MATRIX TRANSFORMATIONS BETWEEN THE SEQUENCE SPACE $B V^{P}$ AND CERTAIN BK SPACES

E. MALKOWSKY, V. RAKOČEVIĆ, SNEŽANA ŽIVKOVIĆ

(Presented at the 4th Meeting, held on May 31, 2002)
Abstract. In this paper, we characterize matrix transformations between the sequence space $b v^{p}(1<p<\infty)$ and certain BK spaces. Furthermore, we apply the Hausdorff measure of noncompactness to give necessary and sufficient conditions for a linear operator between these spaces to be compact.

AMS Mathematics Subject Classification (2000): 40H05, 46A45
Key Words: Matrix transformations, measure of noncompactness

1. Introduction

We write ω for the set of all complex sequences $x=\left(x_{k}\right)_{k=0}^{\infty}$. Let ϕ, ℓ_{∞}, c and c_{0} denote the set of all finite, bounded, convergent and null sequences, and $c s$ be the set of all convergent series. We write $\ell_{p}=\{x \in \omega$: $\left.\sum_{k=0}^{\infty}\left|x_{k}\right|^{p}<\infty\right\}$ for $1 \leq p<\infty$, and $b v=\left\{x \in \omega: \sum_{k=0}^{\infty} \mid x_{k}-x_{k-1}<\infty\right\}$ for the set of all sequences of bounded variation and extend this definition to reals $p \geq 1$ by putting

$$
b v^{p}=\left\{x \in \omega: \sum_{k=0}^{\infty}\left|x_{k}-x_{k-1}\right|^{p}<\infty\right\}
$$

so that $b v^{1}=b v$. The sets $b v^{p}$ also arise from the sets ℓ_{p} as the matrix domains of the difference operator in ℓ_{p}, that is a sequence x is in $b v^{p}$, if and only if the sequence $\left(x_{k}-x_{k-1}\right)_{k=0}^{\infty}$ is in ℓ_{p}. It is this concept rather than the first one that plays an important role in our studies.

In this paper, we determine the β-duals of the sets $b v^{p}$, characterize some matrix transformations and apply the Hausdorff measure of noncompactness to give necessary and sufficient conditions for the entries of an infinite matrix to be a compact operator between the spaces $b v^{p}$ for $1<p<\infty$ and certain BK spaces.

In this section, we give some notations and recall some definitions and well-known results.

By e and $e^{(n)}\left(n \in \mathbb{N}_{0}\right)$, we denote the sequences such that $e_{k}=1$ for $k=0,1, \ldots$, and $e_{n}^{(n)}=1$ and $e_{k}^{(n)}=0(k \neq n)$. For any sequence $x=\left(x_{k}\right)_{k=0}^{\infty}$, let $x^{[n]}=\sum_{k=0}^{n} x_{k} e^{(k)}$ be its n-section.

A sequence $\left(b^{(n)}\right)_{n=0}^{\infty}$ in a linear metric space X is called Schauder basis if, for every $x \in X$ there is a unique sequence $\left(\lambda_{n}\right)_{n=0}^{\infty}$ of scalars such that $x=\sum_{n=0}^{\infty} \lambda_{n} b^{(n)}$.

An $F K$ space is a complete linear metric sequence space with the property that convergence implies coordinatewise convergence; a $B K$ space is a normed $F K$ space. An $F K$ space $X \supset \phi$ is said to have $A K$ if every sequence $x=\left(x_{k}\right)_{k=0}^{\infty} \in X$ has a unique representation $x=\sum_{k=0}^{\infty} x_{k} e^{(k)}$, that is $x=\lim _{n \rightarrow \infty} x^{[n]}$.

Let x and y be sequences, X and Y be subsets of ω and $A=\left(a_{n k}\right)_{n, k=0}^{\infty}$ be an infinite matrix of complex numbers. We write $x y=\left(x_{k} y_{k}\right)_{k=0}^{\infty}, x^{-1} *$ $Y=\{a \in \omega: a x \in Y\}$ and $M(X, Y)=\bigcap_{x \in X} x^{-1} * Y=\{a \in \omega: a x \in$ Y for all $x \in X\}$ for the multiplier space of X and Y. In the special case of $Y=c s$, we write $x^{\beta}=x^{-1} * c s$ and $X^{\beta}=M(X, c s)$ for the β-dual of X. By $A_{n}=\left(a_{n k}\right)_{k=0}^{\infty}$ we denote the sequence in the n-th row of A, and we write $A_{n}(x)=\sum_{k=0}^{\infty} a_{n k} x_{k}(n=0,1, \ldots)$ and $A(x)=\left(A_{n}(x)\right)_{n=0}^{\infty}$, provided $A_{n} \in x^{\beta}$ for all n. The set $X_{A}=\{x \in \omega: A(x) \in X\}$ is called the matrix domain of A in X and (X, Y) denotes the class of all matrices that map X into Y, that is $A \in(X, Y)$ if and only if $X_{A} \subset Y$, or equivalently $A_{n} \in X^{\beta}$ for all n and $A(x) \in Y$ for all $x \in X$.

