ASYMPTOTICS OF SOME CLASSES OF NONOSCILLATORY SOLUTIONS OF SECOND-ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS

K. TAKAŜI, V. MARIĆ, T. TANIGAWA

(Presented at the 2nd Meeting, held on March 28, 2003)
$A b s t r a c t$. The precise asymptotic behaviour at infinity of some classes of nonoscillatory solutions of the half-linear differential equations is determined.

AMS Mathematics Subject Classification (2000): 34D05
Key Words: half-linear equations,regular solutions,asymptotics of solutions

0. Introduction

Let $\alpha>0$ be a constant and let $q:[0, \infty) \rightarrow \mathbb{R}$ be a continuous function which is conditionally integrable in the sense that

$$
\int_{0}^{\infty} q(t) d t=\lim _{T \rightarrow \infty} \int_{0}^{T} q(s) d s \quad \text { exists and is finite. }
$$

We consider the half-linear differential equation

$$
\begin{equation*}
\left(\left|y^{\prime}\right|^{\alpha-1} y^{\prime}\right)^{\prime}+q(t)|y|^{\alpha-1} y=0, \quad t \geq 0 \tag{A}
\end{equation*}
$$

and derive the precise asymptotic behaviour of some classes of its nonoscillatory solutions $y(t)$ meaning, as usual, that we construct a positive, continuous function $\varphi(t)$ defined on a positive half-axis such that $y(t) / \varphi(t) \rightarrow 1$ as $t \rightarrow \infty$, denoted as $y(t) \sim \varphi(t)$.

In particular, we treat in that respect the nonoscillatory solutuions of (A) which belong to the class of slowly varying functions in the sense of Karamata [1], which is of frequent occurrence in various branches of mathematical analysis.

For brevity, we use the canonical representation of these as the definition.
Definition 0.1. A positive measurable function $L(t)$ defined on $(0, \infty)$ is slowly varying if and only if it can be written in the form

$$
L(t)=c(t) \exp \left\{\int_{t_{0}}^{t} \frac{\varepsilon(s)}{s} d s\right\}, \quad t \geq t_{0}
$$

for some $t_{0}>0$, where $c(t)$ and $\varepsilon(t)$ are such that for $t \rightarrow \infty$

$$
c(t) \rightarrow c \in(0, \infty) \quad \text { and } \quad \varepsilon(t) \rightarrow 0 .
$$

If $c(t)$ is identically a positive constant, then $L(t)$ is called normalized.
The present work is the first attempt at scrutinizing the asymptotic behaviour of slowly varying solutions of the half-linear differential eqautions. Note that the asymptotic analysis of slowly varying solutions for the linear equation $y^{\prime \prime}+q(t) y=0$, which is a special case of (A) with $\alpha=1$, has been made by several authors; see e.g. [2, 3, 5, 6]

1. Results

The existence of nonoscillatory solutions of (A) is essentially proved (for $c(t)=c)$ in [4, Lemma 2.2], but we present the proof here for the reader's benefit. We put

$$
E(\alpha)=\frac{\alpha^{\alpha}}{(\alpha+1)^{\alpha+1}},
$$

which is referred to as the generalized Euler constant with respect to (A), and make use of the asterisk notation:

$$
\xi^{\gamma *}=|\xi|^{\gamma-1} \xi=|\xi|^{\gamma} \operatorname{sgn} \xi \quad \text { for } \xi \in \mathbb{R} \quad \text { and } \gamma>0 .
$$

Theorem 1.1. Put

$$
\begin{equation*}
Q(t)=\int_{t}^{\infty} q(s) d s \tag{1.1}
\end{equation*}
$$

and suppose that there exists a continuous function $P:\left[t_{0}, \infty\right) \rightarrow(0, \infty), t_{0} \geq$ 0 , such that $\lim _{t \rightarrow \infty} P(t)=0$ and

$$
\begin{align*}
|Q(t)| \leq P(t), \quad t \geq t_{0} \tag{1.2}\\
\int_{t}^{\infty} P(s)^{1+\frac{1}{\alpha}} d s \leq \frac{1}{\alpha} c(t)^{\frac{1}{\alpha}} P(t), \quad t \geq t_{0} \tag{1.3}
\end{align*}
$$

where $c(t)$ is a continuous nonincreasing function satisfying

$$
\begin{equation*}
0<c(t) \leq c<E(\alpha), \quad t \geq t_{0} \tag{1.4}
\end{equation*}
$$

for some constant c. Then the equation (A) has a nonoscillatory solution of the form

$$
\begin{equation*}
y(t)=\exp \left\{\int_{t_{0}}^{t}[v(s)+Q(s)]^{\frac{1}{\alpha} *} d s\right\}, \quad t \geq t_{0} \tag{1.5}
\end{equation*}
$$

where $v(t)$ is a solution of the integral equation

$$
\begin{equation*}
v(t)=\alpha \int_{t}^{\infty}|v(s)+Q(s)|^{1+\frac{1}{\alpha}} d s, \quad t \geq t_{0} \tag{1.6}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
v(t)=O(P(t)) \quad \text { as } t \rightarrow \infty . \tag{1.7}
\end{equation*}
$$

Proof. Consider the function $y(t)$ defined by (1.5). It is easy to see that $y(t)$ is a solution of (A) if $v(t)$ is chosen in such a way that $u(t)=v(t)+Q(t)$ satisfies the generalized Riccati equation

$$
\begin{equation*}
u^{\prime}+\alpha|u|^{1+\frac{1}{\alpha}}+q(t)=0, \quad t \geq t_{0} . \tag{1.8}
\end{equation*}
$$

This requirement yields the differential equation for $v(t)$:

$$
\begin{equation*}
v^{\prime}+\alpha|v+Q(t)|^{1+\frac{1}{\alpha}}=0, \quad t \geq t_{0} \tag{1.9}
\end{equation*}
$$

from which the equation (1.6) follows via integration over $[t, \infty)$ under the additional condition $\lim _{t \rightarrow \infty} v(t)=0$.

