =
∏l+1

i=lp
(

ni

2
). Let lp+1 be the minimal integer k > l such that

M/2k−lp < 1 and let cp :
∏lp+1−1

i=lp
ni → {0, 1} be any of the mappings that

is not constant on any subproduct of the form
∏lp+1−1

i=lp
Ji such that |Ji| = 2

for all i ∈ [lp, lp+1).
The map that would satisfy the conclusion of Proposition 2.2 is viewed

as a function f :
∏∞

i=0 ni → {0, 1}N where, for a given string ~x ∈ ∏∞
i=0 ni the



130 S. Todorčević

binary string ~y = f(~x) is determined by the rule

yp = cp(xlp , · · · , xlp+1−1).

Clearly, f is a continuous map. Given a subproduct
∏∞

i=0 Ji such that |Ji| =
2 for all i, on any of the partial subproducts

∏lp+1−1
i=lp

Ji the map cp takes
both values 0 and 1. It follows that for every infinite binary sequence ~y there
is x ∈ ∏∞

i=0 Ji such that f(~x) = ~y. This finishes the proof. 2

Remark 2.3. Note that composing the function f of Proposition 2.2 with a
characteristic function of a nonempty compact set of irrationals one obtains
a semi-continuous map g :

∏∞
i=0 ni → [0, 1] which is not continuous on

any subproduct
∏∞

i=0 Ji such that |Ji| = 2 for all i. Since clearly we can
have a similar example where the constant sequence {2}∞i=0 is replaced with
an arbitrary infinite sequence {mi}∞i=0 of positive integers, this gives us
some hints towards the notion of nearness needed for a positive resolution
of the general form of Problem 1. It points to us that there must be an
important difference in the rate of growth of the ~n−ary number system and
the output sequence {|Ji|}∞i=0. For example, the positive answer to Problem
1 for the algebra of semi-continuous finite step-functions, requires a double-
exponential difference in the rate of growths, an estimate which is quite close
to the optimal one. We shall give an upper estimate of the difference in rates
of growths sufficient for making Baire class-1 functions continuous which is
considerably faster than the double-exponential but which will work for the
class of all Borel functions and beyond.

3. An algebra of functions

We start by describing a strategy S which to every infinite sequence
{mi}∞i=0 of positive integers associates in a Lipschitz way an infinite sequence
{S(m0, · · · ,mi)}∞i=0 of positive integers.

Definition 2.1. —it Define S : N<N → N as follows

S(m0) = 2m0 − 1

S(m0, · · · ,mi+1) = 2(mi+1 − 1)

[
i∏

k=0

(
S(m0, · · · ,mk)

mk

)]
+ 1.

Note the following property of S from which one can easily deduce the
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positive solution to Problem 1 for the class of semi-continuous two-step-
functions, and a property which also explains our choice for its definition.

Lemma 2.2. For every positive integer k, every mapping from the
product

∏k
i=0 S(m0, · · · ,mi) into {0, 1} is constant on a subproduct

∏k
i=0 Ji

such that |Ji| = mi for all i ≤ k. 2

In order to treat semi-continuous step-functions with a larger number of
steps it seems natural to try iterating the strategy S as follows.

Definition 2.2. The pth iterate S(p) : N<N → N of S is defined
recursively as follows:

S(0)(m0, · · · ,mi) = S(m0, · · · , mi),

S(p+1)(m0, · · · ,mi) = S(S(p)(m0), S(p)(m0,m1), · · · , S(p)(m0, · · · ,mp)).

Definition 2.3. For a set M ⊆ N define SM : BbbN<N → N as
follows:

SM (m0) = S(m0),

SM (m0, · · · ,mi) = S(p)(m0, · · · ,mi),

where
p = |⋃k∈M∩i

∏k
l=0 SM (m0, · · · ,ml)|.

Let S1 = SM for M = N. We shall say that a product
∏∞

i=0 Ji is of
type ~m = {mi}∞i=0 if |Ji| = mi for all i. If R is any of the functions S,
S(p) or SM defined above then by R(~m) we denote the infinite sequence
{R(m0, · · · ,mi)}∞i=0. One can view SM ’s as some sort of diagonalizations of
the sequence of finite iterates S(p). Since S(p) is meant to treat the case of
semi-continuous p-step-functions, it is not surprising to have the following
result.