Let X and Y be Banach spaces. Then $B(X, Y)$ is the set of all continuous linear operators $L: X \mapsto Y$, a Banach space with the operator norm defined by $\|L\|=\sup \{\|L(x)\|:\|x\| \leq 1\}(L \in B(X, Y))$. If $Y=\mathbb{C}$ then we write $X^{*}=B(X, \mathbb{C})$ for the space of continuous linear functionals on X with its norm defined by $\|f\|=\sup \{|(x)|:\|x\| \leq 1\}\left(f \in X^{*}\right)$. We recall that a
linear operator $L: X \mapsto Y$ is called compact if $D(L)=X$ for the domain of L and if, for every bounded sequence $\left(x_{n}\right)$ in X, the sequence $\left(L\left(x_{n}\right)\right)$ has a convergent subsequence in Y. It is well known (cf. [10, Theorem 4.2.8, p. 87]) that if X and Y are BK spaces and $A \in(X, Y)$ then $L_{A} \in B(X, Y)$ where L_{A} is defined by $L_{A}(x)=A(x)$ for all $x \in X$; we denote this by $(X, Y) \subset B(X, Y)$.

Let $1<p<\infty$ and $\mu=\left(\mu_{n}\right)_{n=0}^{\infty}$ be a non-decreasing sequence of positive reals tending to infinity. We define the matrices Σ and Δ by $\Sigma_{n k}=1$ for $0 \leq k \leq n, \Sigma_{n k}=0$ for $k>n, \Delta_{n, n-1}=-1, \Delta_{n n}=1$ and $\Delta_{n k}=0$ otherwise, and use the convention that any term with a negative subscript is equal to zero. So $b v^{p}=\left(\ell_{p}\right)_{\Delta}$, as has been mentioned above.

Proposition 1.1. The space $b v^{p}$ is a $B K$ space with

$$
\|x\|_{b v^{p}}=\left(\sum_{k=0}^{\infty}\left|x_{k}-x_{k-1}\right|^{p}\right)^{1 / p}
$$

the sequence $\left(b^{(k)}\right)_{k=0}^{\infty}$ with $b^{(k)}=\Sigma\left(e^{(k)}\right)$, that is $b_{j}^{(k)}=0$ for $j<k$ and $b_{j}^{(k)}=1$ for $j \geq k(k=0,1, \ldots)$, is a Schauder basis of bv v^{p}.

Proof. Since ℓ_{p} is a BK space with $\|x\|_{p}=\left(\sum_{k=0}^{\infty}\left|x_{k}\right|^{p}\right)^{1 / p}, b v^{p}$ is a BK space with $\|\cdot\|_{b v^{p}}$ by [7, Theorem 3.3, p. 178]. Furthermore ℓ_{p} has AK. Hence the sequence $\left(b^{(k)}\right)_{k=0}^{\infty}$ is a Schauder basis of $b v^{p}$ by [5, Theorem 2.2].

2. The β-dual of the space $b v^{p}$

In this section, we give the β-dual of $b v^{p}$ for $p \geq 1$. If $X \supset \phi$ is a $B K$ space and $a \in \omega$ then we write

$$
\|a\|_{X}^{*}=\|a\|^{*}=\sup \left\{\left|\sum_{k=0}^{\infty} a_{k} x_{k}\right|:\|x\|=1\right\}
$$

provided the expression on the right is defined and finite which is the case whenever $a \in X^{\beta}$ (cf. [10, Theorem 7.2.9, p.107]). Let $1<p<\infty$ and $q=p /(p-1)$. We write $(\mathbf{n}+\mathbf{1})^{\mathbf{1 / q}}=\left((n+1)^{1 / q}\right)_{n=0}^{\infty}$.

Theorem 2.1. Let $1<p<\infty$. We define the matrix E by $E_{n k}=0$ for $0<k<n-1$ and $E_{n k}=1$ for $k \geq n(n=0,1, \ldots)$ and write $M\left(b v^{p}\right)=$
$\left((\mathbf{n}+\mathbf{1})^{1 / \mathrm{q}}\right)^{-1} * \ell_{\infty}$.
(a) Then

$$
\left(b v^{p}\right)^{\beta}=\left(\ell_{q} \cap M\left(b v^{p}\right)\right)_{E}
$$

(b) Furthermore

$$
\begin{equation*}
\|a\|_{b v^{p}}^{*}=\|E(a)\|_{q} \text { for all } a \in\left(b v^{p}\right)^{\beta} . \tag{2.1}
\end{equation*}
$$

Proof. (a) By [5, Theorem 2.5], $\left(b v^{p}\right)^{\beta}=\left(\ell_{p}^{\beta} \cap M\left(b v^{p}, c\right)\right)_{E}=\left(l_{q}\right)_{E} \cap$ $\left(M\left(b v^{p}, c\right)\right)_{E}$. We are going to show

$$
\begin{equation*}
M\left(b v^{p}, c\right) \subset M\left(b v^{p}\right) \subset M\left(b v^{p}, c_{0}\right) . \tag{2.2}
\end{equation*}
$$

First we assume $a \in M\left(b v^{p}, c\right)$. Then $a x \in c$ for all $x \in b v^{p}$. Now $x \in b v^{p}$ if and only if $y=\Delta(x) \in \ell_{p}$. Then $x=\Sigma(y)$ and $a_{n} x_{n}=\sum_{k=0}^{n} a_{n} y_{k}$ $(n=0,1, \ldots)$ for all $y \in \ell_{p}$. We define the matrix $C=\left(c_{n k}\right)_{n, k=0}^{\infty}$ by $c_{n k}=a_{n}$ for $0 \leq k \leq n$ and $c_{n k}=0$ for $n>k(n=0,1, \ldots)$. Then $C \in\left(\ell_{p}, c\right)$, and [10, Example 8.4.5B, p. 129] yields

$$
\begin{equation*}
\sup _{n} \sum_{k=0}^{\infty}\left|c_{n k}\right|^{q}=\sup _{n} \sum_{k=0}^{n}\left|a_{n}\right|^{q}=\sup _{n}(n+1)\left|a_{n}\right|^{q}<\infty \tag{2.3}
\end{equation*}
$$

hence $a(\mathbf{n}+\mathbf{1})^{1 / \mathbf{q}} \in \ell_{\infty}$. This shows

$$
\begin{equation*}
M\left(b v^{p}, c\right) \subset M\left(b v^{p}\right) . \tag{2.4}
\end{equation*}
$$

