
Bulletin T.CXXIII de l’Académie Serbe des Sciences et des Arts - 2002
Classe des Sciences mathématiques et naturelles

Sciences mathématiques, No 27

ON A SYMBOL CLASS OF ELLIPTIC PSEUDODIFFERENTIAL
OPERATORS
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A b s t r a c t. We consider a class of symbols with prescribed smooth-
ness and growth conditions and give examples of such symbols. The in-
troduced class contains certain polynomial symbols and symbols with more
than polynomial growth in phase space. The corresponding pseudodifferential
operators defined as the Weyl transforms of the symbols are elliptic. As an
application, we give a result on isomorphisms between modulation spaces. In
particular, we show that the Bessel potentials establish such isomorphisms.
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1. Introduction

Theory of pseudodifferential operators has been established some thirty
years ago, with important applications in diverse fields of theoretical and
applied mathematics such as partial differential equations and quantum me-
chanics [17], [15], [18]. In the last decade it has been successfully applied in
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time-frequency analysis and communication theory [5], [7], [6]. In this con-
text new classes of symbols and the corresponding operators are introduced
(see [16], [8], [12]). There are different ways to define a pseudodifferential
operator by the means of its symbol. In this paper we consider the so called
Weyl correspondence (see (1)). As noted in [7], Feichtinger’s modulation
spaces introduced in [2] are the most natural framework for time-frequency
analysis. Therefore, it is of particular importance to study the action of
pseudodifferential operators on modulation spaces. Operators with symbols
in modulation spaces are studied in [9], [8] and [12] while in [16] and [1] sym-
bols with at most polynomial growth are considered. However, in quantum
field theory it is of interest to study symbols with more than polynomial
growth in momentum space in the framework of the corresponding spaces
of ultradistributions [11]. A relationship between modulation spaces and
ultradistributions is given in [13].

In this paper we define a class of symbols which can grow almost ex-
ponentially in phase space. It also contains a large class of polynomials,
such as the symbols of the Bessel potentials. In particular, it contains the
Schröedinger-type operators with appropriate almost exponentially bounded
potentials.

As an application we prove that a class of partial differential operators
with constant coefficients and, in particular, the Bessel potentials establish
isomorphism between certain modulation spaces.

2. Notation

If x = (x1, . . . , xd) ∈ Rd d ∈ N, then |x| =
√

x2
1 + . . . + x2

d, and

〈x〉 = (1 + |x|2)1/2. For multi-indices α, β ∈ Nd
0, we have |α| = α1 +

. . . + αd, α! = α1! · · ·αd!, xα = xα1
1 · · ·xαd

d and, if β ≤ α, i.e., βj ≤ αj ,

j = 1, 2, . . . , d,

(
α

β

)
=

(
α1

β1

)
· · · · ·

(
αd

βd

)
. We write Dα = Dα1

1 · · ·Dαd
d

=
(

1
2πi

∂
∂x1

)α1 · · ·
(

1
2πi

∂
∂xd

)αd
. We denote by C a positive constant, not nec-

essarily the same at every occurrence. The symbol γ is reserved for a real
number in (0, 1) unless otherwise is indicated. The translation and the
modulation of a test function f is given by Txf(·) = f(· − x), x ∈ Rd, and
Mξf(·) = e2πiξ·f(·), ξ ∈ Rd respectively, and extended to a distribution via
duality. Dual pairing is denoted by 〈·, ·〉. For functions ϕ,ψ ∈ S (S is the
space of rapidly decreasing functions), 〈ϕ,ψ〉 =

∫
ϕψdx. The Fourier trans-

form of ψ ∈ L2(Rd) is given by Fψ(ξ) = ψ̂(ξ) =
∫
Rd e−2πixξψ(x)dx, and
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F−1φ(x) =
∫
Rd e2πixξφ(ξ)dξ, is the inverse Fourier transform of φ ∈ L2(Rd).

We denote the norm in L2 by ‖ · ‖, and ‖ · ‖∞ denotes L∞ norm. Recall,
Gelfand Shilov type space S(γ) is defined by S(γ) = proj lim

h→∞
S(γ)

h , where

S(γ)
h , h ≥ 0, is the space of smooth functions f on Rd such that

sup
α,β∈Nd

0

hα+β

α!1/γβ!1/γ
‖xαDβf(x)‖∞ < ∞.

