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1. Introduction

Equation

∂4

∂ξ4
u(t, ξ) + λ

∂2

∂ξ2
u(t, ξ) +

∂2

∂t2
u(t, ξ) = 0, t > 0, 0 < ξ < 1, (1.1)

appears in mathematical models for many different phenomena subject to
different boundary or initial conditions (cf. for example [1],[3],[4],[5],[6],[8]).
It is well-known that a solution to (1.1) is u(t, ξ) = Y (ξ)T (t), where Y and
T have the analytical from:

Y (ξ) = C1 coshr1ξ + C2 sinhr1ξ + C3 cos r2ξ + C4 sin r2ξ (1.2)
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T (t) = C5 cos Ωt + C6 sinΩt, Ω2 ∈ R+, (1.3)

where

r1 =

√√
λ2 + 4Ω2 − λ

2
; r2 =

√√
λ2 + 4Ω2 + λ

2
(1.4)

(cf.[1],[2]). For Ω any compex number cf. [10]. Our aim is to analyse
solutions, classical and generalized to equation (1.1).

2. The corresponding equation to (1.1) in D′(R2) and its solutions

2.1 coresponding equation to (1.1) in D′(R2)

Suppose that there exists u(t, ξ) ∈ C(2)
t (R+,R) such that:

1. u(t, ξ) is a solution to (1.1),
2. there exist

lim
t→0+

u(t, ξ) = u1(ξ) ∈ C(R) (2.1)

lim
t→0+

u
(1)
t (t, ξ) = u2(ξ) ∈ C(R). (2.2)

Let [Hu] denote the regular distribution defined by the function H(t)u(t, ξ),
where H is the Heaviside function (H(t) = 0, t < 0;H(t) = 1, t ≥ 0).

We show by a simple manner the relation between the second partial
derivative in the sense of distributions, D2

t [Hu], and the regular distribution,
[ ∂2

∂t2
u(t, ξ)] :

D2
t [Hu] =

[
u

(2)
t (t, ξ)0

]
− [u2(ξ)]⊗ δ(t)− [u1(ξ)]⊗ δ(1)(t), (2.3)

where u
(2)
t (t, ξ)0 =

∂2

∂t2
u(t, ξ), (t, ξ) ∈ R+ × R; u

(2)
t (t, ξ)0 = 0, (t, ξ) ∈ R− × R

and u
(2)
t (t, ξ)0 is not defined for (t, ξ) ∈ {0} × R.

This is only a special case of a general theorem which gives the relation
between partial derivatives in the sense of distributions and the classical
ones.

Proof of (2.3). By definition of the derivative in D′(R2), for ϕ ∈ D(R2)

< Dt[Hu], ϕ(t, ξ) >=< [Hu], (−1)ϕ(1)
t (t, ξ) >

= − ∫
R

∫
R̄+

H(t)u(t, ξ)ϕ(1)
t (t, ξ)dξdt

= lim
ε→0+

∞∫
−∞

dξ
∞∫
ε

u(t, ξ)ϕ(1)
t (t, ξ)dt
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= lim
ε→0+

∞∫
−∞

dξ
∞∫
ε

u
(1)
t (t, ξ)ϕ(t, ξ)dt +

∞∫
−∞

u(0, ξ)ϕ(0, ξ)dξ

=< [u(1)
t (t, ξ)0, ϕ(t, ξ) > + < [u(0, ξ)]⊗ δ(t), ϕ(t, ξ) > .

It follows that

Dt[Hu] = [u(1)
t (t, ξ)0] + [u1(ξ)]⊗ δ(t), (2.4)

where

u
(1)
t (t, ξ)0 =

∂

∂t
u(t, ξ), t > 0; u

(1)
t (t, ξ) = 0, t < 0 and u

(1)
t (t, ξ)0

is not defined in t = 0, ξ ∈ R. If we repeat the mode of proceeding to (2.4),
then it follows (2.3). Now, to (1.1) it correspouds in D′(R2)

D4
ξ + λD2

ξ + D2
t )ũ = [u1(ξ)]⊗ δ(1)(t) + [u2(ξ)]⊗ δ(t),

or
(D2

t + P (Dξ))ũ = f, (2.5)

where

P (Dξ) = D4
ξ + λD2

ξ , f = [u1(ξ)]⊗ δ(1)(t) + [u2(ξ)]⊗ δ(t) and ũ ∈ D′(R2).

We seek for solutions to (2.5) with the property supp ũ ⊂ R+ × R.

2.2. Solutions to (2.5)

By the lemma in [7, p. 30] the operator D2
t + P (Dξ) is quasihyperbolic

with respect to t if and only if the following condition is satisfied:

∃c > 0, d ∈ R, ∀ξ ∈ R : ReP (iξ)− c(ImP (iξ))2 ≥ d.