Conversely, we assume $a \in M\left(b v^{p}\right)$. Then there exists a constant K such that $(n+1)^{1 / q}\left|a_{n}\right| \leq K$ for all n, and so $\left|a_{n}\right| \leq K /(n+1)^{1 / q} \rightarrow 0(n \rightarrow \infty)$, that is

$$
\begin{equation*}
a \in c_{0} . \tag{2.5}
\end{equation*}
$$

Defining the matrix C as above, we see that (2.3) holds again, and by [10, Example 8.4.5D, p.129], conditions (2.3) and (2.5) yield $C \in\left(\ell_{p}, c_{0}\right)$, that is $a x \in c_{0}$ for all $x \in b v^{p}$. Thus we have shown $M\left(b v^{p}, c_{0}\right)$, and with (2.4), we obtain (2.2).
(b) Let $a \in\left(b v^{p}\right)^{\beta}$ be given. We observe that $x \in b v^{p}$ if and only if $y=\Delta(x) \in \ell_{p}$. Abel's summation by parts yields, with $R=E(a)$,

$$
\sum_{k=0}^{n} a_{k} x_{k}=\sum_{k=0}^{n+1} R_{k} y_{k}-R_{n+1} x_{n+1}(n=0,1, \ldots)
$$

Matrix transformations
Since $a \in\left(b v^{p}\right)^{\beta}$ implies $R \in M\left(b v^{p}, c_{0}\right)$ by Part (a), it follows that

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k} x_{k}=\sum_{k=0}^{\infty} R_{k} y_{k} . \tag{2.6}
\end{equation*}
$$

Now $\|x\|_{b v^{p}}=\|y\|_{p}$ implies $\|a\|_{b v^{p}}^{*}=\|R\|_{\ell_{p}}^{*}$ and (2.1) follows from the fact that ℓ_{p}^{*} and ℓ_{q} are norm isomorphic.

Remark 1. We observe that neither $\ell_{q} \subset M\left(b v^{p}\right)$ nor $M\left(b v^{p}\right) \subset \ell_{q}$. If we define the sequences a and \tilde{a} by

$$
a_{k}=\left\{\begin{array}{ll}
\frac{1}{\nu+1} & \left(k=2^{\nu}\right) \\
0 & \left(k \neq 2^{\nu}\right)
\end{array} \quad(\nu=0,1, \ldots) \text { and } \quad \tilde{a}_{k}=\frac{1}{(k+1)^{1 / q}}(k=0,1, \ldots)\right.
$$

then $a \in \ell_{q} \backslash M\left(b v^{p}\right)$ and $\tilde{a} \in M\left(b v^{p}\right) \backslash \ell_{q}$, since

$$
\begin{gathered}
\sum_{k=0}^{\infty}\left|a_{k}\right|^{q}=\sum_{\nu=0}^{\infty} \frac{1}{(\nu+1)^{q}}<\infty \text { but }\left|a_{2^{\nu}}\right|\left(2^{\nu}+1\right)^{1 / q} \geq \frac{2^{\nu / q}}{\nu+1} \rightarrow \infty(\nu \rightarrow \infty) \text { and } \\
\tilde{a}_{k}(k+1)^{1 / q}=1 \text { for } k=0,1, \ldots \text { but } \sum_{k=0}^{\infty} \tilde{a}_{k}=\sum_{k=0}^{\infty} \frac{1}{k+1}=\infty .
\end{gathered}
$$

3. Matrix Transformations on the spaces bv ${ }^{p}$

In this section we characterize matrix transformations on the spaces $b v^{p}$. Throughout let $1<p<\infty$ and $q=p /(p-1)$. A subset X of ω is said to be normal if $x \in X$ and $y \in \omega$ with $\left|y_{k}\right| \leq\left|x_{k}\right|(k=0,1, \ldots)$ together imply $y \in X$. We need the following general results.

Proposition 3.1.([5, Theorem 2.7 (a)]) Let $X \supset \phi$ be a normal $F K$ space with $A K$ and Y be a linear space. If $M\left(X_{\Delta}, c\right)=M\left(X_{\Delta}, c_{0}\right)$ then $A \in\left(X_{\Delta}, Y\right)$ if and only if

$$
\begin{equation*}
R^{A} \in(X, Y) \text { where } r_{n k}^{A}=\sum_{j=k}^{\infty} a_{n k}(n, k=0,1, \ldots) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{n}^{A} \in\left(X_{\Delta}, c\right) \text { for all } n \tag{3.2}
\end{equation*}
$$

Proposition 3.2.(cf. [7, Theorem 1.23, p. 155]) Let $X \supset \phi$ and Y be $B K$ spaces.
(a) Then $A \in\left(X, \ell_{\infty}\right)$ if and only if

$$
\begin{equation*}
\|A\|_{X}^{*}=\sup _{n}\left\|A_{n}\right\|_{X}^{*}<\infty . \tag{3.3}
\end{equation*}
$$

Furthermore, if $A \in\left(X, \ell_{\infty}\right)$ then $\left\|L_{A}\right\|=\|A\|_{X}^{*}$.
(b) If $\left(b^{(k)}\right)_{k=0}^{\infty}$ is a Schauder basis of X and Y_{1} is a closed BK space in Y, then $A \in\left(X, Y_{1}\right)$ if and only if $A \in(X, Y)$ and $A\left(b^{(k)}\right) \in Y_{1}$ for all k.

