DISTRIBUTION SEMIGROUPS ON \mathcal{K}_1

M.MIJATOVIĆ, S.PILIPOVIĆ

(Presented at the 8th Meeting, held on November 22, 2002)

A b s t r a c t. Distribution semigroup in the sense of Wang and Kunstmana and the properties of infinitesimal generator are considered with in exponentially bounded distributions. Results are applied on a class of equations of the form $\frac{\partial}{\partial t}4 - An = f$, $f \in \mathcal{K}_1^+(L(e))$, where $D(A) \subset L^\infty(\mathbb{R})$ or $D(A) \subset E = C_b(\mathbb{R})$.

AMS Mathematics Subject Classification (2000): 47D06, 47A10, 46F10

Key Words: Distribution semigroups, quasi-distribution semigroups, integrated semigroups, infinitesimal generator.

0. Introduction

Distribution semigroups of Lions [12] and, later introduced, *n*-times integrated semigroups of Arendt [2], have been studied by many authors. The aim has been applications to Cauchy problems with the luck of regularity conditions or with non-densely defined infinitesimal generators. The references contain enough informations in these sense. Wang [23] and Kunstmann [11] introduced quasi-distribution semigroups and exponentially bounded distribution semigroups which we call (DS) and (EDS). In this paper we analyze the properties of the infinitesimal generator of such a semigroup within distribution theory. As a basic space we use the test function space \mathcal{K}_1 . This is a natural framework for exponentially bounded distributions. The density of D(A) in E and of a set $\{S(\varphi, x); x \in D(A), \varphi \in \mathcal{D}_0\}$ in D(A), where S is a (EDS) with the infinitesimal generator A, is used in solving equations of the form $\frac{\partial}{\partial t}u - Au = f$, where $f \in \mathcal{K}'_1(D(A)), A = \sum_{j=0}^k a_j \frac{\partial^j}{\partial x^j}$, $\sup \operatorname{Re}(p(x)) < \infty$, $p(x) = \sum_{j=0}^k a_j(ix)^j$ and $D(A) \subset E = L^{\infty}(\mathbb{R})$ or $D(A) \subset E = C_b(\mathbb{R})$.

1. Preliminaries

We denote by E a Banach space with the norm $\|\cdot\|$; L(E) = L(E, E)is the space of bounded linear operators from E into E and $C(\mathbb{R}, L(E))$ is the space continuous mappings from \mathbb{R} into L(E). We refer to [18-19] and [21] for the definitions of spaces $\mathcal{D}(\mathbb{R})$, $\mathcal{E}(\mathbb{R})$, $\mathcal{S}(\mathbb{R})$, their strong duals and $\mathcal{S}'(E) = L(\mathcal{S}(\mathbb{R}), E)$. Moreover, we refer to [21] for the space

$$\mathcal{S}_{+} = \{\varphi; \ |t^{k}\varphi^{(\nu)}(t)| < C_{k,\nu}, \ t \in [0,\infty), \ k,\nu \in \mathbb{N}_{0}\} \ (\mathbb{N}_{0} = \mathbb{N} \cup \{0\})$$

and its dual S'_+ , which consists of tempered distributions supported by $[0, \infty)$. Recall ([7]), the space of exponentially decreasing test functions on the real line \mathbb{R} is defined by $\mathcal{K}_1(\mathbb{R}) = \{\varphi; e^{k|t|} | \varphi^{(\nu)}(t)| < C_{k,\nu}, t \in \mathbb{R}, k, \nu \in \mathbb{N}_0\}$. This space has the same topological properties as $\mathcal{S}(\mathbb{R})$. The space $\mathcal{K}_1(\mathbb{R}^2)$ is defined in an appropriate way. The strong dual of $\mathcal{K}_1(\mathbb{R}), \mathcal{K}'_1(\mathbb{R}),$ is the space of exponential distributions. The space $\mathcal{K}'_{1+} \subset \mathcal{K}'_1(\mathbb{R})$ consists of distributions supported by $[0,\infty)$. It is the dual space to $\mathcal{K}_{1+} = \{\varphi; e^{k|t|} | \varphi^{(\nu)}(t)| < C_{k,\nu}, t \in [0,\infty), k, \nu \in \mathbb{N}_0\}$ which has the same topological properties as \mathcal{S}_+ . Spaces $\mathcal{K}'_1(E), \mathcal{K}'_{1+}(E)$ are defined in an appropriate way. Their properties, similar to $\mathcal{S}'(E)$ and $\mathcal{S}'_+(E)$, are given in [15]. Note,