We shall show that a unique solution of (1.6) of the desired kind indeed exists by using the Banach contraction theorem. Let $C_{P}\left[t_{0}, \infty\right)$ denote the set of all continuous functions $v(t)$ on $\left[t_{0}, \infty\right)$ such that

$$
\begin{equation*}
\|v\|_{P}=\sup _{t \geq t_{0}} \frac{|v(t)|}{P(t)}<\infty \tag{1.10}
\end{equation*}
$$

It is clear that $C_{P}\left[t_{0}, \infty\right)$ is a Banach space with the norm $\|\cdot\|_{P}$.
Define the set $V \subset C_{P}\left[t_{0}, \infty\right)$ and the mapping $\mathcal{F}: V \rightarrow C_{P}\left[t_{0}, \infty\right)$ by

$$
\begin{equation*}
V=\left\{v \in C_{P}\left[t_{0}, \infty\right): \quad\|v(t)\|_{P} \leq \alpha, \quad t \geq t_{0}\right\} \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{F} v(t)=\alpha \int_{t}^{\infty}|v(s)+Q(s)|^{1+\frac{1}{\alpha}} d s, \quad t \geq t_{0} \tag{1.12}
\end{equation*}
$$

respectively. If $v \in V$, then

$$
|\mathcal{F} v(t)| \leq \alpha(1+\alpha)^{1+\frac{1}{\alpha}} \int_{t}^{\infty} P(s)^{1+\frac{1}{\alpha}} d s \leq(1+\alpha)^{1+\frac{1}{\alpha}} c(t)^{\frac{1}{\alpha}} P(t), \quad t \geq t_{0}
$$

from which it follows, in view of (1.4), that

$$
\begin{equation*}
\|\mathcal{F} v\|_{P} \leq(1+\alpha)^{1+\frac{1}{\alpha}} c^{\frac{1}{\alpha}}<(1+\alpha)^{1+\frac{1}{\alpha}} E(\alpha)^{\frac{1}{\alpha}}=\alpha . \tag{1.13}
\end{equation*}
$$

This shows that \mathcal{F} maps V into itself. If $v_{1}, v_{2} \in V$, then, using the mean value theorem, we have

$$
\begin{aligned}
\left|\mathcal{F} v_{1}(t)-\mathcal{F} v_{2}(t)\right| & \left.\leq \alpha \int_{t}^{\infty}| | v_{1}(s)+\left.Q(s)\right|^{1+\frac{1}{\alpha}}-\left|v_{2}(s)+Q(s)\right|^{1+\frac{1}{\alpha}} \right\rvert\, d s \\
& \leq \alpha\left(1+\frac{1}{\alpha}\right) \int_{t}^{\infty}[(1+\alpha) P(s)]^{\frac{1}{\alpha}}\left|v_{1}(s)-v_{2}(s)\right| d s \\
& =(1+\alpha)^{1+\frac{1}{\alpha}} \int_{t}^{\infty} P(s)^{1+\frac{1}{\alpha}} \frac{\left|v_{1}(s)-v_{2}(s)\right|}{P(s)} d s \\
& \leq(1+\alpha)^{1+\frac{1}{\alpha}} \frac{1}{\alpha} c(t)^{\frac{1}{\alpha}} P(t)\left\|v_{1}-v_{2}\right\|_{P}, \quad t \geq t_{0}
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left\|\mathcal{F} v_{1}-\mathcal{F} v_{2}\right\|_{P} \leq \frac{1}{\alpha}(1+\alpha)^{1+\frac{1}{\alpha}} C^{\frac{1}{\alpha}}\left\|v_{1}-v_{2}\right\|_{P} . \tag{1.14}
\end{equation*}
$$

Since $\frac{1}{\alpha}(1+\alpha)^{1+\frac{1}{\alpha}} c^{\alpha}<1$ (cf. (1.13)), we conclude that \mathcal{F} is a contraction mapping on V.

The contraction mapping principle then guarantees the existence of a unique element $v \in V$ such that $v=\mathcal{F} v$, which clearly is a solution of the integral equation (1.6). Then, the function $y(t)$ given by (1.5) with this $v(t)$
gives a solution of (A) on $\left[t_{0}, \infty\right)$. That $v(t)$ satisfies (1.7) is a consequence of the fact that $v \in V$. This completes the proof.