First we characterize the classes $\left(b v^{p}, \ell_{\infty}\right),\left(b v^{p}, c_{0}\right)$ and $\left(b v^{p}, c\right)$.
Theorem 3.1. We have
(a) $A \in\left(b v^{p}, \ell_{\infty}\right)$ if and only if

$$
\begin{equation*}
\|A\|_{\left(b v^{p}, \ell_{\infty}\right)}=\sup _{n}\left(\sum_{k=0}^{\infty}\left|\sum_{j=k}^{\infty} a_{n j}\right|^{q}\right)^{1 / q}<\infty \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{k}\left(k^{1 / q}\left|\sum_{j=k}^{\infty} a_{n j}\right|\right)<\infty \text { for all } n ; \tag{3.5}
\end{equation*}
$$

(b) $A \in\left(b v^{p}, c_{0}\right)$ if and only if conditions (3.4) and (3.5) hold and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{j=k}^{\infty} a_{n j}=0 \text { for each } k \tag{3.6}
\end{equation*}
$$

(c) $A \in\left(b v^{p}, c\right)$ if and only if conditions (3.4) and (3.5) hold and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{j=k}^{\infty} a_{n j}=\alpha_{k} \text { for each } k . \tag{3.7}
\end{equation*}
$$

(d) Let Y denote any of the spaces ℓ_{∞}, c_{0} or c. If $A \in\left(b v^{p}, Y\right)$ then $\left\|L_{A}\right\|=$ $\|A\|_{\left(b v^{p}, \ell_{\infty}\right)}$.

Proof. (a) By Theorem 2.1, $M\left(b v^{p}, c\right)=M\left(b v^{p}, c_{0}\right)$, so Proposition 3.1. yields that $A \in\left(b v^{p}, \ell_{\infty}\right)$ if and only if $R \in\left(\ell_{p}, \ell_{\infty}\right)$ and $R_{n} \in M\left(b v^{p}, c\right)$ for all n where $r_{n k}=\sum_{j=k}^{\infty} a_{n j}$ for all n and k. Now $M\left(b v^{p}, c\right)=\left(\left(k^{1 / q}\right)_{k=0}^{\infty}\right)^{-1} *$ ℓ_{∞}, and this is condition (3.5). Furthermore, by [10, Example 8.4.5D, p.

129], $R \in\left(\ell_{p}, \ell_{\infty}\right)$ if and only if $\sup _{n} \sum_{k=0}^{\infty}\left|r_{n k}\right|^{q}<\infty$, and this is condition (3.4).
(b) Since $\left(b^{(k)}\right)_{k=0}^{\infty}$ with $b^{(k)}=\Sigma\left(e^{(k)}\right)$ for all k is a Schauder basis of $b v^{p}$ and $b_{j}^{(k)}=0$ for $j<k$ and $b_{j}^{(k)}=1$ for $j \geq k(k=0,1, \ldots)$ by Proposition 1.1, we have

$$
A_{n}\left(b^{(k)}\right)=\sum_{j=0}^{\infty} a_{n j} b_{j}^{(k)}=\sum_{j=k}^{\infty} a_{n j} \text { for each } k .
$$

Now Part (b) follows from Part (a) and Proposition 3.2.
(c) Part (c) is proved in exactly the same way as Part (b).
(d) If $A \in\left(b v^{p}, \ell_{\infty}\right)$ then $\|A\|_{b v^{p}}^{*}=\left\|L_{A}\right\|$ by Proposition 3.2. Since $\|A\|_{b v^{p}}^{*}=\sup _{n}\left\|A_{n}\right\|_{b v^{p}}^{*}$ for all n, the conclusion follows from (2.1) in Theorem 2.1. Since $\left(b v^{p}, c_{0}\right) \subset\left(b v^{p}, c\right) \subset\left(b v^{p}, \ell_{\infty}\right)$, the assertion also follows for $Y=c_{0}$ or $Y=c$ by what we have just shown and Parts (b) and (c).

Now we characterize the classes $\left(b v^{p}, \ell_{1}\right)$ and $\left(b v^{p}, b v\right)$. We need the following result.

Proposition 3.3.Let $X \supset \phi$ be a $B K$ space. Then $A \in\left(X, \ell_{1}\right)$ if and only if

$$
\|A\|_{\left(X, \ell_{1}\right)}=\sup _{\substack{N \subset I N_{0} \\ N \text { finite }}}\left\|\sum_{n \in N} A_{n}\right\|<\infty(\text { cf. [4, Satz 1] })
$$

Furthermore, if $A \in\left(X, \ell_{1}\right)$ then

$$
\begin{equation*}
\|A\|_{\left(X, \ell_{1}\right)} \leq\left\|L_{A}\right\|=4 \cdot\|A\|_{\left(X, \ell_{1}\right)} . \tag{3.8}
\end{equation*}
$$