$$f \in \mathcal{K}'_1(\mathbb{R})$$
 if and only if $e^{-r|x|} f \in \mathcal{S}'(\mathbb{R})$ for some $r \in \mathbb{R}$. (1)

Let $S: [0, \infty) \to L(E)$ be strongly continuous. Then it is exponentially bounded at infinity if there exist $M \ge 0$ and $\omega \ge 0$ such that

$$\|S(t)\| \le M e^{\omega t}, \quad t \ge 0.$$

$$\tag{2}$$

In this case $\varphi \mapsto \int_{0}^{\infty} S(t)\varphi(t)dt$, $\varphi \in \mathcal{K}_{1}(\mathbb{R})$, defines an element of $\mathcal{K}'_{1+}(L(E))$.

We need a representation for elements of $\mathcal{K}'_{1+}(L(E))$. This is given in part a) of the next theorem.

Theorem 1. Let $S \in \mathcal{K}'_{1+}(L(E))$.

a) There exists $n_0 \in \mathbb{N}$ such that for every $n \geq n_0$ there exist a strongly continuous function $F_n : \mathbb{R} \to L(E)$, $\operatorname{supp} F_n \subset [0, \infty)$ and positive constants m_n and C_n , such that

 $||F_n(t)|| \leq C_n e^{m_n t}, t \geq 0, S = F_n^{(n)}$ (⁽ⁿ⁾ is the distributional n-th derivative).

b) Let $\psi, \varphi \in \mathcal{K}_1(\mathbb{R})$. Then

$$\langle S(t, \langle S(s, x), \psi(s) \rangle), \varphi(t) \rangle$$

= $\int S_{n_0}(t, S_{n_0}(s, x)) \psi^{(n_0)}(s) \varphi^{(n_0)}(t) ds dt.$ (3)

c) Let $\varphi(t,s) \in \mathcal{K}_1(\mathbb{R}^2)$ and $\varphi_{\nu}(t)$, $\psi_{\nu}(s)$ be sequences in $\mathcal{D}(\mathbb{R})$ such that the product sequence $\varphi_{\nu}(t) \cdot \psi_{\nu}(s)$ converge to $\varphi(t,s)$ in $\mathcal{K}_1(\mathbb{R}^2)$ as $\nu \to \infty$. Then the limit

$$\lim_{\nu \to \infty} \langle S(t, \langle S(s, x), \psi_{\nu}(s) \rangle), \varphi_{\nu}(t) \rangle, \ \varphi \in \mathcal{K}_1(\mathbb{R}^2)$$

exists and defines an element of $\mathcal{K}'_1(\mathbb{R}^2)$ which we denote by S(t,S(s,x)) i.e.,

$$\langle S(t, S(s, x)), \varphi(t, s) \rangle = \lim_{\nu \to \infty} \langle S(t, \langle S(s, x), \psi_{\nu}(s) \rangle), \varphi_{\nu}(t) \rangle, \ \varphi \in \mathcal{K}_1(\mathbb{R}^2).$$
(4)

d) Let $\varphi \in \mathcal{K}_1(\mathbb{R}^2)$ and $r, p \in \mathbb{N}$. We have

$$\left\langle \frac{\partial^r}{\partial t^r} S(t, S(s, x)), \varphi(t, s) \right\rangle = (-1)^r \langle S(t, S(s, x)), \frac{\partial^r}{\partial t^r} \varphi(t, s) \langle; \qquad (i)$$

$$\left\langle \frac{\partial^p}{\partial s^p} S(t, S(s, x)), \varphi(t, s) \right\rangle = \left\langle S(t, \frac{\partial^p}{\partial s^p} S(s, x)), \varphi(t, s) \right\rangle$$

= $(-1)^p \left\langle S(t, S(s, x)), \frac{\partial^p}{\partial s^p} \varphi(t, s) \right\rangle.$ (ii)

P r o o f. Part a) can be proved in the same way as in the case of scalar valued distributions.