Lemma 2.4. Suppose that f is a given semi-continuous function and
that {mi}∞i=0 is a given sequence of positive integers. Then for every infinite
M ⊆ N there is infinite N ⊆ M such that every product of type SM (~m)
contains a subproduct of type SN (~m) on which f is continuous. 2

Remark 2.5. As indicated above, the proof of Lemma 2.4 involves a nat-
ural diagonalization argument which uses Lemma 2.2. The diagonalization
argument gives us a considerable amount of flexibility. For example, if we
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start with a set M ⊆ N of asymptotic density 1 4 then we can produce an
output set N ⊆ M of asymptotic density 1 as well. More importantly, the
diagonalization argument can be repeated indefinitely so that an induction
on the Baire rank will lead us to the following more general fact with the
same freedom of choosing N inside a given M.

Lemma 2.6. Suppose that f is a given Borel function and that {mi}∞i=0

is a given sequence of positive integers. Then for every infinite M ⊆ N
there is infinite N ⊆ M such that every product of type SM (~m) contains a
subproduct of type SN (~m) on which f is continuous. 2

We are now ready to give the definition of the algebra of functions which
gives the positive solution to Problem 1 for the principles II and III.

Definition 2.7 Let M(S) be the algebra of all real functions f with the
property that for every sequence {mi}∞i=0 of positive integers, every infinite
M ⊆ N and every positive integer n there is infinite N ⊆ M such that N ∩
n = M∩n and such that every SM (~m)−product contains a SN (~m)−subproduct
on which f is continuous.

The following is essentially a reformulation of Lemma 2.6.

Theorem 2.8. Every Borel function belongs to M(S). 2

Definition 2.9. Let M01(S) be the field of sets of reals A whose
characteristic functions belong toM(S).

It follows that M(S) is the collection of all functions f with the property
that f−1(−∞, q) ∈M01(S) for all q ∈ Q.

Theorem 2.10. M01(S) is a σ-field of sets which contains all open
sets and which is closed under Souslin operation. 2

Theorem 2.11. Under a suitable axiom of infinity, 5 the field M01(S)
contains every set of reals that can be defined using reals and ordinals as
parameters. 2

Remark 2.12. Recall that the classical fields of Lebesgue-measurable and
Baire- measurable sets of reals do have the properties listed in Theorems
2.8,2.10 and 2.11. According to the Proposition 1.1, the field M01(S) does

4I.e., |M ∩ {0, · · · , n− i}|/n → 1
5see [9]
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not coincide with neither of these two classical σ-fields.

3. Rates of growths

Recall the Ackermann hierarchy of fast-growing number-theoretic func-
tions defined as follows (see e.g.,[3],[13]):

A0(0) = 1, A0(1) = 2, A0(x) = 2 + x (x > 1),

An+1(x) = A
(x)
n (1),

where A
(x)
n denotes the xth iterate of An. (The 0th iterate of any function is

the identity function.) Thus,

A1(x) = 2x (x 6= 0),
A2(x) = 2x,

A3(x) = 22..
.2

} x times.

A useful formula that relates An and An+1 is the following:

An+1(x + 1) = An(An+1(x)).

Many of the standard functions are eventually bounded by the tower
function A3, the first ‘non elementary’ function in the sequence {An}. The
purpose of this section is to compare the functions S, S(p) and S1 of the pre-
vious chapter when evaluated at a particular sequence {(m0, · · · ,mi)}∞i=0. It
is natural to choose the starting sequence {mi}∞i=0 to be elementary (i.e.,
below a bounded iterate of A2). As it turns out, there is no much difference
which elementary sequence {mi}∞i=0 we choose, so we take the constant se-
quence mi = 2 as our starting sequence. It will be convenient to use the
notation 2n for a sequence of 2’s of length n + 1. Thus we are interested in
the rates of growths of the number-theoretic functions S(2n), S(p)(2n) and
S1(2n).

Lemma 3.1. S(2n) ≤ A
(2)
2 (2n + 1).

P r o o f. Note that the first two values S(20) = 3, S(21) = 7 satisfy the
inequality. For n ≥ 2 we have

S(2n) = 2(2− 1)
n−1∏

i=0

(
S(2i)
2

)
+ 1 ≤
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≤ 22 1
2n

2Σi<n22i+2 ≤ 222n+1
.