It is a Banach space and the Fourier transform is an isomorphism of S(γ)

into itself. For fixed γ ∈ (0, 1), the space D(γ)(Ω) is defined by D(γ)(Ω) =
ind lim

K⊂⊂Ω
D(γ)(K), where Ω is an open subset in Rd and D(γ)(K) is the set

of all complex valued infinitely differentiable functions ϕ(t) supported by K
such that for every h > 0 there exists a positive constant C > 0 such that

sup
t∈K

|Dαϕ(t)| ≤ Chαα!1/γ , α ∈ Nd
0.

We call D′(γ)(Ω) the Beurling–Gevrey ultradistribution space and S ′(γ) the
Beurling–Gevrey tempered ultradistribution space.

We observe pseudodifferential operators σ(x,D) as the Weyl transforms
of symbols σ(x, ξ), i.e.

σ(x, D)f(x) =
∫

Rd

∫

Rd

σ

(
x + y

2
, ξ

)
e2πi(x−y)ξf(y)dydξ, f ∈ S(γ)(Rd). (1)

3. A Class of Symbols

Throughout this section γ ∈ (0, 1) is fixed. We consider a class of symbols
σ ∈ C∞(Rd ×Rd) satisfying:

(S1) σ(z) ≥ 1, z = (x, ξ) ∈ Rd ×Rd.

(S2) (∃C > 0) (∃η ≥ 0) such that σ(z + w) ≤ Ceη|z|γσ(w), z, w ∈ R2d.

(S3) (∀h ≥ 0) (∃C > 0) (∃s ≥ 0) such that

sup
α∈N2d

0 ,|α|≥1

∣∣∣∣∣
h|α|

α!1/γ
Dασ(z)

∣∣∣∣∣ ≤ C
σ(z)

(1 + |z|)s
, z ∈ R2d.
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(S4) σ(x, ξ) ≤ σ(x, ξ′) for all ξ, ξ′ ∈ Rd such that |ξ| ≤ |ξ′|.

Note that instead (S1) we could consider the condition σ(z) ≥ C, z ∈
R2d, for some C > 0. We put C = 1 for the sake of simplicity. Also, (S2)

implies σ(z) ≥ σ(0)
C

e−η|z|γ , z ∈ R2d.

If σ1, σ2 satisfy (S1)-(S4), then it is clear that σ1 · σ2 satisfies (S1)-(S4)
as well.

Theorem 1. The following functions satisfy conditions (S1)-(S4).

a) σ(z) =
n∑

k=0

ak〈z〉2k, z = (x, ξ) ∈ Rd ×Rd, where a0 ≥ 1, ak > 0;

b) σ(x, ξ) = (1 + |x|2 + |ξ|2)s/2, s ≥ 0, x, ξ ∈ Rd. In particular, σ(ξ) =

(1 + |ξ|2)s/2, s ≥ 0, ξ ∈ Rd;

c) σ(x, ξ) = |ξ|2 + V (x), x, ξ ∈ Rd, where

(V1) V ∈ C∞(Rd), V ≥ 1, V (x) →∞ when |x| → ∞.

(V2) (∃C > 0) (∃η > 0) such that V (x + y) ≤ Ceη|x|γV (y), x, y ∈ Rd.

(V3) (∀h ≥ 0) (∃C > 0) such that

sup
α∈Nd

0,|α|≥1

∣∣∣∣∣
h|α|

α!1/γ
DαV (x)

∣∣∣∣∣ ≤ CV (x), x ∈ Rd;

d) σ(x, ξ) = e(1+|x|2+|ξ|2)γ/2
, x, ξ ∈ Rd;

e) σ(x, ξ) = (f ∗ φ)(x, ξ), x, ξ ∈ Rd, where

f(x, ξ) =

{
eµ(|x|γ+|ξ|γ) |ξ| ≥ |ξ0| > 1
eµ|x|γ+r|ξ| |ξ| < |ξ0|,

where µ > 0, r = µ|ξ0|γ−1, and φ ∈ D(γ)(Ω), φ ≥ 0,

∫

R2d
φ(x, ξ)dxdξ =

1;

f) σ(x, ξ) = C−ϕ(x, ξ), x, ξ ∈ Rd, where ϕ ∈ S(γ)(Ω) is an even function
such that ϕ(x, ξ) ≤ ϕ(x, ξ′) if |ξ| ≤ |ξ′|, and C > supx,ξ ϕ(x, ξ) + 1.
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Remark: The function σ(z) =
n∑

k=0

akz
k, z = (x, ξ) ∈ Rd ×Rd, a0 ≥ 1,

ak > 0 satisfies the conditions (S1), (S2), (S3).