Parts b), c) and d) are consequences of the continuity and linearity of $S \in \mathcal{K}'_{1+}(L(E))$, more precisely of the generalized Fubini-type theorem.

Using (1) one can prove easily:

$$f \in \mathcal{K}'_{1+}(L(E))$$
 if and only if $e^{-r|x|} f \in \mathcal{S}'_{+}(L(E))$ for some $r \ge 0.$ (5)

Let f satisfy (5). Then the Laplace transformation of f is defined by

$$\mathcal{L}(f)(\lambda) = \hat{f}(\lambda) = \left\langle f(t), e^{-\lambda t} \eta(t) \right\rangle, \ Re\lambda > r,$$

where $\eta \in \mathbb{C}^{\infty}(\mathbb{R})$, $\operatorname{supp} \eta = [-\varepsilon, \infty)$, $\varepsilon > 0$ and $\eta \equiv 1$ on $[0, \infty)$. As in the case of tempered distributions, one can easily show that this definition does not depend on η (cf.[21]). If $f \in L^1([0, \infty), E)$ (which means $\left\| \int_0^\infty f(t) dt \right\|_E < \infty$, then

$$\widehat{f}(\lambda) = \int_{0}^{\infty} e^{-\lambda t} f(t) dt = \langle f(t), e^{-\lambda t} \rangle, \quad Re\lambda > 0,$$

where integral is taken in Bochner's sense.

The convolution of $f \in \mathcal{K}'_{1+}(E)$ and $g \in \mathcal{K}'_{1+}(\mathbb{R})$ is defined by $\langle f * g, \varphi \rangle = \langle f, \check{g} * \varphi \rangle, \varphi \in \mathcal{K}_1(\mathbb{R}), (\check{g}(t) = g(-t))$. One can prove easily that $f * g = g * f \in \mathcal{K}'_{1+}(E)$.

In the sequal, we will use the family of distributions

$$f_{\alpha}(t) = \begin{cases} \frac{H(t)t^{\alpha-1}}{\Gamma(\alpha)}, & t \in \mathbb{R}, \ \alpha > 0, \\ \\ f_{\alpha+n}^{(n)}(t), & t \in \mathbb{R}, \ \alpha \le 0, \ \alpha+n > 0, n > 0, \end{cases}$$

where H is Heaviside's function. Note $f_{-1} = \delta'$.

Let $S \in \mathcal{K}'_{1+}(L(E))$ and $R(\lambda) = \mathcal{L}(S)(\lambda)$, $Re\lambda > \omega$ (cf. [2]). Then $(R(\lambda))_{Re\lambda \geq \omega}$ is a pseudoresolvent if and only if there exists $n_0 \in \mathbb{N}$ such that $S_{n_0}(t) = (S * f_{n_0})(t), t \in \mathbb{R}$, is continuous, $\operatorname{supp} S_{n_0} \subset [0, \infty)$ and, for $\varphi, \psi \in \mathcal{K}_1$,

$$\langle S(t, S(s, x)), \varphi(t)\psi(s) \rangle = \langle (S_{n_0}(t, S_{n_0}(s, x)))^{(n_0, n_0)}, \varphi(t)\psi(s) \rangle$$

$$= \left\langle \frac{1}{(n_0 - 1)!} \left(\int_{t}^{t+s} (t + s - r)^{n_0 - 1} S_{n_0}(r, x) dr \right. \right.$$
(6)

$$-\int_{0}^{s} (t+s-r)^{n_{0}-1} S_{n_{0}}(r,x) dr \bigg)^{(n_{0},n_{0})}, \varphi(t)\psi(s) \bigg\rangle,$$

10

The next definition is equivalent to the one given by Kunstmann and Wang, with \mathcal{D} instead of \mathcal{K}_1 .