Corollary 1.1. The equation (A) has a normalized slowly varying solution if

$$
\begin{equation*}
\lim _{t \rightarrow \infty} t^{\alpha} \int_{t}^{\infty} q(s) d s=0 \tag{1.15}
\end{equation*}
$$

Proof. Here, one can take the function $c(t)$ from Theorem 1.1 to be

$$
\begin{equation*}
c(t)=\sup _{s \geq t}\left|s^{\alpha} \int_{s}^{\infty} q(r) d r\right| . \tag{1.16}
\end{equation*}
$$

Then $c(t)$ is nonincreasing and tends to zero as $t \rightarrow \infty$. Choose $t_{0}>0$ so that

$$
c(t)<E(\alpha) \quad \text { and } \quad|Q(t)| \leq \frac{c(t)}{t^{\alpha}} \quad \text { for } t \geq t_{0}
$$

The second inequality holds due to (1.15). Take in Theorem 1.1 $P(t)=$ $c(t) / t^{\alpha}$. Then (1.2) holds and

$$
\int_{t}^{\infty} P(s)^{1+\frac{1}{\alpha}} d s=\int_{t}^{\infty}\left[\frac{c(s)}{s^{\alpha}}\right]^{1+\frac{1}{\alpha}} d s \leq \frac{c(t)^{1+\frac{1}{\alpha}}}{\alpha t}=\frac{1}{\alpha} c(t)^{\frac{1}{\alpha}} P(t), \quad t \geq t_{0}
$$

Consequently, by Theorem 1.1, (A) has a nonoscillatory solution $y(t)$ of the form (1.5) on $\left[t_{0}, \infty\right)$ with $v(t)$ satisfying (1.7). Since

$$
t^{\alpha} v(t)=O\left(t^{\alpha} P(t)\right)=o(1) \quad \text { and } \quad t^{\alpha} Q(t)=O\left(t^{\alpha} P(t)\right)=o(1)
$$

as $t \rightarrow \infty, y(t)$ can be rewritten as

$$
y(t)=\exp \left\{\int_{t_{0}}^{t} \frac{\varepsilon(s)}{s} d s\right\}, \quad t \geq t_{0}
$$

with $\varepsilon(t)=\left[t^{\alpha}(v(t)+Q(t))\right]^{\frac{1}{\alpha} *}=o(1)$ as $t \rightarrow \infty$ due to Definition 0.1. This completes the proof.

Theorem 1.2. Suppose that the hypotheses of Theorem 1.1 are satisfied. Suppose furthermore that there exists a positive integer n such that

$$
\begin{array}{ll}
\int^{\infty} c(t)^{\frac{n}{\alpha}} P(t)^{\frac{1}{\alpha}} d t<\infty \quad \text { if } \quad 0<\alpha \leq 1 \\
\int^{\infty} c(t)^{\frac{n}{\alpha^{2}}} P(t)^{\frac{1}{\alpha}} d t<\infty \quad \text { if } \quad \alpha>1 \tag{1.18}
\end{array}
$$

Then, for the solution (1.5) of the equation (A), the following asymptotic formula holds for $t \rightarrow \infty$

$$
\begin{equation*}
y(t) \sim A \exp \left\{\int_{t_{0}}^{t}\left[v_{n-1}(s)+Q(s)\right]^{\frac{1}{\alpha} *} d s\right\}, \tag{1.19}
\end{equation*}
$$

where A is a positive constant. Here the sequence $\left\{v_{n}(t)\right\}$ of successive approximations is defined by

$$
\begin{equation*}
v_{0}(t)=0, \quad v_{n}(t)=\alpha \int_{t}^{\infty}\left|v_{n-1}(s)+Q(s)\right|^{1+\frac{1}{\alpha}} d s, \quad n=1,2, \cdots . \tag{1.20}
\end{equation*}
$$

P r o o f. Let $y(t)$ be the solution (1.5) of (A) obtained in Theorem 1.1. Recall that the function $v(t)$ used in (1.5) has been constructed as the fixed element in $C_{P}\left[t_{0}, \infty\right)$ of the contractive mapping \mathcal{F} defined by (1.12). Th e standard proof of the contraction mapping principle shows that the sequence $\left\{v_{n}(t)\right\}$ defined by (1.20) converges to $v(t)$ uniformly on $\left[t_{0}, \infty\right)$. To see how fast $v_{n}(t)$ approaches $v(t)$ we proceed as follows. First, note that $\left|v_{n}(t)\right| \leq \alpha P(t), t \geq t_{0}, n=1,2, \cdots$. By definition, we have

$$
\left|v_{1}(t)\right|=\alpha \int_{t}^{\infty}|Q(s)|^{1+\frac{1}{\alpha}} d s \leq \alpha \int_{t}^{\infty} P(s)^{1+\frac{1}{\alpha}} d s \leq c(t)^{\frac{1}{\alpha}} P(t)
$$

and

$$
\begin{aligned}
\mid v_{2}(t) & \left.-v_{1}(t)\left|\leq \alpha \int_{t}^{\infty}\right|\left|v_{1}(s)+Q(s)\right|^{1+\frac{1}{\alpha}}-|Q(s)|^{1+\frac{1}{\alpha}} \right\rvert\, d s \\
& \leq \alpha\left(1+\frac{1}{\alpha}\right) \int_{t}^{\infty}[(1+\alpha) P(s)]^{1+\frac{1}{\alpha}}\left|v_{1}(s)\right| d s \\
& \leq(\alpha+1)^{1+\frac{1}{\alpha}} \int_{t}^{\infty} c(s)^{\frac{1}{\alpha}} P(s)^{1+\frac{1}{\alpha}} d s \leq(\alpha+1)^{1+\frac{1}{\alpha}} c(t)^{\frac{1}{\alpha}} \int_{t}^{\infty} P(s)^{1+\frac{1}{\alpha}} d s \\
& \leq \frac{1}{\alpha}(\alpha+1)^{1+\frac{1}{\alpha}} c(t)^{\frac{2}{\alpha}} P(t) \leq E(\alpha)^{\frac{1}{\alpha}}\left[\frac{c(t)}{E(\alpha)}\right]^{\frac{2}{\alpha}} P(t)
\end{aligned}
$$