In our case P (iξ) = ξ4−λξ2. For every ξ ∈ R, ξ4−λξ2 ≥ −λ2

4 . Consequently
the operator D2

t + P (Dξ) is quasihyperbolic.
By Proposition 5 in [7., p. 32] the unique fundamental solution E of

D2
t + P (Dξ) with support in R+×R and E ∈ eαtS ′ for an α ∈ R is given by

E(t, ξ) = H(t)F−1
x (

sin(t
√

P (2πix))√
P (2πix)

)(t, ξ), (2.6)

where F−1 is the inverse Fourier transform.
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Using Bochner’s formula (cf. [9,(VII,7,22)] or [7,p 19])

E(t, |ξ|) = H(t)2π|ξ|1/2

∞∫

0

sin(t
√

P (2πix))√
P (2πix)

x1/2J−1/2(2π|ξ|x)dx, (2.7)

where Jv is the Bessel function.
Since

J−1/2(2π|ξ|x) =
1
π

cos 2π|ξ|x√|ξ|x ,

we have

E(t, ξ) = 2H(t)
∞∫

0

sin(t
√

P (2πix))√
P (2πix)

cos(2π|ξ|x)√
x

dx. (2.8)

Suppose now that u1(ξ) and u2(ξ) in (2.5) have the properties that:

([u2(ξ)]⊗ δ(t)) ∗ [E(t, ξ)], ([u1(ξ)]⊗ δ(1)(t)) ∗ [E(t, ξ)] (2.9)

exist, then there is a solution ũ to (2.5) in D′(R2) with support in R̄+ × R
ũ = (([u1(ξ)]⊗ δ(1)(t))) + ([u2(ξ)]⊗ δ(t))) ∗ [E(t, ξ)]

= [u2(ξ)] ∗ [E(t, ξ)] + [u1(ξ)] ∗Dt[E(t, ξ)].

This solution is unique in the vector space A ⊂ D′(R2). A consists of
all q ∈ D′(R2) for which there exists E ∗ q (cf. [12 chapter III, §11.3]). We
proved the following

Theorem 1. Let E be qiven by (2.8) and let A be the vector space
belonging to D′(R2) such that for every g ∈ A there is [E] ∗ g.

Suppose that u1(ξ) and u2(ξ) are in C(R) such that the convolutions (2.9)
exist. Then

ũ = [u2(ξ)] ∗ [E(t, ξ)] + [u1(ξ)] ∗Dt[E(t, ξ)] (2.10)

is a solution to

(D4
ξ + λD2

ξ + D2
t )ũ = 0 in D′(R+ × R).

But it is also the unique solution in the space A ⊂ D′(R2) satisfying the
initial condition in t in the sense that

D4
ξ + λD2

ξ + D2
t )ũ = [u2(ξ)]⊗ δ(t) + [u1(ξ)]⊗ δ(1)(t).
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Remarks: 1. If u1(ξ) and u2(ξ) also belong to C4(R), then by the
property of convolution

Di
ξũ = [u(i)

2 (ξ)] ∗ [E(t, ξ)] + [u(i)
1 (ξ)] ∗Dt[E(t, ξ)], i = 1...., 4.

2. If we have two solutions u1(t, ξ) and u2(t, ξ) to (1.1) with some initial

condition u1(0, ξ) = u2(0, ξ) and
d

dt
u1(t, ξ)|t=0 =

d

dt
u2(t, ξ)|t=0, ξ ∈ R, then

[u2(t, ξ)] = [u1(t, ξ)] + h, (2.11)

where h = 0 or h 6∈ A.

Let us prove it. The function U(t, ξ) = u2(t, ξ) − u1(t, ξ) satisfies (1.1)
with unitial condition U

(i)
t (t, ξ)|t=0 = 0, i = 0, 1, ξ ∈ R, consequently the

regular distribution [U(t, ξ)] ∈ D′(R2) satisfies (2.5) with f = 0. Then
[U(t, ξ)] = h, where h = 0 or h 6∈ A. Hence [U(t, ξ)] = [u2(t, ξ)]− [u1(t, ξ)] =
h.

3. The well-known solution to (1.1) u(t, ξ) = Y (ξ)T (t), where Y and T
have been given by (1.3) and (1.4), has not the convolution with E(t, ξ) in
the sense of distributions, i.e., [u(t, ξ)]∗ [E(t, ξ)] does not exist. If were true
that [u(t, ξ)] ∗ [E(t, ξ)] exists, then by 1. and the property of convolution:

[u(t, ξ)] = [u(t, ξ)] ∗ δ(t, ξ) = [u(t, ξ)] ∗ (D2
t + P (Dξ))[E(t, ξ)]

= ((D2
t + P (Dξ))[u(t, ξ)]) ∗ [E(t, ξ)]

=

[( ∂2

∂t2
+

∂4

∂ξ4
+

∂2

∂ξ2

)
u(t, ξ)

]
∗

[
E(t, ξ)

]
= 0.

