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1. Introduction

The classical theory of C0-semigroups of operators is generalized in many
different directions. In 1987, Arendt obtained an extension of Widder’s
representation theorem for the Laplace transform in a Banach space. This
version of Widder’s theorem stimulated the development of the theory of
integrated semigroups. Many new types of operator families in Banach
spaces are defined on the basis of Arendt’s ideas. Convoluted semigroups
were introduced by Cioranescu and Lumer in 1994. In contrast to the case
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of integrated semigroups, whose resolvents have polynomial growth in some
logarithmic regions, in the case of convoluted semigroup the resolvent exists
in some smaller region and it may grow not faster than CeM(λ), where
M(λ) is the associated function of a sequence (Mn) which defines a space of
ultradifferentiable functions. We also note that convoluted semigroups are
closely related to ultradistribution semigroups of Komatsu.

On the other hand, C-semigroups were studied by many authors. In
1990, Tanaka and Okazawa ([18]) defined local C-semigroups and local inte-
grated semigroups. The use of C-semigroups is a powerful method in study-
ing ill-posed abstract Cauchy problems. Local C-cosine functions as well as
integrated C-semigroups and integrated C-cosine functions were introduced
later ; see [14] , [20] and [21].

Here, we deal with some new types of operator families in Banach spaces.
They unify the classes of integrated C-cosine functions and integrated C-
semigroups. The corresponding Cauchy problems

(ACP2) :





u ∈ C([0, τ) : D(A)) ∩ C2([0, τ) : E),

u′′(t) = Au(t),

u(0) = x, u′(0) = y,

and

(ΘC) :





u ∈ C([0, τ) : D(A)) ∩ C1([0, τ) : E),

u′(t) = Au(t) + Θ(t)Cx,

u(0) = 0,

are considered. Convoluted C-semigroups are characterized by their asymp-
totic ΘC-resolvents.

Throughout this paper E denotes a complex Banach space and L(E)
denotes the space of bounded linear operators from E into E. For a closed
linear operator A, its domain, range and null space are denoted by D(A),
R(A) and N(A), respectively. We will assume in the sequel that C ∈ L(E) is
an injective operator with CA ⊂ AC. The C resolvent set of A, ρC(A), is the
set of complex numbers λ such that λ−A is injective and R(C) ⊂ R(λ−A).
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2. Definition and elementary properties of global convoluted C-cosine
functions

Throughout this section we will always assume that K ∈ C([0,∞) : C)
is an exponentially bounded function such that K̃(λ) 6= 0 (Reλ ≥ β), where
K̃(λ) is the Laplace transform of K(t).

Notation: Θ(t) :=
t∫
0

K(s)ds, t ≥ 0.

The next definition is the convoluted version of [21], Chapter 1., Defini-
tion 4.1.

Definition 2.1. Let w ∈ R. If (w2,∞) ⊂ ρC(A) and there exists
a strongly continuous operator family (CK(t))t≥0, (CK(t) ∈ L(E), t ≥ 0),
such that ‖CK(t)‖ = O(ewt), t ≥ 0, and

λ(λ2 −A)−1Cx =
1

K̃(λ)

∞∫

0

e−λtCK(t)xdt, λ > max(w, β), x ∈ E,

then it is said that A is a subgenerator of a K-convoluted C-cosine func-
tion (CK(t))t≥0. The operator Ā := C−1AC is called the generator of
(CK(t))t≥0.

Remark. Since CA ⊂ AC, one has that Ā is an extension of A. If C = I,
a K-convoluted C-cosine function has a unique subgenerator which coincides
with its generator. With K(t) = tk−1

(k−1)! , k ∈ N, one obtains the class of
k-times integrated C-cosine functions. The generator of a K-convoluted C-
cosine function is uniquely determined. From the previous definition it is
also clear that (CK(t))t≥0 is a nondegenerate family, i.e.,

if CK(t)x = 0 for all t ≥ 0 , then x = 0.

