ON THE COEFFICIENTS OF THE LAPLACIAN CHARACTERISTIC POLYNOMIAL OF TREES

I. GUTMAN, LJILJANA PAVLOVIĆ

(Presented at the 1st Meeting, held on February 28, 2003)
Abstract. Let the Laplacian characteristic polynomial of an nvertex tree T be of the form $\psi(T, \lambda)=\sum_{k=0}^{n}(-1)^{n-k} c_{k}(T) \lambda^{k}$. Then, as well known, $c_{0}(T)=0$ and $c_{1}(T)=n$. If T differs from the star $\left(S_{n}\right)$ and the path $\left(P_{n}\right)$, which requires $n \geq 5$, then $c_{2}\left(S_{n}\right)<c_{2}(T)<c_{2}\left(P_{n}\right)$ and $c_{3}\left(S_{n}\right)<c_{3}(T)<c_{3}\left(P_{n}\right)$. If $n=4$, then $c_{3}\left(S_{n}\right)=c_{3}\left(P_{n}\right)$.

AMS Mathematics Subject Classification (2000): 05C05, 05C12, 05C50
Key Words: Laplacian spectrum, Laplacian characteristic polynomial, Trees, Distance (in graph), Wiener number

1. Introduction

Let G be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. The adjacency matrix $A(G)$ of G is a square matrix of order n whose (i, j)-entry is unity if the vertices v_{i} and v_{j} are adjacent, and is zero otherwise. The degree d_{i} of the vertex v_{i} is the number of first neighbors of this vertex. By $D(G)$ we denote the square matrix of order n whose i-th diagonal element is equal to d_{i} and whose off-diagonal elements are zero. By I_{n} we denote the unit matrix of order n.

The Laplacian matrix of the graph G is $L(G)=D(G)-A(G)$. The characteristic polynomial of the Laplacian matrix, $\psi(G, \lambda)=\operatorname{det}\left(\lambda I_{n}-\right.$ $L(G))$, is said to be the Laplacian characteristic polynomial of the graph G. In what follows we write it in the coefficient form as

$$
\psi(G, \lambda)=\sum_{k=0}^{n}(-1)^{n-k} c_{k}(G) \lambda^{k}
$$

If so, then $c_{k}(G) \geq 0$ for all k and for all G.
The connection between the coefficients of the Laplacian characteristic polynomial and the structure of the respective graph was established by Kel'mans long time ago [1, p. 38]:

$$
\begin{equation*}
c_{k}(G)=\sum_{F \in \mathcal{F}_{k}(G)} \gamma(F) \tag{1}
\end{equation*}
$$

where F is a spanning forest and the summation goes over the set $\mathcal{F}_{k}(G)$ of all spanning forests of G, possessing exactly k components, and where $\gamma(F)$ is the product of the number of vertices of the components of F.

Clearly, $\mathcal{F}_{0}(G)=\emptyset$, which is consistent with the fact that $c_{0}(G)=0$ for all graphs G.

In this work we are concerned with trees, i.e., connected and acyclic graphs. If T is an n-vertex tree, then for $k \geq 1$, the elements of $\mathcal{F}_{k}(T)$ are obtained by deleting $k-1$ distinct edges from T. This, in particular, means that

$$
\begin{equation*}
\left|\mathcal{F}_{k}(T)\right|=\binom{n-1}{k-1} \tag{2}
\end{equation*}
$$

Some immediate consequences of formulas (1) and (2) are:

$$
\begin{align*}
c_{1}(T) & =n \tag{3}\\
c_{n}(T) & =1 \tag{4}\\
c_{n-1}(T) & =2(n-1) \tag{5}
\end{align*}
$$

and [9]:

$$
\begin{align*}
& c_{n-2}(T)=2 n^{2}-5 n+3-\frac{1}{2} \sum_{i=1}^{n} d_{i}^{2} \tag{6}\\
& c_{n-3}(T)=\frac{1}{3}\left[4 n^{3}-18 n^{2}+24 n-10+\sum_{i=1}^{n} d_{i}^{3}-3(n-2) \sum_{i=1}^{n} d_{i}^{2}\right] . \tag{7}
\end{align*}
$$

On the coefficients of the Laplacian ...
The n-vertex star, denoted by S_{n}, is the n-vertex tree with maximum $(=n-2)$ number of vertices of degree one. The n-vertex path, denoted by P_{n} is the n-vertex tree with minimum $(=2)$ number of vertices of degree one.