for $t \geq t_{0}$. Assuming that

$$
\begin{equation*}
\left|v_{n}(t)-v_{n-1}(t)\right| \leq E(\alpha)^{\frac{1}{\alpha}}\left[\frac{c(t)}{E(\alpha)}\right]^{\frac{n}{\alpha}} P(t), \quad t \geq t_{0} \tag{1.21}
\end{equation*}
$$

for some $n \in \mathbb{N}$, we compute

$$
\begin{aligned}
\left|v_{n+1}(t)-v_{n}(t)\right| & \left.\leq \alpha \int_{t}^{\infty}| | Q(s)+\left.v_{n}(s)\right|^{1+\frac{1}{\alpha}}-\left|Q(s)+v_{n-1}(s)\right|^{1+\frac{1}{\alpha}} \right\rvert\, d s \\
& \leq \alpha\left(1+\frac{1}{\alpha}\right) \int_{t}^{\infty}[(1+\alpha) P(s)]^{\frac{1}{\alpha}}\left|v_{n}(s)-v_{n-1}(s)\right| d s \\
& =(\alpha+1)^{1+\frac{1}{\alpha}} \int_{t}^{\infty} E(\alpha)^{\frac{1}{\alpha}}\left[\frac{c(s)}{E(\alpha)}\right]^{\frac{n}{\alpha}} P(s)^{1+\frac{1}{\alpha}} d s \\
& =(\alpha+1)^{1+\frac{1}{\alpha}} E(\alpha)^{\frac{1}{\alpha}}\left[\frac{c(t)}{E(\alpha)}\right]^{\frac{n}{\alpha}} \int_{t}^{\infty} P(s)^{1+\frac{1}{\alpha}} d s \\
& \leq(\alpha+1)^{1+\frac{1}{\alpha}} E(\alpha)^{\frac{1}{\alpha}}\left[\frac{c(t)}{E(\alpha)}\right]^{\frac{n}{\alpha}} \frac{1}{\alpha} c(t)^{\frac{1}{\alpha}} P(t) \\
& =E(\alpha)^{\frac{1}{\alpha}}\left[\frac{c(t)}{E(\alpha)}\right]^{\frac{n+1}{\alpha}} P(t), \quad t \geq t_{0},
\end{aligned}
$$

which establishes the truth of (1.21) for all integers $n \in \mathbb{N}$.
Now we have

$$
v(t)=v_{n-1}(t)+r_{n}(t)
$$

with

$$
r_{n}(t)=\sum_{k=n}^{\infty}\left[v_{k}(t)-v_{k-1}(t)\right],
$$

from which, due to (1.21), it follows that

$$
\begin{align*}
\left|v(t)-v_{n-1}(t)\right| & \leq \sum_{k=n}^{\infty} E(\alpha)^{\frac{1}{\alpha}}\left[\frac{c(t)}{E(\alpha)}\right]^{\frac{k}{\alpha}} P(t) \\
& \leq E(\alpha)^{\frac{1}{\alpha}}\left[\frac{c(t)}{E(\alpha)}\right]^{\frac{n}{\alpha}} \sum_{k=0}^{\infty}\left(\frac{c}{E(\alpha)}\right)^{k} P(t) \tag{1.22}\\
& =E(\alpha)\left[\frac{c(t)}{E(\alpha)}\right]^{\frac{n}{\alpha}} \frac{E(\alpha)}{E(\alpha)-c} P(t)=K c(t)^{\frac{n}{\alpha}} P(t)
\end{align*}
$$

for $t \geq t_{0}$, where K is a constant depending only on α and n.
Using (1.5) and (1.22), we obtain

$$
\begin{align*}
& \frac{y(t)}{\exp \left\{\int_{t_{0}}^{t}\left[Q(s)+v_{n-1}(s)\right]^{\frac{1}{\alpha} *} d s\right\}} \\
& =\exp \left\{\int_{t_{0}}^{t}\left([Q(s)+v(s)]^{\frac{1}{\alpha} *}-\left[Q(s)+v_{n-1}(s)\right]^{\frac{1}{\alpha} *}\right) d s\right\} . \tag{1.23}
\end{align*}
$$

Let $0<\alpha \leq 1$. Then, by the mean value theorem and (1.22),

$$
\begin{align*}
& \left|[Q(t)+v(t)]^{\frac{1}{\alpha} *}-\left[Q(t)+v_{n-1}(t)\right]^{\frac{1}{\alpha} *}\right| \leq \frac{1}{\alpha}[(1+\alpha) P(t)]^{\frac{1}{\alpha}-1}\left|v(t)-v_{n-1}(t)\right| \\
& \leq L c(t)^{\frac{n}{\alpha}} P(t)^{\frac{1}{\alpha}}, \quad t \geq t_{0} \tag{1.24}
\end{align*}
$$

where L is a constant depending on α and n.
Let $\alpha>1$. Then, using (1.22) and the inequality $\left|a^{\theta}-b^{\theta}\right| \leq 2|a-b|^{\theta}$ holding for $\theta \in(0,1)$ and $a, b \in \mathbb{R}$, we see that

$$
\begin{align*}
& \left|[Q(t)+v(t)]^{\frac{1}{\alpha} *}-\left[Q(t)+v_{n-1}(t)\right]^{\frac{1}{\alpha} *}\right| \leq 2\left|v(t)-v_{n-1}(t)\right|^{\frac{1}{\alpha}} \\
& \leq M c(t)^{\frac{n}{\alpha^{2}}} P(t)^{\frac{1}{\alpha}}, \quad t \geq t_{0}, \tag{1.25}
\end{align*}
$$

where M is a constant depending on α and n.
Combining (1.23) with (1.24) or (1.25) according as $0<\alpha \leq 1$ or $\alpha>1$, and using (1.17) or (1.18), we conculde that the right-hand side of (1.23) tends to a constant $A>0$ as $t \rightarrow \infty$, which implies that $y(t)$ has the des ired asymptotic behaviour (1.19). This completes the proof.