Proof. We have to show (3.8). Let $A \in\left(X, \ell_{1}\right)$ and $m \in \mathbb{N}_{0}$ be given. Then, for all $N \subset\{0, \ldots, m\}$ and for all $x \in X$ with $\|x\|=1$,

$$
\left|\sum_{n \in N} A_{n}(x)\right| \leq \sum_{n=0}^{m}\left|A_{n}(x)\right| \leq\left\|L_{A}\right\|,
$$

and this implies

$$
\begin{equation*}
\|A\|_{\left(X, \ell_{1}\right)} \leq\left\|L_{A}\right\| . \tag{3.9}
\end{equation*}
$$

Furthermore, given $\varepsilon>0$, there is $x \in X$ with $\|x\|=1$ such that

$$
\|A(x)\|_{1}=\sum_{n=0}^{\infty}\left|A_{n}(x)\right| \geq\left\|L_{A}\right\|-\frac{\varepsilon}{2},
$$

and there is an integer $m(x)$ such that

$$
\sum_{n=0}^{m(x)}\left|A_{n}(x)\right| \geq\|A(x)\|_{1}-\frac{\varepsilon}{2} .
$$

Consequently $\sum_{n=0}^{m(x)}\left|A_{n}(x)\right| \geq\left\|L_{A}\right\|-\varepsilon$. By [7, Lemma 3.9, p. 181],

$$
\text { 4. } \max _{N \subset\{0, \ldots, m(x)\}}\left|\sum_{n \in N} A_{n}(x)\right| \geq \sum_{n=0}^{m(x)}\left|A_{n}(x)\right| \geq\left\|L_{A}\right\|-\varepsilon,
$$

and so $4 \cdot\|A\|_{\left(X, \ell_{1}\right)} \geq\left\|L_{A}\right\|-\varepsilon$. Since $\varepsilon>0$ was arbitrary, we have 4 . $\|A\|_{\left(X, \ell_{1}\right)} \geq\left\|L_{A}\right\|$, and together with (3.9) this yields (3.8)

A matrix T is called a triangle if $t_{n k}=0(k>n)$ and $t_{n n} \neq 0$ for all n.
Proposition 3.4.([7, Theorem 3.8, p. 180]) Let T be a triangle. Then, for arbitrary subsets X and Y of $\omega, A \in\left(X, Y_{T}\right)$ if and only if $B=T A \in$ (X, Y). Furthermore, if X and Y are BK spaces and $A \in\left(X, Y_{T}\right)$ then

$$
\begin{equation*}
\left\|L_{A}\right\|=\left\|L_{B}\right\| \tag{3.10}
\end{equation*}
$$

Theorem 3.2. We have
(a) $A \in\left(b v^{p}, \ell_{1}\right)$ if and only if condition (3.5) holds and

$$
\begin{equation*}
\|A\|_{\left(b v^{p}, \ell_{1}\right)}=\sup _{\substack{N \subset \subseteq N_{0} \\ N \text { finite }}}\left(\sum_{k=0}^{\infty}\left|\sum_{n \in N}\left(\sum_{j=k}^{\infty} a_{n k}\right)\right|^{q}\right)^{1 / q}<\infty \tag{3.11}
\end{equation*}
$$

Furthermore, if $A \in\left(b v^{p}, \ell_{1}\right)$ then

$$
\begin{equation*}
\|A\|_{\left(b v^{p}, \ell_{1}\right)} \leq\left\|L_{A}\right\| \leq 4 \cdot\|A\|_{\left(b v^{p}, \ell_{1}\right)} . \tag{3.12}
\end{equation*}
$$

(b) $A \in\left(b v^{p}, b v\right)$ if and only if condition (3.5) holds and

$$
\begin{equation*}
\|A\|_{\left(b v^{p}, b v\right)}=\sup _{\substack{N \subset I N_{0} \\ N \text { finite }}}\left(\sum_{k=0}^{\infty} \mid \sum_{n \in N}\left(\sum_{j=k}^{\infty}\left(a_{n k}-a_{n-1, k}\right)\right)^{q}\right)^{1 / q}<\infty . \tag{3.13}
\end{equation*}
$$

Furthermore, if $A \in\left(b v^{p}, b v\right)$ then

$$
\begin{equation*}
\|A\|_{\left(b v^{p}, b v\right)} \leq\left\|L_{A}\right\|=4 \cdot\|A\|_{\left(b v^{p}, b v\right)} . \tag{3.14}
\end{equation*}
$$

Proof. (a) Part (a) follows from Proposition 3.3. and Theorem 2.1.
(b) Part (b) follows from Part (a) and Proposition 3.4.

4. Measure of noncompactness and transformations

If X and Y are metric spaces, then $f: X \mapsto Y$ is a compact map if $f(Q)$ is relatively compact (i.e., if the closure of $f(Q)$ is a compact subset of $Y)$ subset of Y for each bounded subset Q of X. In this section, among other things, we investigate when in some special cases the operator L_{A} is compact. Our investigations use the measure of noncompactness. Recall that if Q is a bounded subset of a metric space X, then the Hausdorff measure of noncompactness of Q, is denoted by $\chi(Q)$, and

$$
\chi(Q)=\inf \{\epsilon>0: Q \quad \text { has a finite } \epsilon-\text { net in } X\} .
$$