P r o o f. It is not difficult to prove a), b) and f), so we skip these parts
of the proof.

Proof of c) easily follows from the assumptions (V1), (V2) and (V3).
Note that |ξ|2 + V (x) is the symbol of the Schrödinger operator −4 + V,
with the increasing potential V (see also [16] in this context).

d) We show that σ satisfies (S3). To that end we use the Cauchy integral
formula [10, Chapter 2] for polydisc K ⊂ Cn given by

K =
n∏

j=1

Kj =
{
z = (z1, . . . , zn) | zj ∈ Kj , j = 1, . . . , n

}
,

where Kj are discs in C with the boundaries ∂Kj , j = 1, . . . , n. We have

∂ασ(z) =
α!

(2πi)2n
(2)

×
∫

∂K1

· · ·
∫

∂K2n

σ(y, η)dydη∏n
j=1(yj − xj)αj+1 ·∏n

j=1(ηj − ξj)αn+j+1 ,

where z = (x, y) ∈ C2n and ∂Kj is the circle with center zj and radius
r < 1/

√
2n. Let r = 1/(2n). From (2) it follows

|∂ασ(z)|
α!

≤ 1
(2πi)2n(1/(2n))|α|+1

×(2πi)2n max
θj∈[0,2π],j=1,...,2n

e(1+|x1+ 1
2n

eθ1i|2+···+|ξn+ 1
2n

eθ2ni|2)γ/2

≤ 1
(1/(2n))|α|+1

e(1+|x|2+|ξ|2+ 1
n

)γ/2 ≤ C
1

(1/(2n))|α|+1
e(1+|x|2+|ξ|2)γ/2

.

Since (α!)ε > a|α| for all a, ε > 0 and |α| large enough, there exists C > 0
such that, for every h ≥ 0,

h|α|

α!1/γ
≤ C

1
α!

, for γ ∈ (0, 1).

This implies (S3). The function σ obviously satisfies (S1), (S2) and (S4).
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e) Conditions (S1) and (S2) are obviously satisfied. We show (S3) for
|ξ| ≥ |ξ0|. Assume, for simplicity, that d = 1, and Ω = [−1, 1]× [−1, 1]. Then
we have ∣∣∣∣∣

h|α|+|β|

α!1/γβ!1/γ
Dα

xDβ
ξ σ(x, ξ)

∣∣∣∣∣

=

∣∣∣∣∣
h|α|+|β|

α!1/γβ!1/γ

∫

R

∫

R

(
eµ(|y|γ+|η|γ)Dα

xDβ
ξ φ(x− y, ξ − η)

)
dydη

∣∣∣∣∣

≤ C

∫

|x−y|≤1

∫

|ξ−η|≤1
eµ(|y|γ+|η|γ)dydη ≤ C

∫

|y|≤1

∫

|η|≤1
eµ(|x−y|γ+|ξ−η|γ)dydη

≤ Ceµ((|x|+1)γ+(|ξ|+1)γ) ≤ C

∫

|y|≤1

∫

|η|≤1
eµ((|x|−y+2)γ+(|ξ|−η+2)γ)φ(y, η)dydη

≤ C

∫

R

∫

R
eµ(|x−y|γ+|ξ−η|γ)φ(y, η)dydη ≤ Cσ(x, ξ),

that is, σ satisfies (S3). We now show (S4) for |ξ0| ≥ |ξ|. If |ξ0| ≥ |ξ| ≥ 1,
after an easy computation, we obtain

σ(x, ξ) =
2
r
er|ξ|

∫

R
eµ(|x−y|)γ

(∫ 1

0
sinh(rη)φ(x− y, η)dη

)
dy.