Thus u(t, ξ) = 0, t > 0, ξ ∈ R.

4. If equation (2.5) with f = 0 has a solution belonging to D′(R2), it
does not belong to A.

P r o o f. A solution to (1.1) in D′(R2) is u(t, ξ) ≡ 0, (t, ξ) ∈ R2. By 2.
if there is a solution to (1.1) belonging to D′(R2) which is not identical zero,
then it does not belong to A.

The solution u(t, ξ) = Y (ξ)T (t), where Y and T have been given by (1.2)
and (1.3), respectively, is in fact a solution to

(Y (4)(ξ) +λY (2)(ξ) + ω2Y (ξ))T (t)
+(T (2)(t)− ω2T (t))Y (ξ) = 0, t > 0, ξ ∈ R,

(2.12)
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for ω2 ∈ R \ {0}. This equation can be written in the form
(

P
( d

dξ

)
+

d2

dt2
− ω2

)
Y (ξ)T (t) = 0, (2.13)

where

P
( d

dξ

)
=

d4

dξ4
+ λ

d2

dξ2
+ ω2.

In the sequel we suppose that ω2 > 0. Since

P (iξ) = ξ4 − λξ2 + ω2 > 0, ξ ∈ R, ω2 − λ2

4
> 0,

by Proposition 6 in [7] there is the unique fundamental solution Eω(t, ξ) of

P
( d

dξ

)
+

d2

dt2
− ω2 with support in R+ × R and belonging to eαtS ′ for an

α ∈ R. It has the following representation

Eω(t, ξ) = E(t, ξ)− ωH(t)
t∫

0

τ√
t2 − τ2

J1(ω
√

t2 − τ2)E(τ, ξ)dτ, (2.14)

where E(t, ξ) is given by (2.8).

Theorem 2. If in Theorem 1 instead of E(t, ξ) we take Eω(t, ξ), given
by (2.14), then we obtain another form of solutions to

(
P

( d

dξ

)
+

d2

dt2
− ω2

)
[u(t, ξ)] = 0

with

P
( d

dξ

)
=

d4

dξ4
+ λ

d2

dξ2
+ ω2,

where ω2 − λ2

4
> 0, ω2 > 0.

2.3. A convolutor to E(t, ξ)

At the end of Part 2 we give a sufficient condition for a regular distri-
bution to have convolution with E(t, ξ), such that this convolution is also a
regular distribution

Lemma 1. If f(ξ, t) has the property that

|f(ξ, t)| ≤ H(t)α(t)β(ξ), (ξ, t) ∈ R× R+, (2.15)
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where α(t) ∈ Lloc([0,∞)) and β(ξ) ∈ L1(R), then f(ξ, t) defines a regular
distribution [f(ξ, t)] such that [f(ξ, t)] ∗ [E(ξ, t)] exists and is also a regular
distribution defined by the function (f(ξ, t) ∗ E(ξ, t))(ξ, t) which is bounded
in ξ ∈ R, for every t ≥ 0.

P r o o f. It is enough to prove that there exists the convolution of two
functions f(ξ, t) ∗ E(ξ, t) and that this convolution is a locally integrable
function on (R× R+)

∣∣∣f(ξ, t) ∗E(ξ, t)
∣∣∣ =

∣∣∣
∞∫

−∞

∞∫

−∞
f(ξ − x, t− τ)E(x, τ)dx dτ

∣∣∣

≤
∞∫

−∞
dx

t∫

0

α(t− τ)β(ξ − x)|E(x, τ)|dτ (2.16)

≤ H(t)
∞∫

−∞
β(x)dx

t∫

0

α(t− τ)B(τ)dτ,

where

B(τ) = sup
ξ∈R

|E(ξ, t)| = sup
ξ∈R

∣∣∣
∞∫

−∞
e2πixξ sin(2πτ |x|√4π2x2 − λ)

2π|x|√4π2x2 − λ
dx

∣∣∣ (2.17)

≤ sup
ξ∈R

∣∣∣
∞∫

−∞

∣∣∣
−
√

λ/2π∫

−∞
+

∞∫

√
λ/2π

+

√
λ/2π∫

−
√

λ/2π

e2πixξ sin(2πτ |x|√4π2x2 − λ)
2π|x|√4π2x2 − λ

dx
∣∣∣.

In the first and the second integral we can use the inequality
∣∣∣∣∣e

2πixξ sin(2πτ |x|√4π2x2 − λ)
2π|x|√4π2x2 − λ

∣∣∣∣∣ ≤
1

2π|x|√4π2x2 − λ
, t ≥ 0, |x| ≥

√
λ

2π
.