Theorem 2.2. Let (CK(t))t≥0 be a strongly continuous, exponentially
bounded operator family and let A be a closed operator. Then the statements
(i) and (ii) are equivalent, where:

(i) A is the generator of a K-convoluted C-cosine function (CK(t))t≥0,
(ii) a) CK(t)C = CCK(t), t ≥ 0,

b) CK(t)A ⊂ ACK(t), t ≥ 0,



78 M. Kostić

c) A
t∫
0
(t− s)CK(s)xds = CK(t)x−Θ(t)Cx, t ≥ 0, x ∈ E.

P r o o f. (i)⇒ (ii) Let x ∈ E. Clearly, (λ2−A)−1C2x = C(λ2−A)−1Cx,
for all sufficiently large λ. By Definition 2.1, the previous equality implies

1
K̃(λ)

∞∫

0

e−λtCK(t)Cxdt =
1

K̃(λ)

∞∫

0

e−λtCCK(t)xdt.

Thus, a) follows from the uniqueness theorem for the Laplace transforms.
Assume now x ∈ D(A). One has

λ(λ2 −A)−1CAx =
1

K̃(λ)

∞∫

0

e−λtCK(t)Axdt, i.e.,

λA(λ2 −A)−1Cx =
1

K̃(λ)

∞∫

0

e−λtCK(t)Axdt.

This easily implies

A

∞∫

0

e−λtCK(t)xdt =
∞∫

0

e−λtCK(t)Axdt,

and b) follows from [21], Theorem 1.10. In order to prove c), we note that

L



t∫

0

(t− s)CK(s)xds


 (λ) = L(t)(λ)L(CK(t)x)(λ)

=
1
λ2

K̃(λ)λ(λ2 −A)−1Cx

=
K̃(λ)

λ
(λ2 −A)−1Cx,

which implies

A


L




t∫

0

(t− s)CK(s)xds


 (λ)


 = K̃(λ)λ(λ2 −A)−1Cx− K̃(λ)

λ
Cx

= L(CK(t)x−Θ(t)Cx)(λ).
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Hence, 3) is a consequence of [21], Theorem 1.10.
(ii) ⇒ (i) Suppose ‖CK(t)‖ ≤ Mewt, t ≥ 0, for some real number w with

w ≥ β. Using b) and c), we have

L(CK(t)x)(λ) =
K̃(λ)

λ
Cx +

1
λ2

AL(CK(t)x)(λ), i.e.,

(λ2 −A)L(CK(t)x)(λ) = λK̃(λ)Cx, λ > w, x ∈ E. (1)

Hence, R(C) ⊂ R(λ2−A), for λ > w. Let us show that λ2−A is injective
if λ satisfies λ > w. Suppose (λ2 −A)x = 0. It implies

CK(t)x−Θ(t)x =
t∫

0

(t− s)CK(s)Axds = λ2

t∫

0

(t− s)CK(s)xds, t ≥ 0,

and consequently,

L(CK(t)x)(λ) =
K̃(λ)

λ
Cx+λ2L(t)L(CK(t)x)(λ) =

K̃(λ)
λ

Cx+L(CK(t)x)(λ),

for all sufficiently large λ. Thus, Cx = 0 and x = 0. By (1), it follows
(w2,∞) ⊂ ρC(A) and

λ(λ2 −A)−1Cx =
1

K̃(λ)

∞∫

0

e−λtCK(t)xdt, λ > w, x ∈ E.

Using the well-known Arendt-Widder theorem (see [3]), we obtain the
following Hille-Yoshida type theorem:

Theorem 2.3. (a) The following statements are equivalent:
(ai) A is a subgenerator of an exponentially bounded Θ-convoluted C-

cosine function (CΘ(t))t≥0 satisfying condition

lim
σ→0

sup
h≤σ

‖CΘ(t + h)− CΘ(t)‖
h

≤ Mewt, t ≥ 0, for some M > 0.

