DISTRIBUTION SEMIGROUPS ON \mathcal{K}_{1}

M.MIJATOVIĆ, S.PILIPOVIĆ

(Presented at the 8th Meeting, held on November 22, 2002)
Abstract. Distribution semigroup in the sense of Wang and Kunstmana and the properties of infinitesimal generator are considered with in exponentially bounded distributions. Results are applied on a class of equations of the form $\frac{\partial}{\partial t} 4-A n=f, f \in \mathcal{K}_{1}^{+}(L(e))$, where $D(A) \subset L^{\infty}(\mathbb{R})$ or $D(A) \subset E=C_{b}(\mathbb{R})$.

AMS Mathematics Subject Classification (2000): 47D06, 47A10, 46F10
Key Words: Distribution semigroups, quasi-distribution semigroups, integrated semigroups, infinitesimal generator.

0. Introduction

Distribution semigroups of Lions [12] and, later introduced, n-times integrated semigroups of Arendt [2], have been studied by many authors. The aim has been applications to Cauchy problems with the luck of regularity conditions or with non-densely defined infinitesimal generators. The references contain enough informations in these sense. Wang [23] and Kunstmann [11] introduced quasi-distribution semigroups and exponentially bounded distribution semigroups which we call (DS) and (EDS).

In this paper we analyze the properties of the infinitesimal generator of such a semigroup within distribution theory. As a basic space we use the test function space \mathcal{K}_{1}. This is a natural framework for exponentially bounded distributions. The density of $D(A)$ in E and of a set $\{S(\varphi, x) ; x \in$ $\left.D(A), \varphi \in \mathcal{D}_{0}\right\}$ in $D(A)$, where S is a (EDS) with the infinitesimal generator A, is used in solving equations of the form $\frac{\partial}{\partial t} u-A u=f$, where $f \in \mathcal{K}_{1}^{\prime}(D(A)), A=\sum_{j=0}^{k} a_{j} \frac{\partial^{j}}{\partial x^{j}}, \sup \operatorname{Re}(p(x))<\infty, p(x)=\sum_{j=0}^{k} a_{j}(i x)^{j}$ and $D(A) \subset E=L^{\infty}(\mathbb{R})$ or $D(A) \subset E=C_{b}(\mathbb{R})$.

1. Preliminaries

We denote by E a Banach space with the norm $\|\cdot\| ; L(E)=L(E, E)$ is the space of bounded linear operators from E into E and $C(\mathbb{R}, L(E))$ is the space continuous mappings from \mathbb{R} into $L(E)$. We refer to [18-19] and [21] for the definitions of spaces $\mathcal{D}(\mathbb{R}), \mathcal{E}(\mathbb{R}), \mathcal{S}(\mathbb{R})$, their strong duals and $\mathcal{S}^{\prime}(E)=L(\mathcal{S}(\mathbb{R}), E)$. Moreover, we refer to $[21]$ for the space

$$
\mathcal{S}_{+}=\left\{\varphi ;\left|t^{k} \varphi^{(\nu)}(t)\right|<C_{k, \nu}, t \in[0, \infty), k, \nu \in \mathbb{N}_{0}\right\}\left(\mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)
$$

