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A b s t r a c t. Let the Laplacian characteristic polynomial of an n-

vertex tree T be of the form ψ(T, λ) =
n∑

k=0
(−1)n−k ck(T ) λk . Then, as well

known, c0(T ) = 0 and c1(T ) = n . If T differs from the star (Sn) and
the path (Pn), which requires n ≥ 5 , then c2(Sn) < c2(T ) < c2(Pn) and
c3(Sn) < c3(T ) < c3(Pn) . If n = 4 , then c3(Sn) = c3(Pn) .
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1. Introduction

Let G be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and
edge set E(G) = {e1, e2, . . . , em} . The adjacency matrix A(G) of G is a
square matrix of order n whose (i, j)-entry is unity if the vertices vi and vj

are adjacent, and is zero otherwise. The degree di of the vertex vi is the
number of first neighbors of this vertex. By D(G) we denote the square
matrix of order n whose i-th diagonal element is equal to di and whose
off–diagonal elements are zero. By In we denote the unit matrix of order n .
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The Laplacian matrix of the graph G is L(G) = D(G) − A(G) . The
characteristic polynomial of the Laplacian matrix, ψ(G,λ) = det(λIn −
L(G)) , is said to be the Laplacian characteristic polynomial of the graph
G . In what follows we write it in the coefficient form as

ψ(G,λ) =
n∑

k=0

(−1)n−k ck(G) λk .

If so, then ck(G) ≥ 0 for all k and for all G .
The connection between the coefficients of the Laplacian characteristic

polynomial and the structure of the respective graph was established by
Kel’mans long time ago [1, p. 38]:

ck(G) =
∑

F∈Fk(G)

γ(F ), (1)

where F is a spanning forest and the summation goes over the set Fk(G) of
all spanning forests of G , possessing exactly k components, and where γ(F )
is the product of the number of vertices of the components of F .

Clearly, F0(G) = ∅ , which is consistent with the fact that c0(G) = 0 for
all graphs G .

In this work we are concerned with trees, i.e., connected and acyclic
graphs. If T is an n-vertex tree, then for k ≥ 1 , the elements of Fk(T ) are
obtained by deleting k−1 distinct edges from T . This, in particular, means
that

|Fk(T )| =
(

n− 1
k − 1

)
. (2)

Some immediate consequences of formulas (1) and (2) are:

c1(T ) = n (3)
cn(T ) = 1 (4)

cn−1(T ) = 2(n− 1) (5)

and [9]:

cn−2(T ) = 2n2 − 5n + 3− 1
2

n∑

i=1

d2
i (6)

cn−3(T ) =
1
3

[
4n3 − 18n2 + 24n− 10 +

n∑

i=1

d3
i − 3(n− 2)

n∑

i=1

d2
i

]
. (7)
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The n-vertex star, denoted by Sn , is the n-vertex tree with maximum
(= n− 2) number of vertices of degree one. The n-vertex path, denoted by
Pn is the n-vertex tree with minimum (= 2) number of vertices of degree
one.

Eqs. (3)–(5) imply that all n-vertex trees have equal Laplacian coeffi-
cients c1 , cn , and cn−1 . In view of Eqs. (6) and (7), it is easy to verify that
for any n-vertex tree, different from Sn and Pn ,

cn−2(Sn) < cn−2(T ) < cn−2(Pn) (8)
cn−3(Sn) < cn−3(T ) < cn−3(Pn) . (9)

Recall that trees different from Sn and Pn exist only for n ≥ 5 .
In this work we show that among n-vertex trees, the star and the path

are extremal also with respect to the Laplacian coefficients c2 and c3 . i.e.,
we demonstrate the validity of:

Theorem 1. Let T be an n-vertex tree, different from Sn and Pn . Then
the inequalities

c2(Sn) < c2(T ) < c2(Pn) (a)

and
c3(Sn) < c3(T ) < c3(Pn) (b)

are obeyed for all T and all n ≥ 5 .

2. The Second Laplacian Coefficient and the Wiener Number

The Wiener number W (G) of a (connected) graph G is equal to the sum
of distances between all pairs of vertices of G [2, 3]:

W (G) =
∑

{u,v}⊆V (G)

d(u, v|G) =
1
2

∑

u∈V (G)

∑

v∈V (G)

d(u, v|G) (10)

where d(u, v|G) denotes the distance (= number of edges in a shortest path)
between the vertices u and v .