(aii) There exists a ≥ w such that (a2,∞) ⊂ ρC(A) and
∥∥∥∥∥

dk

dλk
[λK̃(λ)(λ2 −A)−1C]

∥∥∥∥∥ ≤
Mk!

(λ− w)k+1
, k ∈ N0, λ > a.
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(b) Assume that A is densely defined. Then the following statements are
equivalent:

(bi) A is a subgenerator of an exponentially bounded K-convoluted C-
cosine function (CK(t))t≥0 satisfying ‖CK(t)‖ ≤ Mewt, t ≥ 0, for some
M > 0.

(bii) There exists a ≥ w such that (a2,∞) ⊂ ρC(A) and
∥∥∥∥∥

dk

dλk
[λK̃(λ)(λ2 −A)−1C]

∥∥∥∥∥ ≤
Mk!

(λ− w)k+1
, k ∈ N0, λ > a.

3. Global convoluted C-semigroups

Definition 3.1. Let β < w < ∞. If (w,∞) ⊂ ρC(A) and there exists a
strongly continuous operator family (SK(t))t≥0 such that ‖SK(t)‖ = O(ewt),
t ≥ 0, and

(λ−A)−1Cx =
1

K̃(λ)

∞∫

0

e−λtSK(t)xdt, λ > w, x ∈ E,

then it is said that A is a subgenerator of a K-convoluted C-semigroup
(SK(t))t≥0.

Note, Definition 3.1 implies that (SK(t))t≥0 is a nondegenerate family.
If C = I then Definition 3.1 means that A is the generator of a global
exponentially bounded convoluted semigroup (SK(t))t≥0.

Using the similar arguments as in the proofs of Theorem 2.2 and Theorem
2.3, one has the following results:

Theorem 3.2. Let (SK(t))t≥0 be a strongly continuous, exponentially
bounded operator family and let A be a closed operator. Then the assertions
(i) and (ii) are equivalent, where:

(i) A is a subgenerator of K-convoluted C-semigroup (SK(t))t≥0,
(ii) a) SK(t)C = CSK(t), t ≥ 0,

b) SK(t)A ⊂ ASK(t), t ≥ 0,

c) A
t∫
0

CK(s)xds = CK(t)x−Θ(t)Cx, t ≥ 0, x ∈ E.

Theorem 3.3. a) The following assertions are equivalent:
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(ai) A is a subgenerator of an exponentially bounded Θ-convoluted C-
semigroup (SΘ(t))t≥0 satisfying condition

lim
σ→0

sup
h≤σ

‖SΘ(t + h)− SΘ(t)‖
h

≤ Mewt, t ≥ 0, for some M > 0.

(aii) There exists a ≥ w such that (a,∞) ⊂ ρC(A) and
∥∥∥∥∥

dk

dλk

[
1

K̃(λ)
(λ−A)−1C

]∥∥∥∥∥ ≤
Mk!

(λ− w)k+1
, k ∈ N0, λ > a.

b) Assume that A is densely defined. Then the following statements are
equivalent:

(bi) A is a subgenerator of an exponentially bounded K-convoluted C-
semigroup (SK(t))t≥0 satisfying ‖SK(t)‖ ≤ Mewt, t ≥ 0, for some M > 0.

(bii) There exists a ≥ w such that (a,∞) ⊂ ρC(A) and
∥∥∥∥∥

dk

dλk

[
1

K̃(λ)
(λ−A)−1C

]∥∥∥∥∥ ≤
Mk!

(λ− w)k+1
, k ∈ N0, λ > a.

The next proposition relates a K-convoluted C-cosine function and a
K-convoluted C-semigroup. Its proof can be obtained as in the case of
integrated semigroups. We give it here for the sake of completness.

Proposition 3.4. Suppose that A and −A are subgenerators of a K-
convoluted C-semigroups, SK and VK , respectively. Then A2 is a subgener-
ator of a K-convoluted C2-cosine function.