This implies (S4). Let now |ξ| ≤ |ξ′| ≤ 1. If, for example, −1 ≤ ξ′ ≤ −ξ ≤ 0,
then

σ(x, ξ) =
∫

R

eµ|x−y|γ

erξ

1∫

−ξ

f(x, η)dη + e−rξ

1∫

ξ

f(x, η)dη


 dy,

where f(x, η) = er|η|φ(x, η). Hence, for any fixed x ∈ R, we have

σ(x, ξ′)− σ(x, ξ)

≥ C


erξ′

1∫

−ξ′

f(x, η)dη + e−rξ′



−ξ∫

ξ′

f(x, η)dη +
−ξ′∫

−ξ

f(x, η)dη +
1∫

−ξ′

f(x, η)dη




− erξ



−ξ′∫

−ξ

f(x, η)dη +
1∫

−ξ′

f(x, η)dη


− e−rξ



−ξ′∫

ξ

f(x, η)dη +
1∫

−ξ′

f(x, η)dη
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= 2(cosh rξ′ − cosh rξ)
1∫

−ξ′

f(x, η)dη +
(
e−rξ′ − erξ

) −ξ′∫

−ξ

f(x, η)dη+

+e−rξ′
−ξ∫

ξ′

f(x, η)dη − e−rξ

−ξ′∫

ξ

f(x, η)dη = I1 + I2 + I3.

I1 and I2 are obviously nonnegative. After a change of variables we obtain

I3 = e−rξ′
−ξ∫

ξ′

f(x, η)dη − e−rξ

−ξ∫

ξ′

f(x, η)dη ≥ 0.

The other cases can be treated in a similar way.

4. An Application

In this section we observe the polynomial symbol P (ξ) =
∑
|α|≤s aαξα,

aα ∈ R, assuming that it satisfies (S1) and (S4). Note that the symbol
P (ξ) obviously satisfies (S2) and (S3). In particular, we consider the sym-
bol σ(ξ) = (1 + |ξ|2)s/2 = 〈ξ〉s, s ≥ 0, ξ ∈ Rd (see Theorem 1 b)). Then the
corresponding pseudodifferential operator given by (1) is called the Bessel
potential of order s. It is known that the Bessel potentials define isomor-
phisms between Sobolev spaces [18]. However, the question which operators
establish isomorphisms between modulation spaces is still open and impor-
tant in time-frequency analysis. In this section we prove that the Weyl
transforms of P (ξ), and 〈ξ〉s, s ≥ 0, establish isomorphism between certain
modulation spaces.

We recall the notion of moderate weight function. A locally integrable
function v is called submultiplicative weight if v(z1 + z2) ≤ v(z1)v(z2),
z1, z2 ∈ R2d, and a locally integrable function m is moderate weight with
respect to a submultiplicative weight v if

m(x + y, ξ + η) ≤ Cv(x, ξ)m(y, η), x, y, ξ, η ∈ Rd.

Weights m1 and m2 are equivalent if C1m1 ≤ m2 ≤ C2m1 for some posi-
tive constants C1 and C2. Every submultiplicative weight is equivalent to a
continuous weight.



64 S. Pilipović, N. Teofanov

Any function w which satisfies (S1)-(S4) is moderate with respect to
eη(|x|γ+|ξ|γ). In particular, σ(ξ) = 〈ξ〉s, s ≥ 0, ξ ∈ Rd, the symbol of the
Bessel potential of order s is a moderate weight.

Definition 1.Let w be a moderate weight, 1 ≤ p, q < ∞ and 0 6≡ g ∈ S.
Modulation space Mw,t

p,q is given by

Mw,t
p,q = {f ∈ S ′ : ‖f‖Mw,t

p,q
< ∞},

where

‖f‖Mw,t
p,q

=

[∫

Rd

(∫

Rd
|〈TxMξg, f〉|pw(x, ξ)p(1 + |x|+ |ξ|)tpdx

)q/p

dξ

]1/q

.

Modulation spaces are Banach spaces [7, Theorem 11.3.5.] independent
of the choice of the analyzing function 0 6≡ g ∈ S [2]. It can be shown
that M1,t

2,2 = Ht
2 ∩ Lt

2, where Ht
2 is Sobolev space and Lt

2 is weighted L2

space with the weight (1 + |x|)t [4]. Therefore F(M1,t
2,2) = M1,t

2,2. Obviously
M1,t+µ

2,2 ⊂ M1,t
2,2, for any µ > 0.

Proof of the following theorem can be found in [14], [16].