(2.18)
The third integral is:

√
λ

2π∫

−
√

λ
2π

e2πixξ 1
2π|x|√λ− (2πx)2

sin h(τ2πx
√

λ− (2πx)2)dx
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=

√
λ

2π∫

−
√

λ
2π

e2πixξf(x, τ)dx.

The function f(x, τ) is not defined for x = 0. But since there exists

lim
x→0

f(x, τ) = τ, τ ≥ 0,

this function can be extended to
(
−
√

λ

2π
,

√
x

2π

)
as a continuous function.

Thus
∣∣∣∣∣

√
λ

2π∫

−
√

λ
2π

e2πixξf(x, τ)dx

∣∣∣∣∣ ≤

√
λ

2π∫

−
√

λ
2π

|f(x, τ)|dx.

Consequently, B(τ) ∈ Lloc([0,∞)) and the Lemma is proved.

Remark. If u1(ξ) ≡ 0 and u2(ξ) ∈ L1(R) then by Lemma we proved,
it follows that the solution (2.10) is a regular distribution defined by the
function u2(ξ) ∗ E(t, ξ), with support in R+ × R and bounded in ξ ∈ R, for
every t ≥ 0.

3. Special case of equation (1.1)

3.1. Fourier’s method

In Part 2 the solutions to equation (2.5) have been limited by the space
A. Now we consider equation (1.1) in case λ = 0 without this limitation. A
detailed discussion of the mentioned case by Fourier’s method separation of
variables one can find in [3]. Transverse vibrations of a homogeneous rod
has been given by

∂4u

∂x4
+

∂2u

∂t2
= 0. (3.1)

Five various types of boundary conditions have been considered for a
solution supposed in the form u(x, t) = v(x) g(t)

1. v′′(x) = v′′′(x) = 0, for x = 0 and x = π;
2. v(x) = v′′(x) = 0, for x = 0 and x = π;
3. v(x) = v′(x) = 0, for x = 0 and x = π;
4. v′(x) = v′′′(x) for x = 0 and x = π;
5. v(i)(0) = v(i)(π), i = 0, 1, 2, 3.
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We would like to analyse the existence of other solutions (generalized or
classical) to equation (3.1). Therefore we use a method explained in [11]
and the Laplace Transform. We hope that not only our solution (3.28) but
also the Comments at the end can be interesting for applications.

3.2 Distributions and the Laplace transform

We repeat some definitions and facts related to the space S ′ of tempered
distributions and to the Laplace transform (in short LT) of them (cf. [12]
and [13]).

Let Γ be a closed convex acute cone in Rn, Γ∗ = {t ∈ Rn, tx ≡ t1x1 +
... + tnxn ≥ 0, ∀x ∈ Γ} and C = intΓ∗. Let K be a compact set in Rn.

By S ′(Γ + K) is denoted the space of tempered distributions defined on
the close set Γ + K ⊂ Rn. Then S ′(Γ+) is defined by way of

S ′(Γ+) =
⋃

K⊂Rn

S ′(Γ + K). (3.2)

The set S ′(Γ+) forms an algebra that is associative and commutative if
for the operation of multiplication one takes the convolution, denoted by ∗.

If Γ + K is convex, as it will be in our case, then the LT of f ∈ S ′(Γ+)
is defined by

f̂(z) = L(f)(z) = 〈f(t), e−zt〉, z ∈ C + iRn. (3.3)

If σ ≥ 0, f ∈ S ′(Γ+), then

L(eσtf)(z) = 〈f(t), e−(z−σ)t〉, Rez > σ, (3.4)

where t = (t1, ..., tn), z = (z1, ..., zn) and zt = z1t1 + ... + zntn. It is one to
one operation.

For the properties of so defined LT one can consult [13]. We shall cite
only some of them, we use in the sequel:

1) L
( ∂m

∂tmi
f
)
(z) = (zi)mL(f)(z).

2) If f ∈ S ′(Γ1+) and g ∈ S ′(Γ2+), then L(f×g)(z, s) = L(f)(z)L(g)(s),
z ∈ C1 + iRn, s ∈ C2 + iRn.

3) If f, g ∈ S ′(Γ+), then f ∗ g ∈ S ′(Γ+) and
L(f ∗ g)(z) = L(f)(z)L(g)(z), z ∈ C + iRn.
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4) L(δ(t− t0))(z) = e−zt0 .

5) L(f)(z + a) = L(e−atf)(z), Rea > 0.

6) If f ∈ Lloc(Rn
+) and |f(x)| ≤ Ceqx, x ≥ x0 > 0, then

f(x)e−qx ∈ S ′(Rn
+) and

∫

Rn
+

e−(z+q)tf(t)dt =
∫

Rn
+

e−zte−qtf(t)dt = L(e−qtf)(z).