and its dual \mathcal{S}_{+}^{\prime}, which consists of tempered distributions supported by $[0, \infty)$. Recall ([7]), the space of exponentially decreasing test functions on the real line \mathbb{R} is defined by $\mathcal{K}_{1}(\mathbb{R})=\left\{\varphi ; e^{k|t|}\left|\varphi^{(\nu)}(t)\right|<C_{k, \nu}, t \in \mathbb{R}, k, \nu \in\right.$ $\left.\mathbb{N}_{0}\right\}$. This space has the same topological properties as $\mathcal{S}(\mathbb{R})$. The space $\mathcal{K}_{1}\left(\mathbb{R}^{2}\right)$ is defined in an appropriate way. The strong dual of $\mathcal{K}_{1}(\mathbb{R}), \mathcal{K}_{1}^{\prime}(\mathbb{R})$, is the space of exponential distributions. The space $\mathcal{K}_{1+}^{\prime} \subset \mathcal{K}_{1}^{\prime}(\mathbb{R})$ consists of distributions supported by $[0, \infty)$. It is the dual space to $\mathcal{K}_{1+}=$ $\left\{\varphi ; e^{k|t|}\left|\varphi^{(\nu)}(t)\right|<C_{k, \nu}, t \in[0, \infty), k, \nu \in \mathbb{N}_{0}\right\}$ which has the same topological properties as \mathcal{S}_{+}. Spaces $\mathcal{K}_{1}^{\prime}(E), \mathcal{K}_{1+}^{\prime}(E)$ are defined in an appropriate way. Their properties, similar to $\mathcal{S}^{\prime}(E)$ and $\mathcal{S}_{+}^{\prime}(E)$, are given in [15]. Note,

$$
\begin{equation*}
f \in \mathcal{K}_{1}^{\prime}(\mathbb{R}) \text { if and only if } e^{-r|x|} f \in \mathcal{S}^{\prime}(\mathbb{R}) \text { for some } r \in \mathbb{R} \tag{1}
\end{equation*}
$$

Let $S:[0, \infty) \rightarrow L(E)$ be strongly continuous. Then it is exponentially bounded at infinity if there exist $M \geq 0$ and $\omega \geq 0$ such that

$$
\begin{equation*}
\|S(t)\| \leq M e^{\omega t}, \quad t \geq 0 \tag{2}
\end{equation*}
$$

In this case $\varphi \mapsto \int_{0}^{\infty} S(t) \varphi(t) d t, \varphi \in \mathcal{K}_{1}(\mathbb{R})$, defines an element of $\mathcal{K}_{1+}^{\prime}(L(E))$.

We need a representation for elements of $\mathcal{K}_{1+}^{\prime}(L(E))$. This is given in part a) of the next theorem.

Theorem 1. Let $S \in \mathcal{K}_{1+}^{\prime}(L(E))$.
a) There exists $n_{0} \in \mathbb{N}$ such that for every $n \geq n_{0}$ there exist a strongly continuous function $F_{n}: \mathbb{R} \rightarrow L(E), \operatorname{supp} F_{n} \subset[0, \infty)$ and positive constants m_{n} and C_{n}, such that
$\left\|F_{n}(t)\right\| \leq C_{n} e^{m_{n} t}, t \geq 0, S=F_{n}^{(n)}\left(^{(n)}\right.$ is the distributional n-th derivative).
b) Let $\psi, \varphi \in \mathcal{K}_{1}(\mathbb{R})$. Then

$$
\begin{gather*}
\langle S(t,\langle S(s, x), \psi(s)\rangle), \varphi(t)\rangle \\
=\int S_{n_{0}}\left(t, S_{n_{0}}(s, x)\right) \psi^{\left(n_{0}\right)}(s) \varphi^{\left(n_{0}\right)}(t) d s d t . \tag{3}
\end{gather*}
$$

c) Let $\varphi(t, s) \in \mathcal{K}_{1}\left(\mathbb{R}^{2}\right)$ and $\varphi_{\nu}(t)$, $\psi_{\nu}(s)$ be sequences in $\mathcal{D}(\mathbb{R})$ such that the product sequence $\varphi_{\nu}(t) \cdot \psi_{\nu}(s)$ converge to $\varphi(t, s)$ in $\mathcal{K}_{1}\left(\mathbb{R}^{2}\right)$ as $\nu \rightarrow \infty$. Then the limit

$$
\lim _{\nu \rightarrow \infty}\left\langle S\left(t,\left\langle S(s, x), \psi_{\nu}(s)\right\rangle\right), \varphi_{\nu}(t)\right\rangle, \varphi \in \mathcal{K}_{1}\left(\mathbb{R}^{2}\right)
$$