Corollary 1.2. Suppose that (1.15) holds and that the function $c(t)$ defined by (1.16) satisfies

$$
\begin{align*}
& \int^{\infty} \frac{c(t)^{\frac{n+1}{\alpha}}}{t} d t<\infty \quad \text { if } \quad 0<\alpha \leq 1 \tag{1.26}\\
& \int^{\infty} \frac{c(t)^{\frac{n+\alpha}{\alpha^{2}}}}{t} d t<\infty \quad \text { if } \quad \alpha>1 \tag{1.27}
\end{align*}
$$

Then the formula (1.19) holds for the slowly varying solution $y(t)$ of (A).
Proof. The conclusion follows from Theorem 1.2 combined with the observation that in this case $c(t)^{\frac{n}{\alpha}} P(t)^{\frac{1}{\alpha}}=c(t)^{\frac{n+1}{\alpha}} / t$ and $c(t)^{\frac{n}{\alpha^{2}}} P(t)=$ $c(t)^{\frac{n+\alpha}{\alpha^{2}}} / t$ according to whether $0<\alpha \leq 1$ and $\alpha>1$.

2. Examples

Two examples illustrating our main results will be given below.
Example 2.1. Consider the equation

$$
\begin{equation*}
\left(\left|y^{\prime}\right|^{\alpha-1} y^{\prime}\right)^{\prime}+k t^{\beta} \sin \left(t^{\gamma}\right)|y|^{\alpha-1} y=0, \quad t \geq 1, \tag{2.1}
\end{equation*}
$$

where k, α, β and γ are positive constants satisfying

$$
\begin{equation*}
\gamma>1+\alpha+\beta \tag{2.2}
\end{equation*}
$$

Since

$$
\int_{t}^{\infty} s^{\beta} \sin \left(s^{\gamma}\right) d s=\frac{1}{\gamma} t^{1+\beta-\gamma} \cos \left(t^{\gamma}\right)+\frac{1+\beta-\gamma}{\gamma} \int_{t}^{\infty} s^{\beta-\gamma} \cos \left(s^{\gamma}\right) d s
$$

there exists a positive constant K such that

$$
\begin{equation*}
\left|\int_{t}^{\infty} k s^{\beta} \sin \left(s^{\gamma}\right) d s\right| \leq K t^{1+\beta-\gamma}, \quad t \geq 1, \tag{2.3}
\end{equation*}
$$

which, in view of (2.2), implies that

$$
\lim _{t \rightarrow \infty} t^{\alpha} \int_{t}^{\infty} k s^{\beta} \sin \left(s^{\alpha}\right) d s=0
$$

Therefore, the equation (2.1) has a slowly varying solution $y(t)$ by Corollary 1.1.

In this case the function $c(t)$ defined by (1.16) can be taken to be $c(t)=$ $K t^{1+\alpha+\beta-\gamma}$. Since $c(t)$ satisfies both (1.26) and (1.27) for any $n \in \mathbb{N}$ because of (2.2), from Corollary 1.2 for $n=1$ we conclude that the slowly varying solution $y(t)$ of (2.1) has the asymptotic behaviour

$$
\begin{equation*}
y(t) \sim A \exp \left\{\int_{t_{0}}^{t}\left(\int_{s}^{\infty} k r^{\beta} \sin \left(r^{\gamma}\right) d r\right)^{\frac{1}{\alpha} *} d s\right\} \quad \text { as } t \rightarrow \infty, \tag{2.4}
\end{equation*}
$$

which is equivalent to $y(t) \sim A_{0}$ (constant), since the integral in the braces in (2.4) converges as $t \rightarrow \infty$ because of (2.3).

Example 2.2. Consider the equation

$$
\begin{equation*}
\left(\left|y^{\prime}\right|^{\alpha-1} y^{\prime}\right)^{\prime}+\frac{a+b \sin t}{t^{\beta}(\log t)^{\gamma}}|y|^{\alpha-1} y=0, \quad t \geq e, \tag{2.5}
\end{equation*}
$$

where the constants appearing in (2.5) are positive except for a, and satisfy $\beta \geq \alpha+1$ and $|a|<b$.
I) We first suppose that $a \neq 0$. Note that, for $\beta>1$,

$$
\begin{equation*}
Q(t)=\int_{t}^{\infty} \frac{a+b \sin s}{s^{\beta}(\log s)^{\gamma}} d s=\frac{a}{\beta-1} t^{1-\beta}(\log t)^{-\gamma}\left[1+O\left(\frac{1}{t}\right)\right] . \tag{2.6}
\end{equation*}
$$

Let $\beta>\alpha+1$. Then, $(Q(t))^{\frac{1}{\alpha} *}$ is absolutely integrable on $[e, \infty)$ and $t^{\alpha} Q(t) \rightarrow 0$ as $t \rightarrow \infty$. Corollary 1.1 then implies that (2.5) possesses a slowly varying solution $y(t)$.