Let H(α,β)
a (C), α ≥ 0, β ≥ 0, a ≥ 0, denote the sets of holomorphic

functions on C + iRn which satisfy the following growth condition

|f(z)| ≤ Mea|x|(1 + |z|2)α/2(1 + ∆−β(x, ∂C)), z = x + iy ∈ C + iRn, (3.5)

where ∂C is the boundary of C and ∆(x, ∂C) is the distance between x and
∂C. We set

Ha(C) =
⋃

α≥0,β≥0

H(α,β)
a (C) and H+(C) =

⋃

a≥0

Ha(C).

Proposition A. ([13] p.191). The algebras H+(C) and S ′(C∗+) and
also their subalgebras H0(C) and S ′(C∗) are isomorphic. This isomorphism
is accomplished via the LT.

A property of the defined LT which can be used in a practical way is the
following:

Let f ∈ S ′(Rn
+ +P ). The LT of f, L(f), can be obtained by one after the

other applications of the LT-s L1(f), ...,Ln(f), L(f) = L1(f) ◦ ... ◦Ln(f).
If σ ≥ 0, f ∈ S ′(C∗+) and g = eσtf then by definition L(g)(s) =

〈f(t), e−(s−σ)t〉, Res > σ..
Let F (s) be a function holomorphic for Res > σ. The function F (ξ+σ) is

holomorphic for Reξ > 0. If F (ξ+σ) ∈ H(R+), then there exists f ∈ S ′(R+)
such that L(eσtf)(s) = F (s), Re s > σ.

We shall quote some auxiliary formulas for the classical Laplace Trans-
form we need. Let H denotes the Heaviside function, H(t) = 0, t <
0; H(t) = 1, t ≥ 0.

1. L−1
z

( 1
z + a

√
s

)
= H(x)e−ax

√
s.

2. L−1
s

( 1√
s
e−ax

√
s
)

=
H(t)√

πt
e−(ax)2/(4t), x > 0, ; Rea > 0
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= H(t)χ(ax, t).

3.
1
2i

(
χ(ei π

4 x, t)−χ(e−i π
4 x, t)) =

−1√
πt

1
2i

(
ei x2

4t − e−i x2

4t

)
= − 1√

πt
sin

x2

4t
.

4.
1

iei π
4

χ(ei π
4 x, t) =

1√
πt

[
−
√

2
2

cos
x2

4t
−
√

2
2

sin
x2

4t
− i

(
−
√

2
2

cos
x2

4t
+

+
√

2
2

sin
x2

4t

)]
.

5. 1

ie−i π
4
χ(e−i π

4 x, t) = 1√
πt

√
2

2

[
cos x2

4t + sin x2

4t − i
(

cos x2

4t − sin x2

4t

)]
.

3.3. Solution to (3.1) in D′(R2
+)

We consider the equation (3.1) with initial conditions

u(0, t) =
∂

∂x
(0, t) = 0, t ≥ 0,

∂k

∂xk
u(0, t) = Ak(t), k = 2, 3, t ≥ 0, (3.6)

u(x, 0) = B0(x),
∂

∂t
u(x, 0) = B1(x), x ≥ 0,

where [H(t)Ak(t)] ∈ eσtS ′(R+), k = 2, 3, p > 0 and [H(x)Bi(x)] ∈ eσxS ′(R+),
i = 0, 1, q > 0, σ > 0.

To find an equation in D′(R2
+) which corresponds to (3.1) for x > 0, t > 0

we need the following relations between derivatives in the sense of distribu-
tions and the classical ones.

Let H2(x1, x2) = H(x1)H(x2), where H is the Heaviside function. For
a function f with continuous partial derivatives on R2, [H2f ] is the distri-
bution, defined by H2f, belonging to D′(R2) and to D′(R2

+), as well. Let( ∂p

∂xp
i

f
)

0
denote the function equal to

∂p

∂xp
i

f on the R2
+ and equal zero on

R2 \ R2
+, but is not defined for (x1, x2) ∈ {(0, x2) ∪ (x1, 0); x1 ≥ 0, x2 ≥ 0}.

With the notation as above we have (cf. [11])

Dp
xi

[H2f ] =
[
H2

( ∂p

∂xp
i

f
)

0

]
+ Rp(f), p ∈ N,

where

Rp(f) =
[
H2 ∂p−1

∂xp−1
i

f(x)|xi=0

]
× δ(xi) + ... + [H2f(x)|xi=0]× δ(p−1)(xi).
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To equation (3.1) with initial condition (3.6) it corresponds in D′(R2
+)

∂4

∂x4
[u(x, t)] +

∂2

∂t2
[u(x, t)] = [H(t)A2(t)]× δ(1)(x) (3.7)

+[H(t)A3(t)]× δ(x) + [H(x)B1(x)]× δ(t) + [H(x)B0(x)]× δ(1)(t).