exists and defines an element of $\mathcal{K}_{1}^{\prime}\left(\mathbb{R}^{2}\right)$ which we denote by $S(t, S(s, x))$ i.e.,

$$
\begin{equation*}
\langle S(t, S(s, x)), \varphi(t, s)\rangle=\lim _{\nu \rightarrow \infty}\left\langle S\left(t,\left\langle S(s, x), \psi_{\nu}(s)\right\rangle\right), \varphi_{\nu}(t)\right\rangle, \varphi \in \mathcal{K}_{1}\left(\mathbb{R}^{2}\right) . \tag{4}
\end{equation*}
$$

d) Let $\varphi \in \mathcal{K}_{1}\left(\mathbb{R}^{2}\right)$ and $r, p \in \mathbb{N}$. We have

$$
\begin{gather*}
\left\langle\frac{\partial^{r}}{\partial t^{r}} S(t, S(s, x)), \varphi(t, s)\right\rangle=(-1)^{r}\left\langle S(t, S(s, x)), \frac{\partial^{r}}{\partial t^{r}} \varphi(t, s)\langle;\right. \tag{i}\\
\left\langle\frac{\partial^{p}}{\partial s^{p}} S(t, S(s, x)), \varphi(t, s)\right\rangle=\left\langle S\left(t, \frac{\partial^{p}}{\partial s^{p}} S(s, x)\right), \varphi(t, s)\right\rangle \tag{ii}\\
=(-1)^{p}\left\langle S(t, S(s, x)), \frac{\partial^{p}}{\partial s^{p}} \varphi(t, s)\right\rangle
\end{gather*}
$$

Proof. Part a) can be proved in the same way as in the case of scalar valued distributions.

Parts b), c) and d) are consequences of the continuity and linearity of $S \in \mathcal{K}_{1+}^{\prime}(L(E))$, more precisely of the generalized Fubini-type theorem.

Using (1) one can prove easily:
$f \in \mathcal{K}_{1+}^{\prime}(L(E))$ if and only if $e^{-r|x|} f \in \mathcal{S}_{+}^{\prime}(L(E))$ for some $r \geq 0$.
Let f satisfy (5). Then the Laplace transformation of f is defined by

$$
\mathcal{L}(f)(\lambda)=\widehat{f}(\lambda)=\left\langle f(t), e^{-\lambda t} \eta(t)\right\rangle, R e \lambda>r,
$$

where $\eta \in \mathbb{C}^{\infty}(\mathbb{R})$, supp $\eta=[-\varepsilon, \infty), \varepsilon>0$ and $\eta \equiv 1$ on $[0, \infty)$. As in the case of tempered distributions, one can easily show that this definition does not depend on η (cf.[21]).If $f \in L^{1}([0, \infty), E)$ (which means $\left\|\int_{0}^{\infty} f(t) d t\right\|_{E}<$ ∞, then

$$
\widehat{f}(\lambda)=\int_{0}^{\infty} e^{-\lambda t} f(t) d t=\left\langle f(t), e^{-\lambda t}\right\rangle, \quad \operatorname{Re} \lambda>0
$$

where integral is taken in Bochner's sense.
The convolution of $f \in \mathcal{K}_{1+}^{\prime}(E)$ and $g \in \mathcal{K}_{1+}^{\prime}(\mathbb{R})$ is defined by $\langle f *$ $g, \varphi\rangle=\langle f, \check{g} * \varphi\rangle, \varphi \in \mathcal{K}_{1}(\mathbb{R}),(\check{g}(t)=g(-t))$. One can prove easily that $f * g=g * f \in \mathcal{K}_{1+}^{\prime}(E)$.