Lemma 3.2. S(p)(2n) ≤ A
(p+2)
2 (2n + 1).

P r o o f. By Lemma 3.1 we have this in case p = 0. To see the inductive
step, note that for p > 0,

S(p)(2n) = 2(S(p−1)(2n)− 1)
n−1∏

i=0

(
S(p)(2i)

S(p−1)(2i)

)
+ 1

≤ 2A
(p+1)
2 (2n + 1)

n−1∏

i=0

3Sp−1(2i)

[
S(p−1)(2i)

]S(p−1)(2i)

n−1∏

i=0

[S(p)(2i)]S
(p−1)(2i)

≤ 2A
(p+1)
2 (2n + 1)

[
S(p)(2n−1)

]Σn−1
i=0 S(p−1)(2i)

≤ 2A
(p+1)
2 (2n + 1)

[
A

(p+2)
2 (2n− 1)

]A
(p+1)
2 (2n) ≤ A

(p+2)
2 (2n + 1).

Lemma 3.3. (n + 1) [S1(2n)](n+1) + 2n + 6 ≤ A4(n + 3).

P r o o f. This is easily seen to be true in case n = 0, so we concentrate
on the inductive step at some n > 0 :

(n+1) [S1(2n)]n+1 +2n+6 ≤ (n+1)
[
A

(n[S1(2n−1)]n+2)
2 (2n + 1)

]
+2n+6

≤ A
(n[S1(2n−1)]n+3)
2 (2n + 1)

≤ A3(n[S1(2n−1)]n + 2n + 4)

≤ A3(A4(n+2)) = A4(n+3). 2

Remark 3.4. It is easily checked that essentially same bounds are true
for the sequence {mi = i}∞i=0. In fact, the function A4 is so robust that the
bound of Lemma 3.3 will essentially6 be true for every sequence {mi}∞i=0 (in
place of {mi = 2}∞i=0) that is elementary in A3, i.e., eventually bounded by
some iterate of A3. Thus we have shown the following interesting connection

6More precisely, when A4(n + 3) is replaced by some other shift A4(an + b).
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between Ackermann hierarchy of fast growing number-theoretic functions
and Littlewood’s principle II from the real variable theory.

Theorem 3.5. Let n ≥ 3 be a given integer and let f be a given function
in M(S). Then every An−product can be refined to a subproduct where f is
continuous and whose type can be taken to be any sequence bounded by an
iterate of An−1. 2

The cases n ≥ 4 of this result follow easily from what has been said above,
so only the case n = 3 requires some explanation. This case of Theorem
3.5 follows from the definition of the algebra M(S) and the following fact
which is of independent interest as it gives us what seems to be the minimal
number-system for which Problem 1 has a positive solution.

Lemma 3.6. There is infinite M ⊆ N with the property that the
sequence SM (~2) is eventually dominated by A3.

P r o o f. Recall that SM (~2) is a step function composed of steps of the
form

S(p)(~2) ¹ (k̄, l̄],

where k̄ < l̄ are two consecutive members of M and where

p = |
⋃

k∈M∩(k̄+1)

k∏

l=0

SM (2l)|.

By Lemma 3.2 we know that each of the steps S(p)(~2) is bounded by
A

(p+2)
2 (2n + 1) so we choose M so thin in order to have the inequality

A
(p+2)
2 (2n + 1) ≤ A

(n)
2 (1) for every step S(p)(~2) and every n in the interval

it acts. 2

4. Concluding Remarks

In [4] we have considered a Ramsey theoretic problem which corresponds
to the case of two-step-functions in our present discussion. Note that The-
orem 3.5 leads to a positive answer to Question 1 of [4; §5].

Note that Lemma 3.6 hints towards a finer hierarchy from that of Ack-
ermann, a hierarchy of fast-growing sequences of integers that will better
correspond to Littlewood’s principle II. This remains yet to be investigated.

Finally we note that all what has been said above about Litllewood’s
principle IItransfers readily to his principle III as well. This translation is
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done by following the standard proof of Egoroff’s Theorem (see [11; p.112])
and making all the sets involved clopen when restricted on a suitably chosen
subproduct.
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