Eqs. (3)-(5) imply that all n-vertex trees have equal Laplacian coefficients c_{1}, c_{n}, and c_{n-1}. In view of Eqs. (6) and (7), it is easy to verify that for any n-vertex tree, different from S_{n} and P_{n},

$$
\begin{align*}
& c_{n-2}\left(S_{n}\right)<c_{n-2}(T)<c_{n-2}\left(P_{n}\right) \tag{8}\\
& c_{n-3}\left(S_{n}\right)<c_{n-3}(T)<c_{n-3}\left(P_{n}\right) \tag{9}
\end{align*}
$$

Recall that trees different from S_{n} and P_{n} exist only for $n \geq 5$.
In this work we show that among n-vertex trees, the star and the path are extremal also with respect to the Laplacian coefficients c_{2} and c_{3}. i.e., we demonstrate the validity of:

Theorem 1. Let T be an n-vertex tree, different from S_{n} and P_{n}. Then the inequalities

$$
\begin{equation*}
c_{2}\left(S_{n}\right)<c_{2}(T)<c_{2}\left(P_{n}\right) \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{3}\left(S_{n}\right)<c_{3}(T)<c_{3}\left(P_{n}\right) \tag{b}
\end{equation*}
$$

are obeyed for all T and all $n \geq 5$.

2. The Second Laplacian Coefficient and the Wiener Number

The Wiener number $W(G)$ of a (connected) graph G is equal to the sum of distances between all pairs of vertices of $G[2,3]$:

$$
\begin{equation*}
W(G)=\sum_{\{u, v\} \subseteq V(G)} d(u, v \mid G)=\frac{1}{2} \sum_{u \in V(G)} \sum_{v \in V(G)} d(u, v \mid G) \tag{10}
\end{equation*}
$$

where $d(u, v \mid G)$ denotes the distance ($=$ number of edges in a shortest path) between the vertices u and v.

For the Wiener number of a tree T the following result is long known [10]:

$$
\begin{equation*}
W(T)=\sum_{e \in E(T)} n_{1}(e \mid T) n_{2}(e \mid T) \tag{11}
\end{equation*}
$$

with $n_{1}(e \mid T)$ and $n_{2}(e \mid T)$ denoting the number of vertices of T, lying on the two sides of the edge e, and with summation going over all edges of T.

Now, $n_{1}(e \mid T)$ and $n_{2}(e \mid T)$ are just the number of vertices of the two components of the subgraph $T-e$, and $T-e$ is just a spanning forest of T, possessing two components. In view of this, the product $n_{1}(e \mid T) n_{2}(e \mid T)$ can be identified with $\gamma(T-e)$. Consequently, the right-hand side of Eq. (11) can be identified with the the right-hand side of Eq. (1) for $k=2$, namely with $\sum_{F \in \mathcal{F}_{2}(T)} \gamma(F)$. We thus arrive at the noteworthy conclusion that the second coefficient of the Laplacian characteristic polynomial (a linear-algebra-based quantity) coincides with the Wiener number (a metric-based quantity), i.e.,

$$
\begin{equation*}
c_{2}(T)=W(T) \tag{12}
\end{equation*}
$$

Relation (12) was known already to Merris, Mohar and McKay in the late 1980s [5, 6, 7, 8]. Combining it with the long-known inequalities [4]

$$
W\left(S_{n}\right) \leq W(T) \leq W\left(P_{n}\right)
$$

we readily arrive at statement (a) of Theorem 1.
To these authors' knowledge, until now part (a) of Theorem 1 has not been stated in the mathematical literature. Yet, it is a direct consequence of two previously known results, and thus cannot be considered as something new and original. Inequalities (a) have been included into Theorem 1 in order to stress their analogy to inequalities (b), and also to provide a motivation for the conjecture formulated at the end of this paper.