For the Wiener number of a tree T the following result is long known
[10]:

W (T ) =
∑

e∈E(T )

n1(e|T ) n2(e|T ) (11)

with n1(e|T ) and n2(e|T ) denoting the number of vertices of T , lying on the
two sides of the edge e , and with summation going over all edges of T .
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Now, n1(e|T ) and n2(e|T ) are just the number of vertices of the two
components of the subgraph T − e , and T − e is just a spanning forest of
T , possessing two components. In view of this, the product n1(e|T ) n2(e|T )
can be identified with γ(T − e) . Consequently, the right–hand side of Eq.
(11) can be identified with the the right–hand side of Eq. (1) for k = 2 ,
namely with

∑
F∈F2(T )

γ(F ) . We thus arrive at the noteworthy conclusion that

the second coefficient of the Laplacian characteristic polynomial (a linear–
algebra–based quantity) coincides with the Wiener number (a metric–based
quantity), i.e.,

c2(T ) = W (T ) . (12)

Relation (12) was known already to Merris, Mohar and McKay in the
late 1980s [5, 6, 7, 8]. Combining it with the long–known inequalities [4]

W (Sn) ≤ W (T ) ≤ W (Pn)

we readily arrive at statement (a) of Theorem 1.
To these authors’ knowledge, until now part (a) of Theorem 1 has not

been stated in the mathematical literature. Yet, it is a direct consequence
of two previously known results, and thus cannot be considered as some-
thing new and original. Inequalities (a) have been included into Theorem
1 in order to stress their analogy to inequalities (b), and also to provide a
motivation for the conjecture formulated at the end of this paper.

For completeness, we mention that

c2(Sn) = W (Sn) = (n− 1)2 and c2(Pn) = W (Pn) =

(
n + 1

3

)
. (13)

3. Proving Part (b) of Theorem 1

Preparations

Let G be a connected graph and u its vertex. Denote by d(u|G) the sum
of the distances between u and all other vertices of G .

Lemma 2. If u is a terminal vertex of the path Pn , then d(u|Pn) =
(n
2

)
.

P r o o f. The distances between u and the other vertices of Pn are
1, 2, . . . , n− 1 .2

Lemma 3. Let e be an edge of the graph G , connecting the vertices r
and s . If G is connected, but G − e disconnected, composed of components
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R and S , such that r ∈ V (R) and s ∈ V (S) (see Fig. 1) , then

W (G) = W (R) + W (S) + |R| d(s|S) + |S| d(r|R) + |R| |S|,

where |R| and |S| stand for the number of vertices of R and S , respectively.

P r o o f. Let x ∈ V (R) and y ∈ V (S) . Then d(x, y|G) = d(x, r|R) +
d(s, y|S)+1 . Now, bearing in mind the definition (10) of the Wiener number,
we obtain

W (G) =
∑

{x,x′}⊆V (R)

d(x, x′|G) +
∑

{y,y′}⊆V (S)

d(y, y′|G) +
∑

x∈V (R)

∑

y∈V (S)

d(x, y|G)

= W (R) + W (S) +
∑

x∈V (R)

∑

y∈V (S)

[d(x, r|R) + d(s, y|S) + 1]

= W (R) + W (S) +


 ∑

x∈V (R)

d(x, r|R)





 ∑

y∈V (S)

1




+


 ∑

x∈V (R)

1





 ∑

y∈V (S)

d(s, y|S)


 +


 ∑

x∈V (R)

1





 ∑

y∈V (S)

1


 .

Lemma 3 follows now from
∑

x∈V (R)

d(x, r|R) = d(r|R)

∑

y∈V (S)

1 = |S|

∑

x∈V (R)

1 = |R|

∑

y∈V (S)

d(s, y) = d(s|S) . 2

Consider a special case of the graph G described in Lemma 3: Let S =
Pk and let s be a terminal vertex of Pk . Denote this graph by Rk , see
Fig. 1. Then by combining Lemmas 2 and 3, and bearing in mind that
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W (Pk) =
(k+1

3

)
, we have

W (Rk) = W (R) +

(
k + 1

3

)
+ |R|

(
k

2

)
+ k [|R|+ d(r|R)] . (14)

Fig 1. The structure and labeling of vertices and edges
of graphs G and Rk , considered in Lemma 3 and
Eq. (14), and of the trees T and T ′ , considered
in Lemmas 4 and 5.