Theorem 2.Let 1 ≤ p, q < ∞, t ≥ 0 and let σ(x,D) be the Weyl
transform of a symbol σ(x, ξ) satisfying (S1)-(S4). For every f ∈ Mσ,t

p,q

there exist positive constants C1, C2 and C3 such that

C1‖f‖Mσ,t
p,q
≤ ‖σ(x, D)f‖

M1,t
p,q

+ C2‖f‖M1,0
p,q
≤ C3‖f‖Mσ,t

p,q
. (3)

If, additionally, σ(z) ≥ C〈z〉µ for |z| ≥ K, for some positive constants
C, µ and K, and if σ(x,D)f ∈ M1,s

2,2 , then f belongs to M1,s+µ
2,2 .

Immediate consequence of Theorem 2 is the continuity of the mapping
σ : Mσ,t

p,q 7→ M1,t
p,q , and σ(Mσ,t

p,q ), the image of Mσ,t
p,q under σ, is a Banach

subspace of M1,t
p,q .

It is an open question to find the conditions under which the operator
σ(x,D) isomorphically maps Mσ,t

p,q onto M1,t
p,q . Here we give only a partial

answer, namely we observe operators of the form
∑
|α|≤s aαDα, aα ∈ R,

whose symbols satisfy (S1)-(S4). More general cases, including the so called
ultra-modulation spaces [13] will be considered in a separate paper.

If σ = σ(ξ), ξ ∈ Rd (σ = σ(x), x ∈ Rd, respectively), we denote the
corresponding modulation space by M

σ(ξ),t
p,q (Mσ(x),t

p,q respectively). If P (·) =
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∑

|α|≤s

aα(·)α, aα ∈ R, s ≥ 0, then F
(
M

P (x),t
p,q

)
= M

P (−ξ),t
p,q [3, page 365.].

Lemma 1.Let there be given P (ξ) =
∑

|α|≤s

aαξα, aα ∈ R, satisfying (S4)

and P (ξ) ≥ C(1+|ξ|)s, ξ ∈ Rd, for some C > 0 (Take C = 1 as in (S1).) Let
f ∈ M1,t

2,2. Then there exists a function f1 ∈ M
P (ξ),t
2,2 such that P (D)f1 = f.

In particular, if σ(ξ) = 〈ξ〉s, s ≥ 0, and f ∈ M1,t
2,2, then f1 ∈ M

σ(ξ),t
2,2 .

P r o o f. We formally put P (D)f1 = f ∈ M1,t
2,2. Since f̂ ∈ M1,t

2,2 ⊂ L2

and f̂(ξ)
P (ξ) ∈ L2 it follows f̂1 ∈ L2, i.e. f1 ∈ L2. We than have

〈TxMξg, f〉 = 〈TxMξg, P (D)f1〉
= e2πiξx

∫

Rd
P (−Dt)

(
e−2πiξtḡ(t− x)

)
f1(t)dt

= e2πiξx
∫

Rd

∑

|α|≤s

aα(−Dt)α
(
e−2πiξtḡ(t− x)

)
f1(t)dt

= e2πiξx
∑

|α|≤s

aα

∫

Rd

∑

β≤α

(
α

β

)
(−Dt)α−βe−2πiξt(−Dt)β ḡ(t− x)f1(t)dt

= e2πiξx
∑

|α|≤s

aαξα
∫

Rd
e−2πiξtḡ(t− x)f1(t)dt

+ e2πiξx
∑

|α|≤s

aα

∑

1≤|β|, β≤α

(
α

β

) ∫

Rd
ξα−βe−2πiξt(−Dt)β ḡ(t− x)f1(t)dt

= P (ξ)〈TxMξg, f1〉+
∑

|α|≤s

aα

∑

1≤|β|, β≤α

(
α

β

)
ξα−β〈TxMξD

β
t g, f1〉

= P (ξ)〈TxMξg, f1〉+
∑

1≤|β|≤s

Pβ(ξ)〈TxMξD
β
t g, f1〉,

where Pβ(ξ) =
∑
|j|≤s−|β| bβ,jξ

j , 1 ≤ |β| ≤ s.

If g ∈ S, then Dβ
t g ∈ S wherefrom

‖〈TxMξ(−Dt)βg, f1〉Pβ(ξ)(1 + |x|2 + |ξ|2)t/2‖

≤ Cβ‖〈TxMξg, f1〉〈ξ〉s−|β|(1 + |x|2 + |ξ|2)t/2‖.
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This implies
∞ > ‖〈TxMξg, f〉(1 + |x|2 + |ξ|2)t/2‖ (4)

≥ ‖〈TxMξg, f1〉P (ξ)(1 + |x|2 + |ξ|2)t/2‖
−‖

∑

1≤|β|≤s

Cβ〈TxMξg, f1〉〈ξ〉s−|β|(1 + |x|2 + |ξ|2)t/2‖.