P r o o f. It is not hard to verify that λ2−A2 is injective for all sufficiently
large λ ∈ R. Moreover, R(C2) ⊂ R(λ2 −A2) and

(λ2 −A2)−1C2x = [(λ−A)−1C][(λ + A)−1Cx]

=
1
2λ

[(λ + A)−1Cx + (λ−A)−1Cx]

= (2K̃(λ))−1L(SK(t)x + VK(t)x)(λ),
x ∈ E, λ sufficiently large.

Hence,

λ(λ2 −A2)−1C2x =
1

K̃(λ)
L

(
1
2

(SK(t)x + VK(t)x)
)

(λ),

x ∈ E, λ sufficiently large.
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In general, the converse of Proposition 3.4 is not true. For some special
integrated semigroups (E = Lp(Ω), Ω ⊂ Rn open) , the converse has been
proved by Hieber.

4. Local K-convoluted C-cosine functions

Using Theorem 2.2, we define the class of local K-convoluted C-cosine
functions as follows.

Definition 4.1. Let A be a closed operator and K(·) be a continuous
function on [0, τ), 0 < τ ≤ ∞. If there exists a strongly continuous operator
family (CK(t))t∈[0,τ) such that:

(i) CK(t)C = CCK(t), t ∈ [0, τ),
(ii) CK(t)A ⊂ ACK(t), t ∈ [0, τ),
(iii) for all x ∈ E and t ∈ [0, τ):

t∫

0

(t− s)CK(s)xds ∈ D(A), and

A

t∫

0

(t− s)CK(s)xds = CK(t)x−Θ(t)Cx,

then CK is called a (local) K-convoluted C-cosine function and A is called
a subgenerator of CK .

Properties and examples of integrated C-cosine functions, which are not
exponentially bounded, can be found in [20]. Clearly, if A is a subgener-
ator of CK , then for all x ∈ D(A) function t 7→ CK(t)x is continuously
differentiable on [0, τ) and

d

dt
CK(t)x =

t∫

0

CK(s)Axds + K(t)Cx, t ∈ [0, τ).

We say that a function t 7→ v(t) belonging to C([0, τ) : E) is a K-
convoluted mild solution of (ACP2) for (x, y) ∈ E2 if for all t ∈ [0, τ),
t∫
0
(t− s)v(s)ds ∈ D(A) and

A

t∫

0

(t− s)v(s)ds = v(t)−Θ(t)x−
t∫

0

Θ(s)yds, t ∈ [0, τ).
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Using the same arguments as in [20, Theorem 1.5], one has the following
proposition.

Proposition 4.2. Let A be a subgenerator of a K-convoluted C-cosine
function (CK(t))t∈[0,τ) and x, y ∈ E. If K is a kernel, i.e.

(∀u ∈ C([0, τ) : E))




t∫

0

K(t− s)u(s)ds ≡ 0 ⇒ u ≡ 0


 ,

then all K-convoluted mild solutions of (ACP2) for (x, y) are unique.

Remark. By Titchmarsh’s theorem ([3],p.[106]), the condition 0 ∈suppK
implies that K is a kernel.

Proposition 4.3. Suppose that for all x ∈ R(C) there exists a unique
K-convoluted mild solution of (ACP2) for (x, 0). Then A is a subgenerator
of a K-convoluted C-cosine function.

P r o o f. Define CK(t)x := v(t), where v(t) is the K-convoluted mild
solution of (ACP2) for (Cx, 0). The uniqueness of mild solutions implies that
(CK(t))t∈[0,τ) is a strongly continuous family of linear operators satisfying
(iii) of Definition 4.1. It is easy to see that t 7→ CCK(t)x is a K-convoluted
mild solution of (ACP2) for (C2x, 0). As a consequence, we have (i) of
Definition 4.1. The proof of (ii) of Definition 4.1 can be obtained as in [20,
Theorem 1.5]. So, we have only to prove that CK(t), t ∈ [0, τ), is a bounded
operator. We will follow the proof of [2, Proposition 2.3] with appropriate
changes. Consider the mapping Φ : E → C([0, τ) : D(A)), given by