For completeness, we mention that

$$
\begin{equation*}
c_{2}\left(S_{n}\right)=W\left(S_{n}\right)=(n-1)^{2} \quad \text { and } \quad c_{2}\left(P_{n}\right)=W\left(P_{n}\right)=\binom{n+1}{3} . \tag{13}
\end{equation*}
$$

3. Proving Part (b) of Theorem 1

Preparations

Let G be a connected graph and u its vertex. Denote by $d(u \mid G)$ the sum of the distances between u and all other vertices of G.

Lemma 2. If u is a terminal vertex of the path P_{n}, then $d\left(u \mid P_{n}\right)=\binom{n}{2}$.
Proof. The distances between u and the other vertices of P_{n} are $1,2, \ldots, n-1$.

Lemma 3. Let e be an edge of the graph G, connecting the vertices r and s. If G is connected, but $G-e$ disconnected, composed of components

On the coefficients of the Laplacian ...
R and S, such that $r \in V(R)$ and $s \in V(S)$ (see Fig. 1), then

$$
W(G)=W(R)+W(S)+|R| d(s \mid S)+|S| d(r \mid R)+|R||S|,
$$

where $|R|$ and $|S|$ stand for the number of vertices of R and S, respectively.
Proof. Let $x \in V(R)$ and $y \in V(S)$. Then $d(x, y \mid G)=d(x, r \mid R)+$ $d(s, y \mid S)+1$. Now, bearing in mind the definition (10) of the Wiener number, we obtain

$$
\begin{aligned}
W(G) & =\sum_{\left\{x, x^{\prime}\right\} \subseteq V(R)} d\left(x, x^{\prime} \mid G\right)+\sum_{\left\{y, y^{\prime}\right\} \subseteq V(S)} d\left(y, y^{\prime} \mid G\right)+\sum_{x \in V(R)} \sum_{y \in V(S)} d(x, y \mid G) \\
& =W(R)+W(S)+\sum_{x \in V(R)} \sum_{y \in V(S)}[d(x, r \mid R)+d(s, y \mid S)+1] \\
& =W(R)+W(S)+\left[\sum_{x \in V(R)} d(x, r \mid R)\right]\left[\sum_{y \in V(S)} 1\right] \\
& +\left[\sum_{x \in V(R)} 1\right]\left[\sum_{y \in V(S)} d(s, y \mid S)\right]+\left[\sum_{x \in V(R)} 1\right]\left[\sum_{y \in V(S)} 1\right]
\end{aligned}
$$

Lemma 3 follows now from

$$
\begin{aligned}
& \sum_{x \in V(R)} d(x, r \mid R)=d(r \mid R) \\
& \sum_{y \in V(S)} 1=|S| \\
& \sum_{x \in V(R)} 1=|R| \\
& \sum_{y \in V(S)} d(s, y)=d(s \mid S) .
\end{aligned}
$$

Consider a special case of the graph G described in Lemma 3: Let $S=$ P_{k} and let s be a terminal vertex of P_{k}. Denote this graph by R_{k}, see Fig. 1. Then by combining Lemmas 2 and 3 , and bearing in mind that
$W\left(P_{k}\right)=\binom{k+1}{3}$, we have

$$
\begin{equation*}
W\left(R_{k}\right)=W(R)+\binom{k+1}{3}+|R|\binom{k}{2}+k[|R|+d(r \mid R)] . \tag{14}
\end{equation*}
$$

Fig 1. The structure and labeling of vertices and edges of graphs G and R_{k}, considered in Lemma 3 and Eq. (14), and of the trees T and T^{\prime}, considered in Lemmas 4 and 5.