Applying the LT we have

(z4 + s2)L(u)(z, s) = L(A2)(s)z + L(A3)(s) + L(B1)(z) + L(B0)(z)s,

or
L(u)(z, s) =

Q(z, s)
z4 + s2

, (3.8)

with

Q(z, s) = L(A2)(s)z + L(A3)(s) + L(B1)(z) + L(B0)(z)s. (3.9)

Since
1

z4 + s2
=

1
2is

( 1
z2 − is

− 1
z2 + is

)
,

Q(z, s)
z4 + s2

=
Q(z, s)

2is

( 1
z2 − is

− 1
z2 + is

)
. (3.10)

By Proposition A in [11]
Q(z, s)
z4 + s2

has to be holomorphic in {(z, s) ∈
C2; Rez > w1 > 0, Res > w2 > 0}. Since z4 + s2 = (z − z1)(z + z1)(z −
z2)(z + z2), where z1 = ei π

4
√

s, z2 = ei 3π
4
√

s, it is necessary to have

Q(ei π
4
√

s, s) = 0 and Q(−ei 3π
4
√

s, s) = 0

or equivalently

Q(ei π
4
√

s, s) = 0 and Q(e−i π
4
√

s, s) = 0. (3.11)

First step
In the first step we consider the first addend in (3.10). Now we need

(3.11) to be satisfied which gives:

L(A2)(s)ei π
4
√

s + L(A3)(s) + L(B1)(ei π
4
√

s) + sL(B0)(ei π
4
√

s) = 0. (3.12)

Now we can express L(A3)(s),

L(A3)(s) = −L(A2)(s)ei π
4
√

s− L(B1)(ei π
4
√

s)− sL(B0)(ei π
4
√

s).
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With such expressed L(A3)(s) the first addend in (3.10) is:

Q(z, s)
2is(z2 − is)

=
L(A2)(s)(z − ei π

4
√

s)
2is(z2 − is)

+

+
L(B1)(z)− L(B1)(ei π

4
√

s) + s(L(B0)(z)− L(B0(ei π
4
√

s))
2is(z2 − is)

=
L(A2)(s)

2is(z + ei π
4
√

s)
+

(
L(B1)(z)− L(B1)(ei π

4
√

s)
4isei π

4
√

s
+ (3.13)

+
L(B0)(z)− L(B0)(ei π

4
√

s)
4isei π

4
√

s

)(
1

z − ei π
4
√

s)
− 1

z + ei π
4
√

s)

)
.

By using the auxiliary formulas 1., 2. and 5. we quoted we find the LT
of (3.13).

Let us consider the first addend in (3.13)

L−1

(
L(A2)(s)

2is(z + ei π
4
√

s)

)
= L−1

s ◦
(
L−1

z

(
1

z + ei π
4
√

s

)
L(A2)(s)

2is

)

=
1
2i
L−1

s

(
1√
s

e−ei π
4
√

sx

)
1√
s
L(A2)(s) (3.14)

=
H(x)H(t)
2iΓ(1/2)

χ(ei π
4 x, t)

t∗
t∫

0

(t− τ)−1/2A2(τ)dτ.

The second addend in (3.13) is:

L(B1)(z)− L(B1)(ei π
4
√

s)
4isei π

4
√

s

(
1

z − ei π
4
√

s
− 1

z + ei π
4
√

s

)
. (3.15)

We shall start with

L−1

(
L(B1)(z)− L(B1)(ei π

4
√

s)
4isei π

4
√

s(z + ei π
4
√

s)

)

= L−1
z ◦ L−1

s

(
L(B1)(z)

4isei π
4
√

s(z + ei π
4
√

s)
(3.16)

−L−1
s ◦ L−1

z

(
L(B1)(ei π

4
√

s)
4isei π

4
√

s(z + ei π
4
√

s)

)
..
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The first addend in (3.16) is

L−1
z

(
B1(z)L−1

s

(
1

4(ei π
4
√

s)3(ei π
4
√

s + z)

))

= L−1
z

(
B1(z)L−1

s

1

4ei 3π
4 s

t∗ L−1
s

1
(z + ei π

4
√

s)
√

s

)
(3.17)

=
1

4ei 3π
4

t∫

0

χ(ei π
4 x, τ)dτ

x∗ B1(x).