Φ(x)(t) =
t∫

0

(t− s)CK(s)xds, t ∈ [0, τ) , x ∈ E,

where D(A) is equipped with the graph norm ‖x‖A = ‖x‖ + ‖Ax‖, and
C([0, τ) : D(A)) is a Frechet space for the seminorms

pn(v) := sup
t∈[0,τ− 1

n ]
‖v(t)‖D(A), v ∈ C([0, τ) : D(A)).

Clearly, Φ is a linear mapping. Let us show that Φ has a closed graph.

Suppose xn → x, and sup
t∈[0,τ− 1

n ]

t∫
0
(t − s)CK(s)xnds → f(t), n → ∞. It
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implies

Af(t) = lim
n→∞A

t∫

0

(t− s)CK(s)xnds = lim
n→∞[CK(t)xn−Θ(t)Cxn], t ∈ [0, τ),

and
lim

n→∞CK(t)xn = Af(t) + Θ(t)Cx, t ∈ [0, τ).

Using the dominated convergence theorem, we have

f(t) = lim
n→∞

t∫

0

(t− s)CK(s)xnds =
t∫

0

(t− s)[Af(s) + Θ(s)Cx]ds, t ∈ [0, τ).

So, f(0) = f ′(0) = 0, f ∈ C2([0, τ) : E) and

Af(t) = f ′′(t)−Θ(t)Cx, t ∈ [0, τ).

Hence, A
t∫
0
(t − s)v(s)ds = v(t) − Θ(t)Cx, t ∈ [0, τ), where v = f ′′. This

implies v(t) = CK(t)x, t ∈ [0, τ), and f = Φ(x). Hence, for all sufficiently
large n ∈ N there exists cn such that

∥∥∥∥∥∥
A

t∫

0

(t− s)CK(s)xds

∥∥∥∥∥∥
≤ cn‖x‖, x ∈ E, t ∈ [0, τ − 1

n
).

Since A
t∫
0
(t − s)CK(s)xds = CK(t)x − Θ(t)Cx, x ∈ E, t ∈ [0, τ), one can

easily conclude that CK(t) ∈ L(E), t ∈ [0, τ).

Lemma 4.4. Let A be a subgenerator of a K-convoluted C-cosine func-
tion (CK(t))t∈[0,τ), 0 < τ ≤ ∞, and H ∈ L1

loc((0, τ) : C). Then A is a
subgenerator of (H ∗0 K)-convoluted C-cosine function ((H ∗0 CK)(t))t∈[0,τ),
where ∗0 is the convolution like mapping given by

f ∗0 g(t) :=
t∫

0

f(t− s)g(s)ds.
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P r o o f. Clearly, ((H ∗0 CK)(t))t∈[0,τ) is a strongly continuous operator
family satisfying (i) and (ii) of Definition 4.1. Moreover,

A
t∫
0
(t− s)

s∫
0

H(s− r)CK(r)xdrds

= A((id ∗0 H ∗0 CK)(t))x = A((H ∗0 id ∗0 CK)(t))x

= A
t∫
0

H(t− s)
s∫
0
(s− r)CK(r)xdrds

=
t∫
0

H(t− s)[CK(s)x−Θ(s)Cx]ds = (H ∗0 CK)(t)x− (H ∗0 Θ)(t)Cx,

x ∈ E, t ∈ [0, τ).

This completes the proof.

Example 4.5. Let E := Lp(Rn), 1 < p < ∞. A remarkable result
of Hieber says that the Laplacian ∆ with domain Hp,2(Rn) is the generator
of an α-times integrated cosine function if and only if α ≥ (n − 1)

∣∣∣1
p − 1

2

∣∣∣
(cf. [3], [8]). Hence, the Laplacian ∆ is the generator of a

(
H ∗0

tα−1

Γ(α)

)
-

convoluted cosine function on E for any H ∈ L1
loc((0,∞) : C) and α ≥

max
{
(n− 1)

∣∣∣1
p − 1

2

∣∣∣ , 1
}
.