An Auxiliary Result

Let R be a tree on $|R|$ vertices, $|R| \geq 2$. Let T and T^{\prime} be trees whose structure is depicted in Fig. 1. Hence, both T and T^{\prime} possess $|R|+a+b+1$ vertices. If $a=b$, then T and T^{\prime} are isomorphic. Therefore, in what follows we shall assume that $a \neq b$. Further, without loss of generality, we assume that $a+1 \leq b$.

Lemma 4. If T and T^{\prime} are the above specified trees (see Fig. 1), then for all $a \geq 0$ and $b \geq 0$,

$$
\begin{equation*}
c_{3}\left(T^{\prime}\right)-c_{3}(T)=(b-a)\left[W(R)-d(r \mid R)+\frac{|R|-1}{6}(b-a-1)(b-a+1)\right] . \tag{15}
\end{equation*}
$$

Proof. According to Eq. (1), since T and T^{\prime} are trees,
$c_{3}(T)=\sum_{f, g \in E(T)} \gamma(T-f-g) \quad$ and $\quad c_{3}\left(T^{\prime}\right)=\sum_{f^{\prime}, g^{\prime} \in E\left(T^{\prime}\right)} \gamma\left(T^{\prime}-f^{\prime}-g^{\prime}\right)$

On the coefficients of the Laplacian ...
where f and g as well as f^{\prime} and g^{\prime} are distinct edges. In view of the structure of T and T^{\prime} (see Fig. 1), it is easily seen that for any pair of edges f, g one can find a pair of edges f^{\prime}, g^{\prime}, such that $\gamma(T-f-g)=\gamma\left(T^{\prime}-f^{\prime}-g^{\prime}\right)$, except is one of the edges f, g coincides with edge e, and one of the edges f^{\prime}, g^{\prime} coincides with edge e^{\prime}, see Fig. 1. Bearing this in mind we have

$$
\begin{equation*}
c_{3}\left(T^{\prime}\right)-c_{3}(T)=\sum_{f^{\prime} \in E\left(T^{\prime}\right)} \gamma\left(T^{\prime}-e^{\prime}-f^{\prime}\right)-\sum_{f \in E(T)} \gamma(T-e-f) \tag{16}
\end{equation*}
$$

Now, $T-e$ consists of two components: P_{a+1} and R_{b}. Therefore, because the edge f belongs either to P_{a+1} or to R_{b},

$$
\begin{array}{r}
\sum_{f \in E(T)} \gamma(T-e-f)=\sum_{f \in E\left(P_{a+1}\right)} \gamma\left(P_{a+1}-f \cup R_{b}\right)+\sum_{f \in E\left(R_{b}\right)} \gamma\left(P_{a+1} \cup R_{b}-f\right) \\
=(|R|+b) \sum_{f \in E\left(P_{a+1}\right)} \gamma\left(P_{a+1}-f\right)+(a+1) \sum_{f \in E\left(R_{b}\right)} \gamma\left(R_{b}-f\right)
\end{array}
$$

which, in view of formula (11), results in

$$
\sum_{f \in E(T)} \gamma(T-e-f)=(|R|+b) W\left(P_{a+1}\right)+(a+1) W\left(R_{b}\right)
$$

By an analogous reasoning,

$$
\sum_{f^{\prime} \in E\left(T^{\prime}\right)} \gamma\left(T^{\prime}-e^{\prime}-f^{\prime}\right)=(|R|+a) W\left(P_{b+1}\right)+(b+1) W\left(R_{a}\right)
$$