In the sequal, we will use the family of distributions

$$
f_{\alpha}(t)= \begin{cases}\frac{H(t) t^{\alpha-1}}{\Gamma(\alpha)}, & t \in \mathbb{R}, \alpha>0 \\ f_{\alpha+n}^{(n)}(t), & t \in \mathbb{R}, \alpha \leq 0, \alpha+n>0, n>0\end{cases}
$$

where H is Heaviside's function. Note $f_{-1}=\delta^{\prime}$.
Let $S \in \mathcal{K}_{1+}^{\prime}(L(E))$ and $R(\lambda)=\mathcal{L}(S)(\lambda), R e \lambda>\omega(c f$. [2]). Then $(R(\lambda))_{R e \lambda \geq \omega}$ is a pseudoresolvent if and only if there exists $n_{0} \in \mathbb{N}$ such that $S_{n_{0}}(t)=\left(S * f_{n_{0}}\right)(t), t \in \mathbb{R}$, is continuous, $\operatorname{supp} S_{n_{0}} \subset[0, \infty)$ and, for $\varphi, \psi \in \mathcal{K}_{1}$,

$$
\begin{gather*}
\langle S(t, S(s, x)), \varphi(t) \psi(s)\rangle=\left\langle\left(S_{n_{0}}\left(t, S_{n_{0}}(s, x)\right)\right)^{\left(n_{0}, n_{0}\right)}, \varphi(t) \psi(s)\right\rangle \\
=\left\langle\frac { 1 } { (n _ { 0 } - 1) ! } \left(\int_{t}^{t+s}(t+s-r)^{n_{0}-1} S_{n_{0}}(r, x) d r\right.\right. \tag{6}\\
\left.\left.-\int_{0}^{s}(t+s-r)^{n_{0}-1} S_{n_{0}}(r, x) d r\right)^{\left(n_{0}, n_{0}\right)}, \varphi(t) \psi(s)\right\rangle
\end{gather*}
$$

The next definition is equivalent to the one given by Kunstmann and Wang, with \mathcal{D} instead of \mathcal{K}_{1}.

Definition 1.Let $S \in \mathcal{K}_{1+}^{\prime}(L(E))$. Then S is called exponentially bounded distribution semigroup ($E D S$), in short, if there exists $n_{0} \in \mathbb{N}$, such that $S_{n_{0}}=S * f_{n_{0}}$ is continuous on \mathbb{R}, supported by $[0, \infty)$, exponentially bounded, satisfies (6) and it is non-degenerate: $\langle S(t, x), \varphi(t)\rangle=0$ for all $\varphi \in \mathcal{K}_{1}$, implies $x=0$.

We will also use the notation $(S(t))_{t \geq 0}$ for an (EDS). If (6) holds for $\psi \in$ $\mathcal{D}(-\infty, a)$ for some $a>0,(S(t))_{t \geq 0}$ is called a local distribution semigroup. This definition coincides with the definition of (DS) of Kunstmann and Wang but with \mathcal{D} instead of \mathcal{K}_{1}.

Also the next definition is equivalent to the known one of cited authors.
Definition 2. A closed operator A is the generator of an $(E D S)(S(t))_{t \geq 0}$ if $(a, \infty) \subset \rho(A)$ for some $a \in \mathbb{R}$ so that $(\lambda I-A)^{-1}=\mathcal{L}(S)(\lambda)$, Re $\lambda>a$ holds and $\lambda \mapsto(\lambda I-A)^{-1}$ is injective, where the Laplace transformation is understood in the sense of distribution theory.

As in case with \mathcal{D} instead of \mathcal{K}_{1}, one can simply prove the next theorem.
Theorem 2. Let A be a generator of a $(E D S)(S(t))_{t \geq 0}$. Then, for all $\varphi \in \mathcal{K}_{1}$, we have
a) $A\langle S(t, x), \varphi(t)\rangle=\langle S(t, A x), \varphi(t)\rangle, \quad x \in D(A)$.
b) $\langle S(t, x), \varphi(t)\rangle \in D(A), x \in E$.
c) $\langle S(t, x), \varphi(t)\rangle=\left\langle f_{1}(t, x), \varphi(t)\right\rangle+\left\langle\left(f_{1} * S\right)(t, A x), \varphi(t)\right\rangle, x \in D(A)$ and

$$
A\left\langle\left(f_{1} * S\right)(t, x), \varphi(t)\right\rangle=\langle S(t, x), \varphi(t)\rangle-\left\langle f_{1}(t, x), \varphi(t)\right\rangle, x \in E .
$$