Lemma 4.6. Suppose that A is a subgenerator of a K-convoluted C-
cosine function (CK(t))t∈[0,τ). Then for all (x, y) ∈ R(C)×R(C) there exists
a K-convoluted mild solution of (ACP2) .

P r o o f. Let x = Cx1 and y = Cy1. Using Lemma 4.4, it is easy to

see that the function v(t) := CK(t)x1 +
t∫
0

CK(s)y1ds is a K-convoluted mild

solution of (ACP2) for (x, y).

By the foregoing we have the next proposition (see also [20]).

Proposition 4.7. If K is a kernel then the following statements are
equivalent:

a) A is a subgenerator of a K-convoluted C-cosine function.

b) for all (x, y) ∈ R(C)×R(C) there exists a unique K-convoluted mild
solution of (ACP2) .
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5. Basic properties of K-convoluted C-semigroups

Let 0 < τ ≤ ∞ and let K be a continuous function on [0, τ) with K 6= 0.

Definition 5.1. A strongly continuous operator family (St)t∈[0,τ) is
called a (local) K-convoluted C-semigroup on E if it satisfies:

1) S(0) = 0, S(t)C = CS(t), ∀t ∈ [0, τ).

2) S(t)S(s)x =

[
t+s∫
0
−

t∫
0
−

s∫
0

]
K(t + s− r)S(r)Cxdr,

x ∈ E, 0 ≤ s, t, s + t < τ .

S(·) is said to be nondegenerate if S(t)x = 0 for all t ∈ [0, τ) implies
x = 0. For a nondegenerate K-convoluted C-semigroup we may define its
generator A via

A :=



(x, y) ∈ E2 : S(t)x−Θ(t)Cx =

t∫

0

S(s)yds, ∀t ∈ [0, τ)



 .

It is a closed linear operator in E.
Let us consider now the abstract (ΘC)-problem.

Definition 5.2. The Θ-convoluted C-regularized Cauchy problem, (ΘC)
in short, is well-posed if for all x ∈ E there exists a unique solution of (ΘC).
Here D(A) is supplied with the graph norm ‖x‖A = ‖x‖+ ‖Ax‖.

We give now the result analogous to [3, Proposition 2.3]. The proof is
similar, so it is omitted.

Proposition 5.3. Let τ < ∞. Suppose (ΘC) is well-posed. Then there
exists a unique nondegenerate strongly continuous function S : [0, τ) → L(E)

such that for every x ∈ E,
t∫
0

S(s)xds ∈ D(A) and

A

t∫

0

S(s)xds = S(t)x−Θ(t)Cx, t ∈ [0, τ). (•)

If 0 ≤ t < τ and 0 ≤ s < t we have the following equality:

Θ(s)Θ(t− s)−
t∫

t−s

K(t− r)Θ(r)dr +
s∫

0

K(t− r)Θ(r)dr = 0.
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It can be proved using the standard arguments. Now we can obtain the
results analogous to [13, Proposition 2.4, Theorem 2.5]. The consideration
is similar, so it is omitted. We have only to add that the last equality gives
that the coeficient of C2x in the proof of [13, Proposition 2.4] equals zero.

Proposition 5.4. Let (St)t∈[0,τ) be a nondegenerate strongly continu-
ous operator family such that S(t)A ⊂ AS(t), CS(t) = S(t)C, t ∈ [0, τ).

Suppose that for every x ∈ E,
t∫
0

S(s)xds ∈ D(A) and satisfies (•). Then:

1) S(t) is a local K-convoluted C-semigroup whose generator is an ex-
tension of A.

2) If K is a kernel then (ΘC) is well-posed.