The function $c(t)=(2|a| /(\beta-1)) t^{1+\alpha-\beta}(\log t)^{-\gamma}$ defined by (1.16) satisfies the conditions (1.26) and (1.27) for any $n \in \mathbb{N}$, so that, by Corollary 1.2 with $n=1, y(t)$ enjoys the asymptotic property

$$
y(t) \sim A \exp \left\{\int_{t_{0}}^{t}(Q(s))^{\frac{1}{\alpha} *} d s\right\} \sim A_{0} \quad \text { as } t \rightarrow \infty
$$

Let $\beta=\alpha+1$. We see that $t^{\alpha} Q(t) \rightarrow 0$ as $t \rightarrow \infty$ also in this case, so that (2.5) has a slowly varying solution $y(t)$. As easily verified, the function $c(t)=(2|a| / \alpha)(\log t)^{-\gamma}$ satisfies the conditi ons (1.26) and (1.27) become, respectively,

$$
\begin{equation*}
\int^{\infty} t^{-1}(\log t)^{-\frac{(n+1) \gamma}{\alpha}} d t<\infty \quad(0<\alpha \leq 1) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\int^{\infty} t^{-1}(\log t)^{-\frac{(n+\alpha) \gamma}{\alpha^{2}}} d t<\infty \quad(\alpha>1) \tag{2.8}
\end{equation*}
$$

which are fulfilled if one determines n to satify

$$
\begin{equation*}
n>\frac{\alpha-\gamma}{\gamma}(0<\alpha \leq 1) \quad \text { or } \quad n>\frac{\alpha(\alpha-\gamma)}{\gamma} \quad(\alpha>1) . \tag{2.9}
\end{equation*}
$$

For practical use write (2.9) as

$$
\gamma>\frac{\alpha}{n+1} \quad(0<\alpha \leq 1) \quad \text { or } \quad \gamma>\frac{\alpha^{2}}{n+\alpha} \quad(\alpha>1)
$$

which is equivalent to

$$
\begin{equation*}
\gamma>\alpha \max \left\{\frac{1}{n+1}, \frac{\alpha}{n+\alpha}\right\} . \tag{2.10}
\end{equation*}
$$

Obviously, the range $\gamma>\alpha \max \left\{\frac{1}{2}, \frac{\alpha}{1+\alpha}\right\}$ is such that (2.10) i.e., (2.9) holds for $n=1$, so that Corollary 1.2 can be applied with $n=1$, leading to

$$
\begin{align*}
y(t) & \sim A \exp \left\{\int_{t_{0}}^{t}(Q(s))^{\frac{1}{\alpha} *} d s\right\} \\
& \sim A^{\prime} \exp \left\{\left(\frac{a}{\alpha}\right)^{\frac{1}{\alpha} *} \int_{t_{0}}^{t} s^{-1}(\log s)^{-\frac{\gamma}{\alpha}} d s\right\} \quad \text { as } t \rightarrow \infty \tag{2.11}
\end{align*}
$$

from which it readily follows that

$$
y(t) \sim A_{0} \quad \text { if } \quad \gamma>\alpha
$$

and

$$
y(t) \sim A_{0}(\log t)^{\delta}, \quad \delta=\left(\frac{a}{\alpha}\right)^{\frac{1}{\alpha} *} \quad \text { if } \quad \gamma=\alpha
$$

Arguing in the same way, we conclude that (2.9) holds for $n=2$ in the range

$$
\begin{equation*}
\alpha \max \left\{\frac{1}{3}, \frac{\alpha}{2+\alpha}\right\}<\gamma \leq \alpha \max \left\{\frac{1}{2}, \frac{\alpha}{1+\alpha}\right\} . \tag{2.12}
\end{equation*}
$$

Then, the conclusion of Corollary 1.2 holds with $n=2$, that is,

$$
\begin{equation*}
y(t) \sim A \exp \left\{\int_{t_{0}}^{t}\left[v_{1}(s)+Q(s)\right]^{\frac{1}{\alpha} *} d s\right\} \quad \text { as } t \rightarrow \infty \tag{2.13}
\end{equation*}
$$

where $v_{1}(t)=\alpha \int_{t}^{\infty}|Q(s)|^{1+\frac{1}{\alpha}} d s$. Using (2.6), we have

$$
\begin{align*}
v_{1}(t) & =\alpha \int_{t}^{\infty}\left|\frac{a}{\alpha} s^{-\alpha}(\log s)^{-\gamma}\left[1+O\left(\frac{1}{s}\right)\right]\right|^{1+\frac{1}{\alpha}} d s \\
& =\left|\frac{a}{\alpha}\right|^{1+\frac{1}{\alpha}} t^{-\alpha}(\log t)^{-\gamma\left(1+\frac{1}{\alpha}\right)}\left[1+O\left(\frac{1}{\log t}\right)\right] . \tag{2.14}
\end{align*}
$$