For the second addend in (3.16) we have

−L−1
s ◦ L−1

z

(
L(B1)(ei π

4
√

s)
4isei π

4
√

s(z + ei π
4
√

s)

)

= −L−1
s

(
Ls(B1)(ei π

4
√

s) · 1

4ei 3π
4 s

· 1√
s
L−1

z

(
1

z + ei π
4
√

s

))

= −L−1
s

(
1

4ei 3π
4 s

H(x)√
s

e−ei π
4 x
√

s

∞∫

0

e−ei π
4
√

sτB1(τ)dτ

)

= d− 1

4ei 3π
4

t∗ L−1
s

(
1√
s

∞∫

0

e−ei π
4
√

s(x+τ)B1(τ)dτ

)

= − 1

4ei 3π
4

t∗
∞∫

0

e−
1
4
i(x+τ)2/t 1√

πt
B1(τ)dτ

= − 1
4iei π

4

t∫

0

du

∞∫

0

χ(ei π
4 (x + τ), u)B1(τ)dτ.

(3.18)

The first addend in (3.15) gives

L−1

(
L(B1)(z)− L(B1)(ei π

4
√

s)
4isei π

4 s
√

s(z − ei π
4
√

s)

)

= L−1 L(B1)(z)
4iei π

4 s
√

s(z − ei π
4
√

s)
− L−1 L(B1)(ei π

4
√

s)
4iei π

4 s
√

s(z − ei π
4
√

s)
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=
1

4iei π
4

(
L−1

s

1
s
√

s
eei π

4 x
√

s x∗ B1(x)− L−1
s

1
s
√

s
eei π

4 sx

∞∫

0

e−ei π
4
√

suB1(u)du

)

=
1

4iei π
4

(
L−1

s

1
s
√

s

x∫

0

ei π
4
(x−u)

√
sB1(u)du− L−1

s

1
s
√

s

∞∫

0

e−ei π
4 (u−x)

√
s

B1(u)du

(3.19)

=
−1

4iei π
4

L−1
s

(
1

s
√

s

∞∫

x

e−ei π
4 (u−x)

√
s

B1(u)du

)

=
−1

4iei π
4

t∫

0

∞∫

x

χ(ei π
4 (u− x), τ)B1(u)du dτ.

If we collect all the results obtained in (3.16)−(3.19), then the inverse LT
of (3.15) is a function denoted by F (B1, x, t, π

4 ),

F (B1, x, t,
π

4
) = − 1

4iei π
4

t∫

0

∞∫

x

χ(ei π
4 (u− x), τ)B1(u)du dτ

− 1
4iei π

4

t∫

0

χ(ei π
4 x, τ)dτ

x∗ B1(x) (3.20)

+
1

4iei π
4

t∫

0

du

∞∫

0

χ(ei π
4 (x + τ), u)B1(τ)dτ.

To find the inverse LT of (3.13), it is yet to be find the inverse LT of

s(L(B0)(z)− L(B0)(ei π
4
√

s))

4ei 3π
4 s
√

s

(
1

z − ei π
4
√

s
− 1

z + ei π
4
√

s

)
. (3.21)

If we compare (3.21) with (3.15), we can observe that in the structure
of (3.21) we have additionally only a product by s. Since F (B0, x, 0, π

4 ) = 0,
the inverse LT of (3.21) is

∂

∂t
F

(
B0, x, t,

π

4

)
= − 1

4ie
iπ
4

∞∫

x

χ
(
ei π

4 (u− x), t
)
B0(u)du

− 1
4iei π

4

χ(ei π
4 x, t)

x∗ B0(x) (3.22)
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+
1

4iei π
4

∞∫

x

χ
(
ei π

4 (x + τ), t
)
B0(τ)dτ.

To finish the first step we collect the all obtained results which give

L−1

(
Q(z, s)

2is(z2 − is)

)
(x, t) =

=
1

2iΓ(1/2)
χ(ei π

4 x, t)
t∗

t∫

0

(t− τ)−1/2A2(τ)dτ (3.23)

+F
(
B1, x, t,

π

4

)
+

∂

∂t
F

(
B0, x, t,

π

4

)
,

where F is given by (3.20).

Second step

In the second step we consider the second addend in (3.10). Now we
need (3.11)2 to be satisfied:

L(A2)(s)e−i π
4
√

s + L(A3)(s) + L(B1)(e−i π
4
√

s) + sL(B0)(e−i π
4
√

s) = 0.
(3.24)

The procedure to find the inverse LT of

Q(z, s)
2is(z2 + is)

=
Q(z, s)

4ie−i π
4 s
√

s

(
1

z − e−i π
4
√

s
− 1

z + e−i π
4
√

s

)
(3.25)

is just the same as for the first addend in (3.10), which we applied in the
first step. Consequently because the Ree−i π

4 > 0, we have

L−1

(
Q(z, s)

2is(z2 + is)

)
(x, t) =

1
2iΓ(1/2)