In particular

$$
A\langle S(t, x), \varphi(t)\rangle=-\left\langle S(t, x), \varphi^{\prime}(t)\right\rangle-\varphi(0) x, \quad x \in E .
$$

We refer to Definition 6.1 in [12] for a distribution semigroup, (DS-L) in short and exponentially distribution semigroups (EDS-L) in short in the sense of Lions. If $D(A)$ is dense in E, then these notions coincide with (DS) and (EDS).

2. Comments on generators

Let $(S(t))_{t \geq 0}$ be a (DS) or (EDS). Recall $S(T, \cdot), T \in \mathcal{E}^{\prime}(\mathbb{R})$ is defined as follows:
$y=S(T, x)$, if $S(T * \psi, x)=S(\phi, y), \phi \in \mathcal{D}_{0}$. The set of $x \in E$ for which this holds is denoted by $D(T)$. It follows that the domain of $S\left(-\delta^{\prime}, \cdot\right)$ is $D(A)$ and $S\left(-\delta^{\prime}, x\right)=A x, x \in D(A)$.

Let $S_{n}(\cdot, x)=S(\cdot, x) * f_{n}, x \in E$ be an n-times integrated semigroup determined by the (EDS), $(S(t))_{t \geq 0}$ with the infinitesimal generator A.

One can simply prove

$$
\begin{aligned}
& S_{n}(t, x)=\lim _{\nu \rightarrow \infty}\left\langle S_{n}(s, x), \rho_{\nu}(t-s)\right\rangle, \quad t \geq 0, \\
& S_{n}\left(\varphi^{(n)}, x\right)=(-1)^{n} S(\varphi, x), \varphi \in \mathcal{D}_{0}, x \in E,
\end{aligned}
$$

where $\left\{\rho_{\nu}\right\}$ is δ sequences in $\mathcal{D}_{0},\left(\rho_{\nu} \rightarrow \delta, \nu \rightarrow \infty\right)$.
Theorem 3. Let $(S(t))_{t \geq 0}$ be an (EDS) and $\left(S_{n}(t)=\left(S * f_{n}(t)\right)_{t \geq 0}\right.$ be an n-times integrated exponentially bounded semigroup, $n \in \mathbb{N}_{0}$ with the infinitesimal generator A. Then
a) $D(S(f))=D\left(S_{n}\left(f^{(n)}\right)\right), \quad f \in \mathcal{E}^{\prime}(\mathbb{R}), \operatorname{supp} f \subset[0, \infty)$ and

$$
\begin{aligned}
& S_{n}\left(f^{(n)}, x\right)=(-1)^{n} S(f, x), \quad x \in D(S(f)), \\
& S_{n}(h, x)=S_{n}(\delta(t-h), x), \quad x \in E, \quad h>0,
\end{aligned}
$$

In particular

$$
\begin{gathered}
(-1)^{n} S_{n}\left(\delta^{(n)}, x\right)=x, \quad x \in E, \\
(-1)^{n} S_{n}\left(-\delta^{(n+1)}, x\right)=A x, \quad x \in D(A) .
\end{gathered}
$$

b)

$$
\begin{equation*}
A x=(n+1)!\lim _{h \downarrow 0} \frac{S_{n}(h) x-\frac{h^{n}}{n!} x}{h^{n+1}}, x \in D(A) . \tag{7}
\end{equation*}
$$