The function χ is called the Hausdorff measure of noncompactness, and for its properties see $([1,2,8])$. Denote by \bar{Q} the closure of Q. For the convenience of the reader, let us mention that: If Q, Q_{1} and Q_{2} are bounded subsets of a metric space (X, d), then

$$
\begin{aligned}
\chi(Q)=0 & \Longleftrightarrow Q \\
\chi(Q) & =\chi(\bar{Q}), \\
Q_{1} \subset Q_{2} & \Longrightarrow \chi\left(Q_{1}\right) \leq \chi\left(Q_{2}\right), \\
\chi\left(Q_{1} \cup Q_{2}\right) & =\max \left\{\chi\left(Q_{1}\right), \chi\left(Q_{2}\right)\right\}, \\
\chi\left(Q_{1} \cap Q_{2}\right) & \leq \min \left\{\chi\left(Q_{1}\right), \chi\left(Q_{2}\right)\right\} .
\end{aligned}
$$

If our space X is a normed space, then the function $\chi(Q)$ has some additional properties connected with the linear structure. We have e.g.

$$
\begin{aligned}
\chi\left(Q_{1}+Q_{2}\right) & \leq \chi\left(Q_{1}\right)+\chi\left(Q_{2}\right), \\
\chi(\lambda Q) & =|\lambda| \chi(Q) \text { for each } \quad \lambda \in \mathbb{C} .
\end{aligned}
$$

If X and Y are normed spaces, and $A \in B(X, Y)$, then the Hausdorff measure of noncompactness of A, denoted by $\|A\|_{\chi}$, is defined by $\|A\|_{\chi}=$ $\chi(A K)$, where $K=\{x \in X:\|x\| \leq 1\}$ is the unit ball in X. Furthermore, A is compact if and only if $\|A\|_{\chi}=0$, and $\|A\|_{\chi} \leq\|A\|$.

Recall the following well known result (see e.g. [2, Theorem 6.1.1] or [1, 1.8.1]): Let X be a Banach space with a Schauder basis $\left\{e_{1}, e_{2}, \ldots\right\}, Q$ a
bounded subset of X, and $P_{n}: X \mapsto X$ the projector onto the linear span of $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. Then

$$
\begin{align*}
& \frac{1}{a} \limsup _{n \rightarrow \infty}\left(\sup _{x \in Q}\left\|\left(I-P_{n}\right) x\right\|\right) \leq \chi(Q) \leq \tag{4.1}\\
& \quad \leq \inf _{n} \sup _{x \in Q}\left\|\left(I-P_{n}\right) x\right\| \leq \lim \sup _{n \rightarrow \infty}\left(\sup _{x \in Q}\left\|\left(I-P_{n}\right) x\right\|\right)
\end{align*}
$$

where $a=\lim \sup _{n \rightarrow \infty}\left\|I-P_{n}\right\|$.
Theorem 4.1.Let A be an infinite matrix, $1<p<\infty, q=p /(p-1)$ and for any integers $n, r, n>r$, set

$$
\|A\|_{\left(b v^{p}, \ell_{\infty}\right)}^{(r)}=\sup _{n>r}\left(\sum_{k=0}^{\infty}\left|\sum_{j=k}^{\infty} a_{n j}\right|^{q}\right)^{1 / q}
$$

(a) If $A \in\left(b v^{p}, c_{0}\right)$, then

$$
\begin{equation*}
\left\|L_{A}\right\|_{\chi}=\lim _{r \rightarrow \infty}\|A\|_{\left(b v^{p}, \ell_{\infty}\right)}^{(r)} \tag{4.2}
\end{equation*}
$$

(b) If $A \in\left(b v^{p}, c\right)$, then

$$
\begin{equation*}
\frac{1}{2} \cdot \lim _{r \rightarrow \infty}\|A\|_{\left(b v^{p}, \ell_{\infty}\right)}^{(r)} \leq\left\|L_{A}\right\|_{\chi} \leq \lim _{r \rightarrow \infty}\|A\|_{\left(b v^{p}, \ell_{\infty}\right)}^{(r)} \tag{4.3}
\end{equation*}
$$

(c) If $A \in\left(b v^{p}, \ell_{\infty}\right)$, then

$$
\begin{equation*}
0 \leq\left\|L_{A}\right\|_{\chi} \leq \lim _{r \rightarrow \infty}\|A\|_{\left(b v^{p}, \ell_{\infty}\right)}^{(r)} \tag{4.4}
\end{equation*}
$$

Proof. Let us remark that the limits in (4.2), (4.3) and (4.4) exist. Set $K=\left\{x \in b v^{p}:\|x\| \leq 1\right\}$. In the case (a) by inequality (4.1) we have

$$
\begin{equation*}
\left\|L_{A}\right\|_{\chi}=\chi(A K)=\lim _{r \rightarrow \infty}\left[\sup _{x \in K}\left\|\left(I-P_{r}\right) A x\right\|\right] \tag{4.5}
\end{equation*}
$$

where $P_{r}: c_{0} \mapsto c_{0}, r=0,1, \ldots$, is the projector on the first $r+1$ coordinates, i.e., $P_{r}(x)=\left(x_{0}, \ldots, x_{r}, 0,0, \ldots\right)$, for $x=\left(x_{k}\right) \in c_{0}$; (let us remark that $\left\|I-P_{r}\right\|=1, r=1,2, \ldots$ Let $A_{(r)}=\left(\tilde{a}_{n k}\right)$ be infinite matrix defined by $\tilde{a}_{n k}=0$ if $0 \leq n \leq r$ and $\tilde{a}_{n k}=a_{n k}$ if $r<n$. Now, by Theorem 4.1 (d) we have

$$
\begin{equation*}
\sup _{x \in K}\left\|\left(I-P_{r}\right) A x\right\|=\left\|L_{A_{(r)}}\right\|=\left\|A_{(r)}\right\|_{\left(b v^{p}, \ell_{\infty}\right)}=\|A\|_{\left(b v^{p}, \ell_{\infty}\right)}^{(r)} . \tag{4.6}
\end{equation*}
$$