Definition 1. Let $S \in \mathcal{K}'_{1+}(L(E))$. Then S is called exponentially bounded distribution semigroup (EDS), in short, if there exists $n_0 \in \mathbb{N}$, such that $S_{n_0} = S * f_{n_0}$ is continuous on \mathbb{R} , supported by $[0, \infty)$, exponentially bounded, satisfies (6) and it is non-degenerate: $\langle S(t, x), \varphi(t) \rangle = 0$ for all $\varphi \in \mathcal{K}_1$, implies x = 0.

We will also use the notation $(S(t))_{t\geq 0}$ for an (EDS). If (6) holds for $\psi \in \mathcal{D}(-\infty, a)$ for some a > 0, $(S(t))_{t\geq 0}$ is called a local distribution semigroup. This definition coincides with the definition of (DS) of Kunstmann and Wang but with \mathcal{D} instead of \mathcal{K}_1 .

Also the next definition is equivalent to the known one of cited authors.

Definition 2. A closed operator A is the generator of an $(EDS)(S(t))_{t\geq 0}$ if $(a,\infty) \subset \rho(A)$ for some $a \in \mathbb{R}$ so that $(\lambda I - A)^{-1} = \mathcal{L}(S)(\lambda)$, $Re\lambda > a$ holds and $\lambda \mapsto (\lambda I - A)^{-1}$ is injective, where the Laplace transformation is understood in the sense of distribution theory.

As in case with \mathcal{D} instead of \mathcal{K}_1 , one can simply prove the next theorem.

Theorem 2. Let A be a generator of a (EDS) $(S(t))_{t\geq 0}$. Then, for all $\varphi \in \mathcal{K}_1$, we have

a)
$$A\langle S(t,x),\varphi(t)\rangle = \langle S(t,Ax),\varphi(t)\rangle, \ x \in D(A).$$

b) $\langle S(t,x),\varphi(t)\rangle \in D(A), \ x \in E.$
c) $\langle S(t,x),\varphi(t)\rangle = \langle f_1(t,x),\varphi(t)\rangle + \langle (f_1*S)(t,Ax),\varphi(t)\rangle, \ x \in D(A) \ and$

$$A\langle (f_1 * S)(t, x), \varphi(t) \rangle = \langle S(t, x), \varphi(t) \rangle - \langle f_1(t, x), \varphi(t) \rangle, \ x \in E.$$

In particular

$$A\langle S(t,x),\varphi(t)\rangle = -\langle S(t,x),\varphi'(t)\rangle - \varphi(0)x, \ x \in E.$$

We refer to Definition 6.1 in [12] for a distribution semigroup, (DS-L) in short and exponentially distribution semigroups (EDS-L) in short in the sense of Lions. If D(A) is dense in E, then these notions coincide with (DS) and (EDS).

2. Comments on generators

Let $(S(t))_{t\geq 0}$ be a (DS) or (EDS). Recall $S(T, \cdot), T \in \mathcal{E}'(\mathbb{R})$ is defined as follows:

y = S(T, x), if $S(T * \psi, x) = S(\phi, y)$, $\phi \in \mathcal{D}_0$. The set of $x \in E$ for which this holds is denoted by D(T). It follows that the domain of $S(-\delta', \cdot)$ is D(A) and $S(-\delta', x) = Ax$, $x \in D(A)$.

Let $S_n(\cdot, x) = S(\cdot, x) * f_n$, $x \in E$ be an *n*-times integrated semigroup determined by the (EDS), $(S(t))_{t\geq 0}$ with the infinitesimal generator A.

One can simply prove

$$S_n(t,x) = \lim_{\nu \to \infty} \langle S_n(s,x), \rho_\nu(t-s) \rangle, \ t \ge 0,$$
$$S_n(\varphi^{(n)},x) = (-1)^n S(\varphi,x), \ \varphi \in \mathcal{D}_0, \ x \in E,$$

where $\{\rho_{\nu}\}$ is δ sequences in $\mathcal{D}_0, \ (\rho_{\nu} \to \delta, \ \nu \to \infty)$.