By substituting the above two expressions back into (16), and by taking into account Eq. (14), we obtain

$$
\begin{aligned}
c_{3}\left(T^{\prime}\right)-c_{3}(T) & =\left[(|R|+a) W\left(P_{b+1}\right)+(b+1) W\left(R_{a}\right)\right] \\
& -\left[(|R|+b) W\left(P_{a+1}\right)+(a+1) W\left(R_{b}\right)\right] \\
& =(|R|+a)\binom{b+2}{3}-(|R|+a)\binom{a+2}{3} \\
& +(b+1)\left[W(R)+\binom{a+1}{3}+|R|\binom{a}{2}+a[|R|+d(r \mid R)]\right] \\
& -(a+1)\left[W(R)+\binom{b+1}{3}+|R|\binom{b}{2}+b[|R|+d(r \mid R)]\right]
\end{aligned}
$$

Lemma 4 follows now after a lengthy, but elementary, calculation.
Lemma 5. If T and T^{\prime} are the same trees as in Lemma 4, then $c_{3}(T)=$ $c_{3}\left(T^{\prime}\right)$ if $|R|=2$ and $a=b-1$. If either $a+1<b$ or $|R|>2$ or both, then $c_{3}(T)<c_{3}\left(T^{\prime}\right)$.

Proof. Lemma 5 is an immediate consequence of Lemma 4. If $|R|=2$, then $R=P_{2}$ and, consequently, $W(R)=d(r \mid R)=1$, i.e., $W(R)-d(r \mid R)=$ 0 . If, in addition, $b-a-1=0$ then the entire right-hand side of Eq. (15) is equal to zero.

If, however, $|R|>2$, then the Wiener number of R is necessarily greater than $d(r \mid R)$, implying that the right-hand side of (15) is positive-valued. Even if $W(R)=d(r \mid R)$, but $a+1<b$, the right-hand side of (15) is positive.

Completing the Proof

Let G be an n-vertex graph and F its spanning forest consisting of k components. Then $\gamma(F)$ is equal to the product of k positive integers whose sum is equal to n. The smallest possible value of such a product is equal to $n-k+1$, namely when the respective k integers are $n-k+1,1,1, \ldots, 1$.

Now, if T is an n-vertex tree, then each of its k-component spanning forests is obtained by deleting from T a $(k-1)$-tuple of distinct edges. In the case of the star S_{n} each of its k-component spanning forests consists of k isolated vertices and a copy of S_{n-k+1}. The γ-value of each of these spanning forests is minimal, equal to $n-k+1$. If $k \neq 1, n-1, n$, then any other n-vertex tree has a k-component spanning forest whose γ-value exceeds $n-k+1$. An exception is the 4 -vertex path, considered below, cf. Eq. (17).

Bearing the above in mind, as well as Eqs. (1) and (2), we arrive at
Theorem 6. If T is an n-vertex tree, $n \geq 5$, different from S_{n}, then

$$
\begin{aligned}
& c_{1}(T)=c_{1}\left(S_{n}\right)=n \\
& c_{n-1}(T)=c_{n-1}\left(S_{n}\right)=2(n-1) \\
& c_{n}(T)=c_{n}\left(S_{n}\right)=1
\end{aligned}
$$

whereas for $2 \leq k \leq n-2$,

$$
c_{k}(T)>c_{k}\left(S_{n}\right)=\binom{n-1}{k-1}(n-k+1) .
$$

On the coefficients of the Laplacian ...
Clearly, the left-hand side inequalities (a) and (b) in Theorem 1 are special cases of Theorem 6.

In order to complete the proof of Theorem 1 we have to verify also the right-hand side of inequality (b). To do this consider the transformation $T \rightarrow T^{\prime}$ of the trees specified in Lemmas 4 and 5, see Fig. 1. If $a+1 \leq b$, then this transformation increases the third Laplacian coefficient, except when $|R|=2$ and $a+1=b$, when the value of c_{3} remains the same.