Clearly, by (4.5) and (4.6) we get (4.2).
(b) Let us remark that every sequence $x=\left(x_{k}\right)_{k=0}^{\infty} \in c$ has a unique representation $x=l e+\sum_{k=0}^{\infty}\left(x_{k}-l\right) e^{(k)}$ where $l \in \mathbb{C}$ is such that $x-l e \in c_{0}$. Let us define $P_{r}: c \mapsto c$ by $P_{r}(x)=l e+\sum_{k=0}^{m}\left(x_{k}-l\right) e^{(k)}, r=0,1, \ldots$. It is known that $\left\|I-P_{r}\right\|=2, r=0,1, \ldots$. Now the proof of (b) is similar as in the case (a), and we omit it (it should be borne in mind that now a in (4.1) is 2). Let us prove (4.4). Now define $P_{r}: \ell_{\infty} \mapsto \ell_{\infty}$, by $P_{r}(x)=\left(x_{0}, x_{1}, \ldots, x_{r}, 0, \ldots\right)$, $x=\left(x_{k}\right) \in \ell_{\infty}, r=0,1, \ldots$. It is clear that

$$
A K \subset P_{r}(A K)+\left(I-P_{r}\right)(A K)
$$

Now, by the elementary properties of the function χ we have

$$
\begin{align*}
\chi(A K) & \leq \chi\left(P_{r}(A K)\right)+\chi\left(\left(I-P_{r}\right)(A K)\right)=\chi\left(\left(I-P_{r}\right)(A K)\right) \\
& \leq \sup _{x \in K}\left\|\left(I-P_{r}\right) A x\right\|=\left\|L_{A_{(r)}}\right\| . \tag{4.7}
\end{align*}
$$

By (4.7) and Theorem 4.1 (d) we get (4.4).
Now as a corollary of the above theorem we have
Corollary 4.1.If either $A \in\left(b v^{p}, c_{0}\right)$ or $A \in\left(b v^{p}, c\right)$, then

$$
\begin{equation*}
L_{A} \text { is compact if and only if } \lim _{r \rightarrow \infty}\|A\|_{\left(b v^{p}, \ell_{\infty}\right)}^{(r)}=0 . \tag{4.8}
\end{equation*}
$$

If $A \in\left(b v^{p}, \ell_{\infty}\right)$, then

$$
\begin{equation*}
L_{A} \quad \text { is compact if } \quad \lim _{r \rightarrow \infty}\|A\|_{\left(b v^{p}, l_{\infty}\right)}^{(r)}=0 . \tag{4.9}
\end{equation*}
$$

The following example will show that it is possible for L_{A} in (4.9) to be compact in the case $\lim _{r \rightarrow \infty}\|A\|_{\left(b v^{p}, \ell_{\infty}\right)}^{(r)}>0$, and hence in general in (4.9) we have just " if".

Example 4.1. Let the matrix A be defined by $A_{n}=e^{(0)}(n=0,1, \ldots)$. Then $\sup _{n}\left(\sum_{k=0}^{\infty}\left|\sum_{j=k}^{\infty} a_{n j}\right|^{q}\right)^{1 / q}=1<\infty$ and $\sup _{k}\left(k^{1 / q}\left|\sum_{j=k}^{\infty} a_{n j}\right|\right)=$ $0<\infty$ for all n. By Theorem 4.1 (a) it follows $A \in\left(b v^{p}, \ell_{\infty}\right)$. Further,

$$
\|A\|_{\left(b v^{p}, \ell_{\infty}\right)}^{(r)}=\sup _{n>r}\left(\sum_{k=0}^{\infty}\left|\sum_{j=k}^{\infty} a_{n j}\right|^{q}\right)^{1 / q}=\sup _{n>r}\left|\sum_{j=0}^{\infty} a_{n j}\right|=1 \text { for all } r,
$$

whence

$$
\lim _{r \rightarrow \infty}\|A\|_{\left(b v^{p}, \ell_{\infty}\right)}^{(r)}=1>0 .
$$

Since $L_{A}(x)=x_{0} e$ for all $x \in b v^{p}, L_{A}$ is a compact operator.
Theorem 4.2. Let A be an infinite matrix, $1<p<\infty, q=p /(p-1)$ and for any integer r, set

$$
\|A\|_{\left(b v^{p}, \ell_{1}\right)}^{(r)}=\sup _{\substack{N \subset I N_{0} \backslash\{0,1, \ldots, r\} \\ N \text { finite }}}\left(\sum_{k=0}^{\infty}\left|\sum_{n \in N}\left(\sum_{j=k}^{\infty} a_{n j}\right)\right|^{q}\right)^{1 / q} .
$$

If $A \in\left(b v^{p}, \ell_{1}\right)$, then

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\|A\|_{\left(b v^{p}, \ell_{1}\right)}^{(r)} \leq\left\|L_{A}\right\|_{\chi} \leq 4 \lim _{r \rightarrow \infty}\|A\|_{\left(b v^{p}, \ell_{1}\right)}^{(r)} . \tag{4.10}
\end{equation*}
$$

Proof. Every sequence $x=\left(x_{k}\right)_{k=0}^{\infty} \in \ell_{1}$ has a unique representation

$$
x=\sum_{k=0}^{\infty} x_{k} e^{(k)} .
$$

We define $P_{r}: \ell_{1} \mapsto \ell_{1}$ by $P_{r}(x)=\left(x_{0}, x_{1}, \ldots, x_{r}, 0,0, \ldots\right), r=0,1, \ldots$ Since $\left\|I-P_{r}\right\|=1, r=0,1, \ldots$, by Theorem 4.2 (a) and (4.1) we get (4.10) (the proof is similar as in the case (4.2)).