Theorem 3. Let $(S(t))_{t\geq 0}$ be an (EDS) and $(S_n(t) = (S * f_n(t))_{t\geq 0})$ be an n-times integrated exponentially bounded semigroup, $n \in \mathbb{N}_0$ with the infinitesimal generator A. Then

a) $D(S(f)) = D(S_n(f^{(n)})), f \in \mathcal{E}'(\mathbb{R}), \text{ supp} f \subset [0, \infty)$ and

$$S_n(f^{(n)}, x) = (-1)^n S(f, x), \quad x \in D(S(f)),$$

$$S_n(h, x) = S_n(\delta(t-h), x), \quad x \in E, \quad h > 0,$$

In particular

$$(-1)^n S_n(\delta^{(n)}, x) = x, \ x \in E,$$

 $(-1)^n S_n(-\delta^{(n+1)}, x) = Ax, \ x \in D(A).$

b)

$$Ax = (n+1)! \lim_{h \downarrow 0} \frac{S_n(h)x - \frac{h^n}{n!}x}{h^{n+1}}, \ x \in D(A).$$
(7)

P r o o f. We will prove only b). Let $\varphi \in \mathcal{D}$. Since,

$$\frac{(n+1)!}{h^{n+1}} \left(\varphi(h) - \frac{h^n}{n!} \varphi^{(n)}(0) \right) \to \varphi^{(n+1)}(0), \text{ as } h \to 0^+,$$

it follows

$$\frac{(n+1)!}{h^{n+1}} \left\langle \delta(t-h) - \frac{h^n}{n!} (-1)^n \delta^{(n)}(t), \varphi(t) \right\rangle \to$$

12

$$\rightarrow (-1)^{n+1} \left\langle \delta^{(n+1)}(t), \varphi(t) \right\rangle, \quad \varphi \in \mathcal{D} \text{ as } h \rightarrow 0^+$$

Then, for $x \in D(A)$ we have,

$$(n+1)! \lim_{h \downarrow 0} \frac{S_n(h,x) - \frac{h^n}{n!}x}{h^{n+1}} = (n+1)! \lim_{h \downarrow 0} \frac{S_n(\delta(t-h),x) - S_n\left(\frac{h^n}{n!}(-1)^n \delta^{(n)}(t),x\right)}{h^{n+1}}$$
$$= (n+1)! \lim_{h \downarrow 0} \frac{S_n\left(\delta(t-h) - \frac{h^n}{n!}(-1)^n \delta^{(n)}(t),x\right)}{h^{n+1}}$$
$$= S_n\left((-1)^{n+1} \delta^{(n+1)}(t),x\right) = S(-\delta',x) = Ax.$$

Theorem 4. Let $(S(t))_{t\geq 0}$ be an (EDS) with the infinitesimal generator A and $F = \{S(\varphi, x), x \in D(A), \varphi \in \mathcal{D}_0\}$. Then F is dense in D(A).

P r o o f. Let $x \in D(A)$. Since

$$S(-\delta'_{\nu},x) = \lim_{h \downarrow 0} \left\langle \frac{S(t+h,x) - S(t,x)}{h}, \, \delta_{\nu}(t) \right\rangle,$$

there exists a sequence $(h_{\nu})_{\nu \in \mathbb{N}}, h_{\nu} \to 0^+$, such that

$$\left\langle \frac{S(t+h_{\nu},x)-S(t,x)}{h_{\nu}},\,\delta_{\nu}(t)\right\rangle \to 0,\ \nu\to\infty$$

and therefore

$$\langle S(t+h_{\nu},x)-S(t,x),\,\delta_{\nu}(t)\rangle \to 0, \ \nu \to \infty.$$

But we have $\langle S(t,x), \delta_{\nu}(t) \rangle \to x, \ \nu \to \infty$, which implies that

$$\left(\langle S(t,x), \delta_{\nu}(t-h) \rangle\right)_{\nu \in \mathbb{N}}$$

is a sequence in F which converges to x. Thus F is dense in D(A).

Theorem 4 implies that there exists a closed subspace E_0 of E such that $(S(t))_{t\geq 0}$ is an (EDS -L) on E_0 , where E_0 is the closure in E of the set $F = \{S(\varphi, x); x \in D(A), \varphi \in \mathcal{D}_0\}.$

The following theorem is proved by Wang and Kunstmann. We reformulate it with \mathcal{K}_1 instead of \mathcal{D} .