Repeating the transformation $T \rightarrow T^{\prime} \quad a+1$ times, the entire a-branch of T will be transferred to the b-branch and the degree of the vertex r diminished by one. Repeating such transformations sufficiently many times we will ultimately arrive at the path P_{n}. With a single exception (discussed below) such a multi-step transformation will necessarily increase the value of c_{3}, implying that for any n-vertex tree T, different from $P_{n}, c_{3}\left(P_{n}\right)>$ $c_{3}(T)$.

The single exception is the case $|R|=2, a=0, b=1$. Then $T=S_{4}$ and $T^{\prime}=P_{4}$. In this case, according to Lemma 5, the transformation $T \rightarrow T^{\prime}$ does not increase the value of the third Laplacian coefficient, and we thus have

$$
\begin{equation*}
c_{3}\left(S_{4}\right)=c_{3}\left(P_{4}\right) . \tag{17}
\end{equation*}
$$

Because S_{4} and P_{4} are the only 4 -vertex trees, the exception (17) does not effect the validity of the right-hand side inequality (b).

Thus we demonstrated that for $n \geq 5$ the path P_{n} has maximum c_{3}-value among all n-vertex trees.

This proves the right-hand side of inequality (b).
The proof of Theorem 1 has thus been completed.
By the above considerations we also proved
Theorem 7. Among n-vertex trees, $n \geq 1, n \neq 4$, the unique tree with minimum third Laplacian coefficient is the star S_{n}, and the unique tree with maximum third Laplacian coefficient is the path P_{n}. Exceptionally, for $n=4, \quad S_{n} \neq P_{n}$, but $c_{3}\left(S_{n}\right)=c_{3}\left(P_{n}\right)$.

In analogy to Eq. (13),

$$
c_{3}\left(S_{n}\right)=\frac{1}{2}(n-1)(n-2)^{2} \quad \text { and } \quad c_{3}\left(P_{n}\right)=\binom{n+2}{5} .
$$

4. Conclusion: A Conjecture

Summarizing Theorem 1 and Eqs. (3), (4), (5), (8), and (9), we see that the inequalities

$$
\begin{equation*}
c_{k}\left(S_{n}\right) \leq c_{k}(T) \leq c_{k}\left(P_{n}\right) \tag{18}
\end{equation*}
$$

hold for all values of n, and for all n-vertex trees T, provided $k=1,2,3, n-$ $3, n-2, n-1$, and n.

Conjecture. The inequalities (18) hold for all values of $n, n \geq 1$, for all n-vertex trees T, and for all values of $k, 1 \leq k \leq n$.

REFERENCES

[1] D. Cvetković, M. Doob, H. Sachs, Spectra of graphs - theory and application, Barth, Heidelberg, 1995.
[2] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001), 211-249.
[3] A. A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002), 247-294.
[4] R. C. Entringer, D. E. Jackson, D. A. Snyder, Distance in graphs, Czech. Math. J. 26 (1976), 283-296.
[5] R. Merris, An edge version of the matrix-tree theorem and the Wiener index, Lin. Multilin. Algebra 25 (1989), 291-296.
[6] R. Merris, The distance spectrum of a tree, J. Graph Theory 14 (1990), 365-369.
[7] B. Mohar, The Laplacian spectrum of graphs, in: Y. Alavi, G. Chartrand, O. R. Ollermann, A. J. Schwenk (Eds.), Graph theory, combinatorics, and applications, Wiley, New York, 1991, pp. 871-898.
[8] B. Mohar, Eigenvalues, diameter, and mean distance in graphs, Graphs Combin. 7 (1991), 53-64.
[9] C. S. Oliveira, N. M. M. de Abreu, S. Jurkewicz, The characteristic polynomial of the Laplacian of graphs in (a, b)-linear classes, Lin. Algebra Appl. 356 (2002), 113-121.
[10] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947), 17-20.

Faculty of Science
University of Kragujevac
P. O. Box 60

34000 Kragujevac
Serbia and Montenegro