Proposition 5.5. Suppose that (ΘC) is well-posed. Let S be as in
Proposition 5.3. Then:

1) SC = CS, SA ⊂ AS.
2) S(t)S(s) = S(s)S(t), 0 ≤ s, t < τ .
3) S(·) is a local K-convoluted C-semigroup generated by C−1AC.
4) For all λ ∈ ρC(A) we have

(λ−A)−1CS(t) = S(t)(λ−A)−1C, t ∈ [0, τ).

Remarks. Putting C = I in Proposition 5.4. we have [15, Theorem
1.3.4], which gives the semigroup property for local convoluted semigroups.
Even if K(t) = tk−1

(k−1)! , k ∈ N, there exist examples of local integrated C-
semigroups whose generators have empty C-resolvents ([13]). Combining
Proposition 5.4 and Proposition 5.5, one has the following: if A is a subgen-
erator of an exponentially bounded K-convoluted C-semigroup (SK(t))t≥0 in
the sense of Definition 3.1, then (SK(t))t≥0 is a K-convoluted C-semigroup
in the sense of Definition 5.1, and if additionally K is a kernel, then the
generator of (SK(t))t≥0 is C−1AC.

The next proposition can be proved as in the case of integrated semi-
groups.

Proposition 5.6. Let (St)t∈[0,τ) be a (local) K-convoluted C-semigroup
generated by A. If x ∈ D(Ak) and K ∈ Ck−1([0, τ) : C) for some k ∈ N then
we have

dk

dtk
S(t)x = S(t)Akx +

k−1∑

i=0

K(i)(t)CAk−1−ix, t ∈ [0, τ).
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6. The corresponding (ΘC) problem and generation results

We start with

Proposition 6.1. Suppose K ∈ Ck([0, τ) : C), k ∈ N. Assume also that
the problem (ΘC) is well-posed for A. Then for all x ∈ D(Ak+1) there exists
a unique solution of

(ΘCk) :





u ∈ C1([0, τ) : E) ∩ C([0, τ) : D(A))

u′(t) = Au(t) + dk

dtk
K(t)Cx

u(0) =
k−1∑
i=0

K(i)(0)Ak−1−iCx.

P r o o f. Let (St)t∈[0,τ) be as in Proposition 5.3. One can easily verify
that

u(t) :=
t∫

0

S(s)Ak+1xds +
k∑

i=0

Θ(i)(t)Ak−iCx; t ∈ [0, τ), x ∈ D(Ak+1),

is the solution of (ΘCk). The uniqueness follows from the well-posedness of
(ΘC) at x = 0.

Of course, if a ∈ L1
(loc)([0, τ) : C) and if the problem (ΘC) is well-posed

then the problem (a ∗0 Θ, C) is well-posed. The semigroups SK and Sa∗0K

satisfy Sa∗0K = a ∗0 SK .

Theorem 6.2. Let k ∈ N\{1} and let K satisfies K ∈ Ck+1([0, τ) : C)
and K(i)(0) = 0, 0 ≤ i ≤ k − 2. If A is a closed linear operator with
λ0 ∈ ρ(A) and if for all x ∈ D(Ak+1) there exists a unique solution of
(ΘCk) then:

1) (ΘC) is well-posed for A.

2) C−1AC generates a K-convoluted C-semigroup on [0, τ); here τ < ∞.

P r o o f. Let z = Cy, y ∈ D(Ak+1). Define u1(t) := (λ0 −A)
t∫
0

uy(s)ds,

t ∈ [0, τ), where uy is the solution of (ΘCk) for y. One can simply verify
that u1 is a solution of
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(ΘCk−1) :





u ∈ C1([0, τ) : E) ∩ C([0, τ) : D(A))

u′(t) = Au(t) + dk−1

dtk−1 K(t)x

u(0) = 0,

for x = (λ0 − A)z. Moreover, (ΘCk−1) has a solution for all x ∈ (λ0 −
A)CD(Ak+1).