An Auxiliary Result

Let R be a tree on |R| vertices, |R| ≥ 2 . Let T and T ′ be trees whose
structure is depicted in Fig. 1. Hence, both T and T ′ possess |R|+a+ b+1
vertices. If a = b , then T and T ′ are isomorphic. Therefore, in what follows
we shall assume that a 6= b . Further, without loss of generality, we assume
that a + 1 ≤ b .

Lemma 4. If T and T ′ are the above specified trees (see Fig. 1), then
for all a ≥ 0 and b ≥ 0 ,

c3(T ′)− c3(T ) = (b− a)
[
W (R)− d(r|R) +

|R| − 1
6

(b− a− 1)(b− a + 1)
]

.

(15)

P r o o f. According to Eq. (1), since T and T ′ are trees,

c3(T ) =
∑

f,g∈E(T )

γ(T−f−g) and c3(T ′) =
∑

f ′,g′∈E(T ′)

γ(T ′−f ′−g′)
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where f and g as well as f ′ and g′ are distinct edges. In view of the structure
of T and T ′ (see Fig. 1), it is easily seen that for any pair of edges f, g one
can find a pair of edges f ′, g′ , such that γ(T − f − g) = γ(T ′ − f ′ − g′) ,
except is one of the edges f, g coincides with edge e , and one of the edges
f ′, g′ coincides with edge e′ , see Fig. 1. Bearing this in mind we have

c3(T ′)− c3(T ) =
∑

f ′∈E(T ′)

γ(T ′ − e′ − f ′)−
∑

f∈E(T )

γ(T − e− f) . (16)

Now, T − e consists of two components: Pa+1 and Rb . Therefore, because
the edge f belongs either to Pa+1 or to Rb ,

∑

f∈E(T )

γ(T − e− f) =
∑

f∈E(Pa+1)

γ(Pa+1 − f ∪Rb) +
∑

f∈E(Rb)

γ(Pa+1 ∪Rb − f)

= (|R|+ b)
∑

f∈E(Pa+1)

γ(Pa+1 − f) + (a + 1)
∑

f∈E(Rb)

γ(Rb − f)

which, in view of formula (11), results in
∑

f∈E(T )

γ(T − e− f) = (|R|+ b) W (Pa+1) + (a + 1)W (Rb) .

By an analogous reasoning,
∑

f ′∈E(T ′)

γ(T ′ − e′ − f ′) = (|R|+ a) W (Pb+1) + (b + 1)W (Ra) .

By substituting the above two expressions back into (16), and by taking
into account Eq. (14), we obtain

c3(T ′)− c3(T ) = [(|R|+ a) W (Pb+1) + (b + 1)W (Ra)]

− [(|R|+ b) W (Pa+1) + (a + 1)W (Rb)]

= (|R|+ a)

(
b + 2

3

)
− (|R|+ a)

(
a + 2

3

)

+ (b + 1)

[
W (R) +

(
a + 1

3

)
+ |R|

(
a

2

)
+ a [|R|+ d(r|R)]

]

− (a + 1)

[
W (R) +

(
b + 1

3

)
+ |R|

(
b

2

)
+ b [|R|+ d(r|R)]

]
.
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Lemma 4 follows now after a lengthy, but elementary, calculation. 2

Lemma 5. If T and T ′ are the same trees as in Lemma 4, then c3(T ) =
c3(T ′) if |R| = 2 and a = b− 1 . If either a + 1 < b or |R| > 2 or both, then
c3(T ) < c3(T ′) .

P r o o f. Lemma 5 is an immediate consequence of Lemma 4. If |R| = 2 ,
then R = P2 and, consequently, W (R) = d(r|R) = 1 , i.e., W (R)− d(r|R) =
0 . If, in addition, b− a− 1 = 0 then the entire right–hand side of Eq. (15)
is equal to zero.