Putting

$$
\begin{equation*}
w_{1}(t)=\left|\frac{a}{\alpha}\right|^{1+\frac{1}{\alpha}} t^{-\alpha}(\log t)^{-\gamma\left(1+\frac{1}{\alpha}\right)}, \tag{2.15}
\end{equation*}
$$

we claim that

$$
\begin{equation*}
y(t) \sim A^{\prime} \exp \left\{\int_{t_{0}}^{t}\left[w_{1}(s)+Q(s)\right]^{\frac{1}{\alpha} *} d s\right\} \quad \text { as } t \rightarrow \infty . \tag{2.16}
\end{equation*}
$$

In fact, if $\alpha>1$, then

$$
\begin{align*}
& \int_{t_{0}}^{t}\left|\left[v_{1}(s)+Q(s)\right]^{\frac{1}{\alpha} *}-\left[w_{1}(s)+Q(s)\right]^{\frac{1}{\alpha} *}\right| d s \\
& \leq 2 \int_{t_{0}}^{t}\left|v_{1}(s)-w_{1}(s)\right|^{\frac{1}{\alpha} *} d s \leq K \int_{t_{0}}^{t} s^{-1}(\log s)^{-\frac{\gamma}{\alpha}\left(1+\frac{1}{\alpha}\right)-\frac{1}{\alpha}} d s, \tag{2.17}
\end{align*}
$$

where K is a constant depending on α and a. Since $\gamma>\alpha /(\alpha+2)$ by (2.12),

$$
\frac{\gamma}{\alpha}\left(1+\frac{1}{\alpha}\right)+\frac{1}{\alpha}>1+\frac{2}{\alpha(\alpha+2)}>1
$$

which implies that the last integral in (2.17) converges as $t \rightarrow \infty$. If $0<$ $\alpha \leq 1$, then, using the inequality $\left|v_{1}(t)\right|,\left|w_{1}(t)\right| \leq \alpha P(t)=2|a| t^{-\alpha}(\log t)^{-\gamma}$ already known, we obtain

$$
\begin{align*}
& \int_{t_{0}}^{t}\left|\left[v_{1}(s)+Q(s)\right]^{\frac{1}{\alpha} *}-\left[w_{1}(s)+Q(s)\right]^{\frac{1}{\alpha} *}\right| d s \\
& \leq M_{1} \int_{t_{0}}^{t}\left[s^{-\alpha}(\log s)^{-\gamma}\right]^{\frac{1}{\alpha}-1}\left|v_{1}(s)-w_{1}(s)\right| d s \tag{2.18}\\
& \leq M_{2} \int_{t_{0}}^{t}\left[s^{-\alpha}(\log s)^{-\gamma}\right]^{\frac{1}{\alpha}-1} s^{-\alpha}(\log s)^{-\gamma\left(1+\frac{1}{\alpha}\right)-1} d s \\
& =M_{3} \int_{t_{0}}^{t} s^{-1}(\log s)^{-\frac{2 \gamma}{\alpha}-1} d s,
\end{align*}
$$

the last integral of which clearly converges as $t \rightarrow \infty$. Here $M_{i}, i=1,2,3$, are constants depending only on α and a. Combining (2.16) with (2.15) establishes the asymptotic formula for $t \rightarrow \infty$
$y(t) \sim A^{\prime \prime} \exp \left\{\int_{t_{0}}^{t}\left[\left|\frac{a}{\alpha}\right|^{1+\frac{1}{\alpha}} s^{-\alpha}(\log s)^{-\gamma\left(1+\frac{1}{\alpha}\right)}+\frac{a}{\alpha} s^{-\alpha}(\log s)^{-\gamma}\right]^{\frac{1}{\alpha} *} d s\right\}$.

Observe that when specialized to the case $\alpha=1$, (2.19) reduces to the following formulas obtained in [3], cf. [5, p.67],

$$
\begin{aligned}
& y(t) \sim A_{1}(\log t)^{a^{2}} \exp \left\{2 a(\log t)^{\frac{1}{2}}\right\} \quad \text { if } \quad \gamma=\frac{1}{2}, \\
& y(t) \sim A_{1} \exp \left\{\frac{a}{1-\gamma}(\log t)^{1-\gamma}\right\} \exp \left\{\frac{a^{2}}{1-2 \gamma}(\log t)^{1-2 \gamma}\right\} \quad \text { if } \quad \frac{1}{3}<\gamma<\frac{1}{2} .
\end{aligned}
$$

Let $\alpha=\frac{1}{2}$, for example. Then, (2.19) implies
$y(t) \sim A_{2}(\log t)^{32|a|^{3} a} \exp \left\{8 a^{2}(\log t)^{\frac{1}{2}}\right\} \quad$ if $\quad \gamma=\frac{1}{4}$,
$y(t) \sim A_{2} \exp \left\{\frac{32|a|^{3} a}{1-4 \gamma}(\log t)^{1-4 \gamma}\right\} \exp \left\{\frac{4 a^{2}}{1-2 \gamma}(\log t)^{1-2 \gamma}\right\} \quad$ if $\quad \frac{1}{6}<\gamma<\frac{1}{4}$.
II) Next we consider the equation (2.5) with $a=0$, that is,

$$
\begin{equation*}
\left(\left|y^{\prime}\right|^{\alpha-1} y^{\prime}\right)^{\prime}+\frac{b \sin t}{t^{\beta}(\log t)^{\gamma}}|y|^{\alpha-1} y=0, \quad t \geq e \tag{2.20}
\end{equation*}
$$

where $b>0$ is a constant. We suppose that $\beta \geq \alpha$. In this case we have

$$
Q(t)=b t^{-\beta}(\log t)^{-\gamma} \cos t+O\left(t^{-\beta-1}(\log t)^{-\gamma}\right) \quad \text { as } t \rightarrow \infty
$$

and $t^{\alpha} Q(t) \rightarrow 0$ as $t \rightarrow \infty$, which implies that (2.20) possesses a slowly varying solution $y(t)$.