Theorem 5. Let $(S(t))_{t\geq 0}$ be an (EDS) with the infinitesimal generator A. Then the restriction of $(S(t))_{t\geq 0}$ on $E_0 \times \mathcal{K}_1, (S_{|E_0 \times \mathcal{K}_1})$, is an (EDS-L).

3. Applications

Example. Let $E = C_b(\mathbb{R})$, or $L^{\infty}(\mathbb{R})$ and A be defined by $Af = \sum_{j=0}^k \alpha_j D^j f$, where $D^j = \frac{\partial^j}{\partial x^j}, \alpha_0, ..., \alpha_k \in \mathbb{C}, p(x) = \sum_{j=0}^k \alpha_j (ix)^j, k \ge 1, \alpha_k \ne 0$, $\sup_{x \in \mathbb{R}} Re(p(x)) < \infty$, where $D(A) = \{f \in E, \sum_{j=0}^k \alpha_j D^j f \in E, \text{ distributionally }\}$. It is known that D(A) is not dense in E (cf.[10]).

Let $S_t(f) = \frac{1}{\sqrt{2\pi}} \mathcal{F}^{-1}(e^{p(x)t}) * f$. Here \mathcal{F} denotes the Fourier transformation and \mathcal{F}^{-1} denotes is inverse; $\mathcal{F}(f)(\lambda) = \int_{\mathbb{R}} e^{-i\lambda t} f(t) dt$, $\lambda \in \mathbb{R}$. Then

it is an (EDS) because $S_t(f) = \frac{1}{\sqrt{2\pi}} \mathcal{F}^{-1}(\int_0^1 e^{p(x)s} ds) * f \in D(A)$, is 1-

time integrated semigroup. Moreover, since the set $\{\langle S(t, f), \varphi(t) \rangle, f \in D(A), \varphi \in \mathcal{D}_0\}$ is dense in D(A) it follows that S_t is (EDS-L) on the subspace $E_0 = \{\overline{\langle S(t, f), \varphi(t) \rangle, f \in D(A), \varphi \in \mathcal{K}_0\}}$. Note ([16]), A generates a norm continuous α -times integrated semigroup for $\alpha \in \left(\frac{1}{2}, 1\right]$ equal to $S_t * f_\alpha, t \ge 0$.

Recall, for $U \in \mathcal{K}'_{1+}(L(E, D(A))), V \in \mathcal{K}'_{1+}(L(D(A), E))$ and $\operatorname{supp} U \subset [a, \infty), \operatorname{supp} V \subset [b, \infty), a, b \in \mathbb{R}$. Then U * V and V * U are defined as in [19]. Moreover, they are elements of $\mathcal{K}'_{1+}(L(D(A)))$ and $\mathcal{K}'_{1+}(L(E))$ respectively and their supports are bounded on the left.

Now we apply our results to equation

$$u' = Au + T, \quad T \in \mathcal{K}_{1+}(L(E_0)).$$

We refer to this equations in the case $T \in \mathcal{S}'_{1+}(L(E_0))$ to ([12],[15]).

Theorem 6. Let $(S(t))_{t\geq 0}$ be an (EDS-L) with the infinitesimal generator A. Then

$$\left(-A+\frac{\partial}{\partial t}\right)*S = I_{E_0}, S*\left(-A+\frac{\partial}{\partial t}\right) = I_{D(A)},$$
 a)

where

$$-A + \frac{\partial}{\partial t} = \delta \otimes A + \delta' \otimes I.$$

b) $u = S * T$ in $\mathcal{K}'_{1+}(L(E_0))$ is a unique solution of (11)

Remark. In particular, with the notation given above this theorem gives the unique solution to $\frac{\partial}{\partial t}u(t,x) - \sum_{j=0}^{k} a_j \frac{\partial^j}{\partial x^j}u(t,x) = f, f \in \mathcal{K}'_{1+}(L(E_0))$ in $\mathcal{K}'_{1+}(L(E_0)).$