Proof. We will prove only b). Let $\varphi \in \mathcal{D}$. Since,

$$
\frac{(n+1)!}{h^{n+1}}\left(\varphi(h)-\frac{h^{n}}{n!} \varphi^{(n)}(0)\right) \rightarrow \varphi^{(n+1)}(0), \quad \text { as } \quad h \rightarrow 0^{+},
$$

it follows

$$
\frac{(n+1)!}{h^{n+1}}\left\langle\delta(t-h)-\frac{h^{n}}{n!}(-1)^{n} \delta^{(n)}(t), \varphi(t)\right\rangle \rightarrow
$$

$$
\rightarrow(-1)^{n+1}\left\langle\delta^{(n+1)}(t), \varphi(t)\right\rangle, \quad \varphi \in \mathcal{D} \text { as } h \rightarrow 0^{+} .
$$

Then, for $x \in D(A)$ we have,

$$
\begin{gathered}
(n+1)!\lim _{h \downarrow 0} \frac{S_{n}(h, x)-\frac{h^{n}}{n!} x}{h^{n+1}}=(n+1)!\lim _{h \downarrow 0} \frac{S_{n}(\delta(t-h), x)-S_{n}\left(\frac{h^{n}}{n!}(-1)^{n} \delta^{(n)}(t), x\right)}{h^{n+1}} \\
=(n+1)!\lim _{h \downarrow 0} \frac{S_{n}\left(\delta(t-h)-\frac{h^{n}}{n!}(-1)^{n} \delta^{(n)}(t), x\right)}{h^{n+1}} \\
=S_{n}\left((-1)^{n+1} \delta^{(n+1)}(t), x\right)=S\left(-\delta^{\prime}, x\right)=A x .
\end{gathered}
$$

Theorem 4. Let $(S(t))_{t \geq 0}$ be an (EDS) with the infinitesimal generator A and $F=\left\{S(\varphi, x), x \in D(A), \varphi \in \mathcal{D}_{0}\right\}$. Then F is dense in $D(A)$.

Proof. Let $x \in D(A)$. Since

$$
S\left(-\delta_{\nu}^{\prime}, x\right)=\lim _{h \downarrow 0}\left\langle\frac{S(t+h, x)-S(t, x)}{h}, \delta_{\nu}(t)\right\rangle,
$$

there exists a sequence $\left(h_{\nu}\right)_{\nu \in \mathbb{N}}, h_{\nu} \rightarrow 0^{+}$, such that

$$
\left\langle\frac{S\left(t+h_{\nu}, x\right)-S(t, x)}{h_{\nu}}, \delta_{\nu}(t)\right\rangle \rightarrow 0, \nu \rightarrow \infty
$$

and therefore

$$
\left\langle S\left(t+h_{\nu}, x\right)-S(t, x), \delta_{\nu}(t)\right\rangle \rightarrow 0, \nu \rightarrow \infty
$$

But we have $\left\langle S(t, x), \delta_{\nu}(t)\right\rangle \rightarrow x, \nu \rightarrow \infty$, which implies that

$$
\left(\left\langle S(t, x), \delta_{\nu}(t-h)\right\rangle\right)_{\nu \in \mathbb{N}}
$$

is a sequence in F which converges to x. Thus F is dense in $D(A)$.
Theorem 4 implies that there exists a closed subspace E_{0} of E such that $(S(t))_{t \geq 0}$ is an (EDS -L) on E_{0}, where E_{0} is the closure in E of the set $F=\left\{S(\varphi, x) ; x \in D(A), \varphi \in \mathcal{D}_{0}\right\}$.

The following theorem is proved by Wang and Kunstmann. We reformulate it with \mathcal{K}_{1} instead of \mathcal{D}.

Theorem 5. Let $(S(t))_{t \geq 0}$ be an (EDS) with the infinitesimal generator A. Then the restriction of $(S(t))_{t \geq 0}$ on $E_{0} \times \mathcal{K}_{1},\left(S_{\mid E_{0} \times \mathcal{K}_{1}}\right)$, is an $(E D S-L)$.