If $\beta>\alpha$, then, by taking $c(t)=2 b t^{\alpha-\beta}(\log t)^{-\gamma}$, we see that (1.26) and (1.27) are satisfied for all $n \in \mathbb{N}$, and so from Corollary 1.2 with $n=1$ it follows that $y(t) \sim A_{0}$ as $t \rightarrow \infty$ since $[Q(t)]^{\frac{1}{\alpha} *}$ is integrable on $[e, \infty)$.

If $\beta=\alpha$, then $c(t)=2 b(\log t)^{-\gamma}$ satisfies (1.26) and (1.27) if and only if (2.10) holds. Consequently, if $\gamma>\alpha \max \left\{\frac{1}{2}, \frac{\alpha}{1+\alpha}\right\}$, then Corollary 1.2 is applicable to the c ase $n=1$ and, using the conditional integrability of $[Q(t)]^{\frac{1}{\alpha} *}$ which is implied by that of $t^{-1}(\log t)^{-\frac{\alpha}{\gamma}} \cos t$, we conclude that $y(t) \sim A_{0}$ as $t \rightarrow \infty$. Furthermore, if γ satisfies (2.12), then from Corollary 1.2 with $n=2$ we obtain (2.13), which, with the use of the fact
$v_{1}(t)=\alpha \int_{t}^{\infty}|Q(s)|^{1+\frac{1}{\alpha}} d s=|b|^{1+\frac{1}{\alpha}} t^{-\alpha}(\log t)^{-\gamma\left(1+\frac{1}{\alpha}\right)}|\cos t|^{1+\frac{1}{\alpha}}\left(1+O\left(\frac{1}{\log t}\right)\right)$ as $t \rightarrow \infty$, yields the following asymptotic formula for $y(t)$:

$$
\begin{align*}
& y(t) \sim A^{\prime} \exp \left\{\int _ { t _ { 0 } } ^ { t } \left[|b|^{1+\frac{1}{\alpha}} s^{-\alpha}(\log s)^{-\gamma\left(1+\frac{1}{\alpha}\right)}|\cos s|^{1+\frac{1}{\alpha}}\right.\right. \tag{2.21}\\
& \left.\left.\quad+b s^{-\alpha}(\log s)^{-\gamma} \cos s\right]^{\frac{1}{\alpha} *} d s\right\}
\end{align*}
$$

When specialized to the case $\alpha=1$, (2.21) reduces to

$$
\begin{aligned}
& y(t) \sim A_{1}(\log t)^{\frac{b^{2}}{2}} \quad \text { if } \quad \gamma=\frac{1}{2} \\
& y(t) \sim A_{1} \exp \left\{\frac{b^{2}}{2(1-2 \gamma)}(\log t)^{1-2 \gamma}\right\} \quad \text { if } \quad \frac{1}{3}<\gamma<\frac{1}{2},
\end{aligned}
$$

which have been obtained in [5, p. 68]. Letting $\alpha=\frac{1}{3}$ in (2.21), an elementary calculation shows that

$$
\begin{aligned}
& y(t) \sim A_{2}(\log t)^{\frac{3}{8} b^{6}} \quad \text { if } \quad \gamma=\frac{1}{6} \\
& y(t) \sim A_{2} \exp \left\{\frac{3 b^{2}}{8(1-6 \gamma)}(\log t)^{1-6 \gamma}\right\} \quad \text { if } \quad \frac{1}{9}<\gamma<\frac{1}{6} .
\end{aligned}
$$

REFERENCES

[1] N. H. B i n g h a m, C. M. G old i e and J. L. T e ugels, Regular Variation, Encyclopedia of Mathematics and its Applications 27, Cambridge Univ. Press, 1987.
[2] J. L. G e l u k, On slowly varying solutions of the linear second order differential equations, Publ. Inst. Math. (Beograd) 48 (62) (1990), 52-60.
[3] H. H o w a r d, V. M a ri ć and Z. R a d a š i n, Asymptotics of nonoscillatory solutions of second order linear differential equations, Zbornik Rad. Prir. Mat. Fak. Univ. Novi Sad, Ser. Mat. 20, 1 (1990), 107-116.
[4] J. J a r o š, T. K us a n o and T. T a n ig a w a, Nonoscillation theory for second order half-linear differential equations in the framework of regular variation, Results Math. (to appear).
[5] V. M a r i ć, Regular Variation and Differential Equations, Lecture Notes in Mathematics 1726, Springer-Verlag, Berlin-Heidelberg-New York, 2000.
[6] V. M a r i ć and M. T o m i ć, Slowly varying solutions of second order linear differential equations, Publ. Inst. Math. (Beograd) 58 (72) (1995), 129-136.

Kusano Takasi
Department of Applied Mathematics
Faculty of Science
Fukuoka University,8-19-l Nanakuma
Jonan-Ku,Fukuoka
814-0180 Japan
Vojislav Marić
Serbian Academy of Sciences and Arts
Knez Mihajlova 35
11000 Beograd
Serbia and Montenegro

Tomoyuki Tanigawa
Department of Mathematics
Toyama National College of Technology
13Hongo-cho
Toyama
939-8630 Japan