If, however, |R| > 2 , then the Wiener number of R is necessarily greater
than d(r|R) , implying that the right–hand side of (15) is positive–valued.
Even if W (R) = d(r|R) , but a + 1 < b , the right–hand side of (15) is
positive. 2

Completing the Proof

Let G be an n-vertex graph and F its spanning forest consisting of k
components. Then γ(F ) is equal to the product of k positive integers whose
sum is equal to n . The smallest possible value of such a product is equal to
n−k +1 , namely when the respective k integers are n−k +1 , 1 , 1 , . . . , 1 .

Now, if T is an n-vertex tree, then each of its k-component spanning
forests is obtained by deleting from T a (k − 1)-tuple of distinct edges. In
the case of the star Sn each of its k-component spanning forests consists
of k isolated vertices and a copy of Sn−k+1 . The γ-value of each of these
spanning forests is minimal, equal to n − k + 1 . If k 6= 1, n − 1, n , then
any other n-vertex tree has a k-component spanning forest whose γ-value
exceeds n− k + 1 . An exception is the 4-vertex path, considered below, cf.
Eq. (17).

Bearing the above in mind, as well as Eqs. (1) and (2), we arrive at

Theorem 6. If T is an n-vertex tree, n ≥ 5 , different from Sn , then

c1(T ) = c1(Sn) = n

cn−1(T ) = cn−1(Sn) = 2(n− 1)
cn(T ) = cn(Sn) = 1

whereas for 2 ≤ k ≤ n− 2 ,

ck(T ) > ck(Sn) =

(
n− 1
k − 1

)
(n− k + 1) . 2
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Clearly, the left–hand side inequalities (a) and (b) in Theorem 1 are special
cases of Theorem 6.

In order to complete the proof of Theorem 1 we have to verify also the
right–hand side of inequality (b). To do this consider the transformation
T → T ′ of the trees specified in Lemmas 4 and 5, see Fig. 1. If a + 1 ≤ b ,
then this transformation increases the third Laplacian coefficient, except
when |R| = 2 and a + 1 = b , when the value of c3 remains the same.

Repeating the transformation T → T ′ a + 1 times, the entire a-branch
of T will be transferred to the b-branch and the degree of the vertex r
diminished by one. Repeating such transformations sufficiently many times
we will ultimately arrive at the path Pn . With a single exception (discussed
below) such a multi–step transformation will necessarily increase the value
of c3 , implying that for any n-vertex tree T , different from Pn , c3(Pn) >
c3(T ) .

The single exception is the case |R| = 2 , a = 0 , b = 1 . Then T = S4

and T ′ = P4 . In this case, according to Lemma 5, the transformation
T → T ′ does not increase the value of the third Laplacian coefficient, and
we thus have

c3(S4) = c3(P4) . (17)

Because S4 and P4 are the only 4-vertex trees, the exception (17) does
not effect the validity of the right–hand side inequality (b).

Thus we demonstrated that for n ≥ 5 the path Pn has maximum c3-value
among all n-vertex trees.

This proves the right–hand side of inequality (b).
The proof of Theorem 1 has thus been completed. 2

By the above considerations we also proved

Theorem 7. Among n-vertex trees, n ≥ 1 , n 6= 4 , the unique tree
with minimum third Laplacian coefficient is the star Sn , and the unique tree
with maximum third Laplacian coefficient is the path Pn . Exceptionally, for
n = 4 , Sn 6= Pn , but c3(Sn) = c3(Pn) . 2

In analogy to Eq. (13),

c3(Sn) =
1
2

(n− 1)(n− 2)2 and c3(Pn) =

(
n + 2

5

)
.
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4. Conclusion: A Conjecture

Summarizing Theorem 1 and Eqs. (3), (4), (5), (8), and (9), we see that
the inequalities

ck(Sn) ≤ ck(T ) ≤ ck(Pn) (18)

hold for all values of n , and for all n-vertex trees T , provided k = 1, 2, 3, n−
3, n− 2, n− 1 , and n .

Conjecture. The inequalities (18) hold for all values of n , n ≥ 1 , for
all n-vertex trees T , and for all values of k , 1 ≤ k ≤ n .
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