Corollary 4.2.Let A be as in Theorem 5.2. If $A \in\left(b v^{p}, \ell_{1}\right)$, then
L_{A} is compact if end only if $\lim _{r \rightarrow \infty}\|A\|_{\left(b v^{p}, \ell_{1}\right)}^{(r)}=0$.

Theorem 4.3.Let A be an infinite matrix, $1<p<\infty, q=p /(p-1)$ and for any integer r, set

$$
\|A\|_{\left(b v^{p}, b v\right)}^{(r)}=\sup _{\substack{N \subset I N_{0} \backslash(0,1, \ldots, r\} \\ N \text { finite }}}\left(\sum_{k=0}^{\infty}\left|\sum_{n \in N}\left(\sum_{j=k}^{\infty}\left(a_{n j}-a_{n-1, j}\right)\right)\right|^{q}\right)^{1 / q} .
$$

If $A \in\left(b v^{p}, b v\right)$, then

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\|A\|_{\left(b v^{p}, b v\right)}^{(r)} \leq\left\|L_{A}\right\|_{\chi} \leq 4 \lim _{r \rightarrow \infty}\|A\|_{(b v p, b v)}^{(r)} . \tag{4.11}
\end{equation*}
$$

Proof. Let $b^{(k)} k=0,1, \ldots$, be as in Proposition 2.1. $\left(b^{(k)}\right)_{k=0}^{\infty}$ is Schauder basis of $b v$ and it holds

$$
x=\sum_{k=0}^{\infty}\left(x_{k}-x_{k-1}\right) b^{(k)}, \quad x \in b v .
$$

Now let us define $P_{r}: b v \mapsto b v$ by

$$
P_{r}(x)=\sum_{k=0}^{r}\left(x_{k}-x_{k-1}\right) b^{(k)}, \quad r=0,1, \ldots
$$

Therefore $\left(I-P_{r}\right)(x)=\left(0, \ldots, 0, x_{r+1}-x_{r}, x_{r+2}-x_{r}, \ldots\right)$. By

$$
\begin{align*}
& \left\|\left(I-P_{r}\right)(x)\right\|_{b v}= \\
& \quad=\left|x_{r+1}-x_{r}\right|+\left|x_{r+2}-x_{r}-\left(x_{r+1}-x_{r}\right)\right|+\left|x_{r+3}-x_{r}-\left(x_{r+2}-x_{r}\right)\right|+\ldots \\
& \quad=\left|x_{r+1}-x_{r}\right|+\left|x_{r+2}-x_{r+1}\right|+\left|x_{r+3}-x_{r+2}\right|+\ldots \\
& \quad \leq\|x\|_{b v}, \tag{4.12}
\end{align*}
$$

we get $\left\|I-P_{r}\right\| \leq 1$. Since $I-P_{r}$ is a projector, we have $\left\|I-P_{r}\right\| \geq 1$. Therefore $\left\|I-P_{r}\right\|=1$. Now, by Theorem 4.2 (b) and (4.1) we get (4.11).

Now as a corollary of the above theorem we have
Corollary 4.3. Let A be as in Theorem 5.3. If $A \in\left(b v^{p}, b v\right)$, then
L_{A} is compact if and only if $\lim _{r \rightarrow \infty}\|A\|_{\left(b v^{p}, b v\right)}^{(r)}=0$.

REFERENCES

[1] R. R. A khmerov, M. I. K a menskii, A. S. Potapov, A. E. Rodki n a, B. N. S a dovskii, Measures of noncompactness and condensing operators, Operator Theory: Advances and Applications, 55, Birkhäuser Verlag, Basel, 1992.
[2] J. B a nás, K. G o e b l, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics 60, Marcel Dekker, New York and Basel, 1980.
[3] A. M. J a r rah, E. M a lkowsky, BK spaces, bases and linear operators, Rend. Circ. Mat. Palermo II, 52, 1998, (177-191)
[4] E. Malkowsky, Klassen von Matrix Abbildungen in paranormierten $F R-R a ̈ u m e n$, Analysis 7, 1987, (275-292)
[5] , Linear operators between some matrix domains, Rend. Circ. Mat. Palermo, to appear
[6] , V. R a k o č e v i ć, The measure of noncompactness of linear operators between certain sequence spaces, Acta Sci. Math (Szeged), 64, 1998, (151-170)
[7] ,_, An introduction into the theory of sequence spaces and measures of noncompactness, Zbornik radova 9(17), Matematički Institut SANU, Belgrade, 2000, (143-234)
[8] V. R a k o č e v i ć, Funkcionalna analiza, Naučna knjiga, Beograd, 1994.
[9] A. W il a n s k y, Functional Analysis, Blaisdell Publishing Company, 1964
[10] \qquad , Summability through Functional Analysis, North-Holland Mathematics Studies, 85, 1984
E. Malkowsky

Department of Mathematics
University of Giessen
Arndtstrasse 2
D-35392 Giessen
Germany
V. Rakočević, Snežana Živković

Department of Mathematics
Faculty of Science and Mathematics
University of Niš
Višegradska 33
18000 Niš
Yugoslavia