REFERENCES

- W. Ar e n d t, Resolvent positive operators and integrated semigroups, Proc. London Math. Soc., (3) 54(1987), 321-349.
- [2] W. A r e n d t, Vector valued Laplace transforms and Cauchy problems, Israel J. Math., 59(1987), 327-352.
- [3] W. Arendt, O. El-Mennaou and V. Keyantuo, Local integrated semigroups, J. Math.Anal. Appl., 186(1994), 572-595.
- [4] W. Arendt, F. Neubrander and er and U. Scholtter beck, Interpolation of Semigroup and Integrated Semigroups, Semigroup Forum 45(1992), 26-37.
- [5] M. B a l a b a n e and H.A. E m a m i r a d, L^p estimates for Schrödinger evolution equations, Trans. Amer. Math. Soc., 291(1985), 357-373.
- [6] D. F u j i w a r a, A characterization of exponential distribution semigroups, J. Math. Soc., 18(1966), 267-274.
- [7] M. H a s u m i, Note on the n- dimensional tempered ultradistributions, Tohoku Math. J., 13(1961), 94-104.
- [8] M. H i e b e r, Integrated semigroups and differential operators on L^p spaces, Math. Ann., 291(1991), 1-16.
- [9] M. H i e b e r, L^p spectra of pseudodifferential operators generating integrated semigroups, Trans. Amer. Math. Soc., 347(1995), 4023-4035.
- [10] H. K e l l e r m a n n and M. H i e b e r, Integrated semigroups, J.Func. Anal., 84(1989), 160-180.
- [11] P. Ch. K u n s t m a n n, Distribution semigroup and apstract Cauchy problems, Trans. Amer. Math. Soc. 351(1999), 837-856.
- [12] J.L. L i o n s, Semi-groups distributions, Portugal, Math., 19(1960), 141-164.
- [13] G. L u m e r, Evolution equations. Solutions for irregular evolution problems via generalized initial values. Applications to periodic shocks models, Ann. Univ. Saraviensis, 5 Saarbrucken, 1994.
- [14] I. V. M e l n i k o v a, M. A. and A. A l s h a n s k y, Well-posedness of Cauchy problem in a Banach space: regular and degenerate cases, Itogi Nauki Tehn., Series Sov. Matem. i e Prilog. Analiz-9/VINITI, 27 (1995), 5-64.
- [15] M. M i j a t o v i ć, S. P i l i p o v i ć, Integrated and distribution semigroups, Mathematica Montisnigri, 11(1999), 43-65.
- [16] M. M i j a t o v i ć and S. P i l i p o v i ć, F. V a j z o v i ć, α times integrated semigroup ($\alpha \in \mathbb{R}^+$), J. Math. Anal. Appl., 210(1997), 790-803.
- [17] F. N e u b r a n d e r, Integrated semigroups and their applications to the abstract Cauchy problem, Pac. J. Math., 135(1988), 111-155.
- [18] L. S c h w a r t z, Théorie des distributions, 2 vols., Hermann, Paris, Paris, (1950-1951).
- [19] L. S c h w a r t z, Théorie des distributions a valeurs vectorielles, Annales Inst. Fourier, 1^{ere} partie: 7(1957), 1-141; 2^{eme} partie: 8 (1958), 1-207.

- [20] H.R. T h i e m e, Integrated semigorups and integrated solutions to obstract Cauchy problems, J. Math. Anal. Appl, 152(1990), 416-447.
- [21] V.S. V l a d i m i r o v, Generalized Functions in Mathematical Physics, Mir, Moscow (1979).
- [22] V.S. V l a d i m i r o v, Y. N. D r o ž ž i n o v and B.I. Z a v i a l o v, Multidimensional Tauberian Theorems for Generalized Functions, Nauk, Moscow, (1986) (In Russian).
- [23] S. W a n g, Quasi-Distribution Semigroups and Integrated Semigroups, J. Func. Anal., 146(1997), 325-381.

Institute of Mathematics University of Novi Sad Trg Dositeja Obradovića 4 21000 Novi Sad Serbia and Montenegro

16