χ(e−i π
4 x, t)

t∗
t∫

0

(t− τ)−1/2A2(τ)dτ+

+F
(
B1, x, t,−π

4

)
+

∂

∂t
F

(
B0, x, t,−π

4

)
. (3.26)

Third step

It remains to find the solution u(x, t) to equation (3.1). This can be
done, now, by taking the inverse LT of (3.8) or in fact of (3.10).
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By (3.23) and (3.26) we have

u(x, t) =
1

2iΓ(1/2)
χ(ei π

4 x, t)
t∗

t∫

0

(t− τ)−1/2A2(τ)dτ

+F (B1, x, t,
π

4
) +

∂

∂t
F (B0, x, t,

π

4
)

− 1
2iΓ(1/2)

χ(e−i π
4 x, t)

t∗
t∫

0

(t− τ)−1/2A2(τ)dτ

−F
(
B1, x, t,

−π

4

)
− ∂

∂t
F

(
B0, x, t,−π

4

)
.

(3.27)

Now we can apply properties of χ 3.- 5. in Section 3.2 to (3.27):

u(x, t) =
1

Γ(1/2)
1√
πt

sin
x2

4t

t∗
t∫

0

(t− τ)−1/2A2(τ)dτ

+
√

2
4

1√
πt

t∫

0

∞∫

x

(
cos

(u− x)2

4τ
+ sin

(u− x)2

4τ

)
B1(u)du dτ

+
√

2
4

1√
πt

t∫

0

(
cos

x2

4τ
+ sin

x2

4τ

)
dτ

x∗ B1(x)

−
√

2
4

1√
πt

t∫

0

∞∫

0

(
cos

(x + τ)2

4u
+ sin

(x + τ)2

4u

)
B1(τ)dτ du

+
√

2
4

1√
πt

∞∫

x

(
cos

(u− x)2

4t
+ sin

(u− x)2

4t

)
B0(u)du
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+
√

2
4

1√
πt

(
cos

x2

4t
+ sin

x2

4t

)
x∗ B0(x)

−
√

2
4

1√
πt

∞∫

0

(
cos

(x + τ)2

4t
+ sin

(x + τ)2

4t

)
B0(τ)dτ.

(3.28)

Comments

1. Functions A2 and A3 we can express by B0 and B1 using (3.12) and
(3.24).

2. If we have also some boundary conditions, then we try to settle B0

and B1 in such a way that they are satisfied, if it is possible.
3. If in the initial conditions (3.6)

A2(t) = −2ν2C1g(t), A3(t) = −2ν3C2g(t) (3.29)

B0(x) = K1v(x) and B1(x) = µK2v(x),

then it follows by (3.8) that u(x, t) = v(x)g(t) is a solution to (3.1), as well,
with initial condition (3.6), where

v(x) = C1 cos νx + C2 sin νx + C3 coshνx + C4 sinhνx (3.30)

g(t) = K1 cosµt + K2 sinµt;

ν = 4
√

ω2, µ =
√

ω2, ω2 > 0; K1, K2, Ci, i = 1, ..., 4, are constants.

P r o o f. To prove that u(x, t) = v(x)g(t) is a solution to (3.1) with (3.6)
and (3.29) which satisfies (3.8) we use the known properties of f and g (cf.
[1]):

v̂(z) = − 2
z4 − ω2

(ν2C1z + ν3C2)

ĝ(s) =
1

s2 + ω2
(K1s + µK2).

Then

L(u)(z, s) = −2(ν2C1z + ν3C2)ĝ(s)
z4 + s2

+
(K1s + µK2)v̂(z)

z4 + s2
=

z4 − ω2

z4 + s2
v̂(z)ĝ(s)

+
s2 + ω2

z4 + s2
v̂(z)ĝ(s) =

(z4 + s2)v̂(z)ĝ(s)
z4 + s2

= v̂(z)ĝ(s).
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4. There exists one and only one solution u(x, t) to (3.1) for x >
0, t > 0 which satisfies (3.6)1 and (3.6)3 with fixed B0, B1, such that
[H2(x, t)u(x, t)] ∈ eσ(x+t)S ′(R2

+).

P r o o f. Suppose to have two solutions to (3.1), u1 and u2. Let U = u1−u2

and ai = A1
i − A2

i , i = 2, 3; A1
i , A

2
i are given in (3.6)2 for u1 and u2,

respectively. Then U satisfies

∂4

∂x4
[U(x, t)] +

∂2

∂t2
[U(x, t)] = [H(t)a2(t)]× δ(1)(x) + [H(t)a3(t)]× δ(x).

Because of (3.11) ai(t) = 0, i = 2, 3. Therefore by (3.8), U(x, t) = 0,
x ≥ 0, t ≥ 0.

REFERENCES
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