3. Applications

Example. Let $E=C_{b}(\mathbb{R})$, or $L^{\infty}(\mathbb{R})$ and A be defined by $A f=$ $\sum_{j=0}^{k} \alpha_{j} D^{j} f$, where $D^{j}=\frac{\partial^{j}}{\partial x^{j}}, \alpha_{0}, \ldots, \alpha_{k} \in \mathbb{C}, p(x)=\sum_{j=0}^{k} \alpha_{j}(i x)^{j}, k \geq 1, \alpha_{k} \neq$ $0, \sup _{x \in \mathbb{R}} \operatorname{Re}(p(x))<\infty$, where $D(A)=\left\{f \in E, \sum_{j=0}^{k} \alpha_{j} D^{j} f \in E\right.$, distributionally $\}$. It is known that $D(A)$ is not dense in E (cf.[10]).

Let $S_{t}(f)=\frac{1}{\sqrt{2 \pi}} \mathcal{F}^{-1}\left(e^{p(x) t}\right) * f$. Here \mathcal{F} denotes the Fourier transformation and \mathcal{F}^{-1} denotes is inverse; $\mathcal{F}(f)(\lambda)=\int_{\mathbb{R}} e^{-i \lambda t} f(t) d t, \lambda \in \mathbb{R}$. Then it is an (EDS) because $S_{t}(f)=\frac{1}{\sqrt{2 \pi}} \mathcal{F}^{-1}\left(\int_{0}^{1} e^{p(x) s} d s\right) * f, \in D(A)$, is 1time integrated semigroup. Moreover, since the set $\{\langle S(t, f), \varphi(t)\rangle, f \in$ $\left.D(A), \varphi \in \mathcal{D}_{0}\right\}$ is dense in $D(A)$ it follows that S_{t} is (EDS-L) on the subspace $E_{0}=\left\{\overline{\left.\langle S(t, f), \varphi(t)\rangle, f \in D(A), \varphi \in \mathcal{K}_{0}\right\}}\right.$. Note ([16]), A generates a norm continuous α-times integrated semigroup for $\alpha \in\left(\frac{1}{2}, 1\right]$ equal to $S_{t} * f_{\alpha}, t \geq 0$.

Recall, for $U \in \mathcal{K}_{1+}^{\prime}(L(E, D(A))), V \in \mathcal{K}_{1+}^{\prime}(L(D(A), E))$ and $\operatorname{supp} U \subset$ $[a, \infty)$, $\operatorname{supp} V \subset[b, \infty), a, b \in \mathbb{R}$. Then $U * V$ and $V * U$ are defined as in [19]. Moreover, they are elements of $\mathcal{K}_{1+}^{\prime}(L(D(A)))$ and $\mathcal{K}_{1+}^{\prime}(L(E))$ respectively and their supports are bounded on the left.

Now we apply our results to equation

$$
u^{\prime}=A u+T, \quad T \in \mathcal{K}_{1+}\left(L\left(E_{0}\right)\right)
$$

We refer to this equations in the case $T \in \mathcal{S}_{1+}^{\prime}\left(L\left(E_{0}\right)\right)$ to ([12],[15]).
Theorem 6. Let $(S(t))_{t \geq 0}$ be an (EDS-L) with the infinitesimal generator A. Then

$$
\left(-A+\frac{\partial}{\partial t}\right) * S=I_{E_{0}}, S *\left(-A+\frac{\partial}{\partial t}\right)=I_{D(A)}
$$

where

$$
-A+\frac{\partial}{\partial t}=\delta \otimes A+\delta^{\prime} \otimes I
$$

b) $u=S * T$ in $\mathcal{K}_{1+}^{\prime}\left(L\left(E_{0}\right)\right)$ is a unique solution of (11)

Remark. In particular, with the notation given above this theorem gives the unique solution to $\frac{\partial}{\partial t} u(t, x)-\sum_{j=0}^{k} a_{j} \frac{\partial^{j}}{\partial x^{j}} u(t, x)=f, f \in \mathcal{K}_{1+}^{\prime}\left(L\left(E_{0}\right)\right)$ in $\mathcal{K}_{1+}^{\prime}\left(L\left(E_{0}\right)\right)$.