In order to prove that f1 ∈ M
P (ξ),t
2,2 , we split Rd

ξ in orthants. For the sake of
simplicity we show the two dimensional case and note that the case d > 2
can be treated in a completely analogous way.

Let R2
ξ = R2

(ξ+
1 ,ξ+

2 )

⋃
R2

(ξ−1 ,ξ+
2 )

⋃
R2

(ξ−1 ,ξ−2 )

⋃
R2

(ξ+
1 ,ξ−2 )

, where ξ+
j (ξ−j ), j =

1, 2, are non-negative (resp. non-positive) real numbers. Consider, for ex-
ample, R2

(ξ+
1 ,ξ−2 )

. We take h = (h1, h2) where h1 > 0, h2 < 0 are chosen such
that

1
2
P (ξ +h)(1+ |x|2 + |ξ +h|2)t/2 ≥

∑

1≤|β|≤s

Cβ〈ξ +h〉s−|β|(1+ |x|2 + |ξ +h|2)t/2

holds for all ξ ∈ R2
(ξ+

1 ,ξ−2 )
, x ∈ R2. By (4) we have

∞ > ‖〈TxMξ+hg, f〉(1 + |x|2 + |ξ + h|2)t/2‖L2(R2×R2

(ξ+
1

,ξ−
2

)
)

≥ ‖〈TxMξ+hg, f1〉P (ξ + h)(1 + |x|2 + |ξ + h|2)t/2‖L2(R2×R2

(ξ+
1

,ξ−
2

)
)

− ‖
∑

1≤|β|≤s

Cβ〈TxMξ+hg, f1〉〈ξ + h〉s−|β|(1 + |x|2 + |ξ + h|2)t/2‖L2(R2×R2

(ξ+
1

,ξ−
2

)
)

≥ 1
2
‖〈TxMξ+hg, f1〉P (ξ + h)(1 + |x|2 + |ξ + h|2)t/2‖L2(R2×R2

(ξ+
1

,ξ−
2

)
).

After a change of variables we obtain f1 ∈ M
P (ξ),t
2,2 (R2×R2

(ξ+
1 ,ξ−2 )

). The same
procedure could be done for all of the other orthants, so we conclude that
f1 ∈ M

P (ξ),t
2,2 if f ∈ M1,t

2,2.

Theorem 3.Let there be given P (ξ) =
∑

|α|≤s

aαξα, aα ∈ R, satisfying

(S4) and P (ξ) ≥ C(1 + |ξ|)s, ξ ∈ Rd, for some C > 0. The correspond-
ing pseudodifferenital operator defined by (1) establishes an isomorphism
between M

P (ξ),t
2,2 and M1,t

2,2, t ≥ 0. In particular, the Bessel potential of order
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s, s ≥ 0, establishes an isomorphism between M
σ(ξ),t
2,2 and M1,t

2,2, t ≥ 0, where
σ(ξ) = 〈ξ〉s.

P r o o f. The proof that the mapping is injective is based on the
properties of the Fourier transform. Let P (D) be the Weyl transform of the
symbol P (ξ), f ∈ M

P (ξ),t
2,2 , and let P (D)f = 0. Then we have

P (D)f(x) =
∫

Rd

∫

Rd
e2πi(x−y)ξP (ξ)f(y)dydξ = F−1

(
P (ξ)f̂(ξ)

)
(x) = 0

which implies P (ξ)f̂(ξ) = 0. Since P (ξ) ≥ 1 we have f̂(ξ) = 0, wherefrom
f = 0.

Let f belong to M1,t
2,2. We define f1 by f̂1 := f̂

P . It remains to show that

f1 ∈ M
P (ξ),t
2,2 and P (D)f1 = f. As already mentioned in the proof of Lemma

1, f1 ∈ L2. Since

F(P (D)f1)(ξ) = P (ξ)f̂1(ξ) = f̂(ξ),

and the Fourier transforms in an isomorphism on M1,t
2,2 we obtain P (D)f1 =

f. Finally, f1 ∈ M
P (ξ),t
2,2 by Lemma 1, which completes the proof.
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