Similarly, the problem

(ΘCk−2) :





u ∈ C1([0, τ) : E) ∩ C([0, τ) : D(A))

u′(t) = Au(t) + dk−2

dtk−2 K(t)x

u(0) = 0

has a solution for all x ∈ (λ0 − A)2CD(Ak+1) (we can take u2(t) := (λ0 −
A)

t∫
0

u1(s)ds).

By induction we obtain a solution uk+1 of

(ΘC−1) :





u ∈ C1([0, τ) : E) ∩ C([0, τ) : D(A))

u′(t) = Au(t) + Θ(t)x

u(0) = 0,

for all x ∈ (λ0 −A)k+1CD(Ak+1). Since R(C) ⊂ (λ0 −A)k+1CD(Ak+1) we
have proved 1), because the uniqueness follows from the well-posedness of
(ΘCk) at x = 0. The rest of proof is clear by Proposition 5.5.

Remarks: 1) We have proved the converse of [13, Remark 2.6, (d)]. Our
results in this section also generalize [3, Proposition 3.3]. See also ([21], p.
[36]).

Propositions 6.1, 5.4, 5.5 and Theorem 6.2 yield immediately

Theorem 6.3. Let τ , K and k be as in Theorem 6.2. If A is a closed
linear operator with λ0 ∈ ρ(A), then the following statements are equivalent:

1) (Θ, I) is well-posed for A on [0, τ).
2) (Θ(k), R(λ0 : A)k) is well-posed for A on [0, τ).

If K is a kernel then 1 ) and 2 ) are equivalent to:
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1)’ A generates a K-convoluted semigroup on [0, τ).
2)’ A generates a K(k)-convoluted R(λ0 : A)k-semigroup on [0, τ), re-

spectively.
For the similar results see [15, Theorem 1.4.8] or [21, Theorem 6.7].
Let τ < ∞. Assume that (ΘC) is well-posed. Define

Lγ(λ) :=
γ∫

0

e−λsS(s)ds; γ ∈ [0, τ), λ ∈ [0,∞),

where S(·) is given by Proposition 5.3. We collect some properties of the
operators Lγ(λ) in the next proposition. The proof is analogous to [13,
Proposition 5.1] and so it can be omitted.

Proposition 6.4. Let x ∈ E. Then
1) The function λ → Lγ(λ)x belongs to C∞([0,∞) : E) and there exists

Mγ such that

∥∥∥∥
λn

(n− 1)!
dn−1

dλn−1
Lγ(λ)

∥∥∥∥∥ ≤ Mγ , ∀λ ≥ 0, n ∈ N.

2) Lγ(λ) commutes with C and A.

3) (λ−A)Lγ(λ) = −e−λγS(γ)x +
γ∫
0

e−λsK(s)Cxds.

4) Lγ(λ)Lγ(η) = Lγ(η)Lγ(λ).

A family {Lγ(λ) : γ ∈ [0, τ), λ ≥ 0} ⊂ L(E) is called asymptotic
ΘC-resolvent for A if there exists a strongly continuous operator family
(Vt)t∈[0,τ) such that 1), 2) and 4) hold and 3) holds with S(γ) replaced by
V (γ).

Using the same arguments as in [13, Theorem 5.2, Corollary 5.3], we
have the following results.

Theorem 6.5. Let A be a closed operator. Assume that A has an
asymptotic ΘC-resolvent {Lγ(λ) : γ ∈ [0, τ), λ ≥ 0}. If K is a kernel then(

t∫
0

Θ(s)ds, C

)
is well-posed.

Proposition 6.6. Suppose D(A) is dense in E and K is a kernel.
Then (ΘC) is well-posed for A on [0, τ) if and only if A has an asymptotic
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ΘC-resolvent {Lγ(λ) : γ ∈ [0, τ), λ ≥ 0}.
It is clear that the characterizations for local K-convoluted C-semigroups

are generalizations of the characterizations for local integrated C-semigroups,
and hence, for local C-cosine functions ([13]).
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