REFERENCES

[1] W. Arendt, Resolvent positive operators and integrated semigroups, Proc. London Math. Soc., (3) 54(1987), 321-349.
[2] W. A r e n d t, Vector valued Laplace transforms and Cauchy problems, Israel J. Math., 59(1987), 327-352.
[3] W. A rendt, O. El-M enn a o u and V. K e y a n t u o, Local integrated semigroups, J. Math.Anal. Appl., 186(1994), 572-595.
[4] W. Arendt, F. Neubrander and U. Scholtterbeck, Interpolation of Semigroup and Integrated Semigroups, Semigroup Forum 45(1992), 26-37.
[5] M. B a labane and H.A. E mamir a d, L^{p} estimates for Schródinger evolution equations, Trans. Amer. Math. Soc., 291(1985), 357-373.
[6] D. Fujiw ar a, A characterization of exponential distribution semigroups, J. Math. Soc., 18(1966), 267-274.
[7] M. H a s u m i, Note on the n - dimensional tempered ultradistributions, Tohoku Math. J., 13(1961), 94-104.
[8] M. H i e b e r, Integrated semigroups and differential operators on L^{p} spaces, Math. Ann., 291(1991), 1-16.
[9] M. Hie ber, L^{p} spectra of pseudodifferential operators generating integrated semigroups, Trans. Amer. Math. Soc., 347(1995), 4023-4035.
[10] H. K ellermann and M. Hie ber, Integrated semigroups, J.Func. Anal., 84(1989), 160-180.
[11] P. Ch. Kunstmann, Distribution semigroup and apstract Cauchy problems, Trans. Amer. Math. Soc. 351(1999), 837-856.
[12] J.L. L i o n s, Semi-groups distributions, Portugal, Math., 19(1960), 141-164.
[13] G. L u m e r, Evolution equations. Solutions for irregular evolution problems via generalized initial values. Applications to periodic shocks models, Ann. Univ. Saraviensis, 5 Saarbrucken, 1994.
[14] I. V. M elnikova, M. A. and A. A lshansky, Well-posedness of Cauchy problem in a Banach space: regular and degenerate cases, Itogi Nauki Tehn., Series Sov. Matem. i e Prilog. Analiz-9/VINITI, 27 (1995), 5-64.
[15] M. M i j a t o vić, S. Pilipovi ć, Integrated and distribution semigroups, Mathematica Montisnigri, 11(1999), 43-65.
[16] M. M i jatovi ć and S. Pilipović, F. V a j z ovi ć, α - times integrated semigroup ($\alpha \in \mathbb{R}^{+}$), J. Math. Anal. Appl., 210(1997), 790-803.
[17] F. N e u brander, Integrated semigroups and their applications to the abstract Cauchy problem, Pac. J. Math., 135(1988), 111-155.
[18] L. S c h w a r t z, Théorie des distributions, 2 vols., Hermann, Paris, Paris, (19501951).
[19] L. S c h w a r t z, Théorie des distributions a valeurs vectorielles, Annales Inst. Fourier, $1^{\text {ere }}$ partie: $7(1957), 1-141 ; 2^{\text {eme }}$ partie: 8 (1958), 1-207.
[20] H.R. Thie m e, Integrated semigorups and integrated solutions to obstract Cauchy problems, J. Math. Anal. Appl, 152(1990), 416-447.
[21] V.S. V la dimirov, Generalized Functions in Mathematical Physics, Mir, Moscow (1979).
[22] V.S. Vladimirov, Y. N. Drožžinovand B.I. Z avialov, Multidimensional Tauberian Theorems for Generalized Functions, Nauk, Moscow, (1986) (In Russian).
[23] S. W a n g, Quasi-Distribution Semigroups and Integrated Semigroups, J. Func. Anal., 146(1997), 325-381.

Institute of Mathematics
University of Novi Sad
Trg Dositeja Obradovića 4
21000 Novi Sad
Serbia and Montenegro

