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1. Introduction

In the papers [9, 10] authors followed the definition of the distributional
Stieltjes transform given in [7] which enabled them to use the strong theory
of the space of tempered distributions S ′. In fact, they generalized slightly
the definition of Lavoine and Misra. Using the notion of the quasiasymptotic
behaviour of distributions from S ′+ = {f ∈ S ′, suppf ⊂ [0,∞)}, introduced
by Zavialov in [15], they obtained more general results than in [6, 7, 2] for
the asymptotic behaviour of the distributional Stieltjes transform at ∞ and
0+.
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McClure and Wong [3, 14] studied the asymptotic expansion of the gen-
eralized Stieltjes transform of some classes of locally integrable functions
characterized by their expansions at ∞ and 0+.

Our approach to the asymptotic expansion of the distributional modified
Stieltjes transform which we study in this paper is quite different from the
approach given in [3, 14].

In the first part of the paper we give the definition of the quasiasymp-
totic expansion at ∞ of a distribution from S ′+ given in [4, p.385]. Also
in [4] is given the definition of the qiasi-asymptotic expansion at 0+ of an
element from S ′+. In this paper we give the definition of space M′(r), Stielt-
jes transformation, Modified Stieltjes transformation Tr+1, and Generalized
Modified Stieltjes transformation Tr+1. This enables us to obtain, in the
second part of the paper, the asymptotic expansion at ∞ and at 0+ of the
modified Stieltjes transforms of appropriate distributions from S ′+.

Domains in [14] and in this paper on which the modified Stieltjes trans-
form is defined do not contain each other.

Notation: As usually R,C, N are the spaces of real, complex and natu-
ral numbers; N0 = N ∪{0}, S ′+ is the space of tempered distributions with
supports in the [0,∞). The space of rapidly decreasing functions is denoted
by S and by Sm, m ∈ N0 its closure with the norm

γm(ϕ) = sup{(1 + |t|2)m/2|ϕ(i)(t)|, t ∈ Rn, |i| ≤ m},

S ′ denotes the space of all distributions of slow growth.
A positive continuous function L defined on (0,∞) is called slowly vary-

ing at ∞ (0+) if for every k > 0

lim
t→∞

L(kt)
L(t)

= 1,

(
lim

t→0+

L(kt)
L(t)

= 1

)
.

We denote by
∑
∞

(
∑
0+

) the set of all slowly varying functions at ∞(0+). For

the properties of slowly varying functions we refer the reader to [11].
If L is a slowly varying function at ∞(0+), then for every ε > 0 there is

Aε > 0 such that x−ε < L(x) < xε (x−ε > L(x) > xε) if x > Aε (0 < x <
Aε).

This property of L and corresponding properties of Sm ([12, p. 93])
imply the following assertion: Let G ∈ L1

loc, suppG ⊂ [0,∞), α > −1, and
G(x) ∼ xαL(x) as x →∞ (x → 0+). Then G(kx)/(kαL(k)) → xα

+, k →∞,
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in S ′+ for α + 1 > 0. Recall, for α > −1, xα
+ = H(x)xα; H is Heaviside’s

function. (The symbol ∼ is related to the ordinary asymptotic behaviour).
The following scale of distributions from S ′+ has been used in investiga-

tions of the quasiasymptotic behaviour of distributions.

fα+1 =





Htα

Γ(α + 1)
, α > −1

Dnfα+n+1, α ≤ −1, α + n > −1,

(1.1)

where D is the distributional derivative.

2. Definitions

2.1. Definition of q.a.e.

Definition 1. The quasiasymptotic behaviour of distribution (q.a.b) at
infinity. If T be a distribution in S ′+ such that the distributional limit

lim
k→∞

T (kx)
ρ(k)

= γ(x)

exists in S ′ (γ 6= 0), then T is called to have the quasiasymptotic behaviour
at infinity related to the regularly varying function ρ(k) = kαL(k) with the
limit γ; we write this as T

q∼ γ in S ′ as x →∞.

Here ρ is regularly varying at infinity and the limit γ ∈ S ′+, is of the
form γ(x) = Cfα+1(x).

We shall repeat in this section some well known facts about the quasi-
asymptotic behaviour from [13].

Let f ∈ S ′+. It is said that f has the q.a.b. at ∞(0+) with the limit
g 6= 0 with respect kαL(k), L ∈ Σ∞((1/k)αL(1/k), L ∈ Σ0), α ∈ R, if

lim
k→∞

〈 f(kt)
kαL(k)

, φ(t)
〉

= 〈g(t), φ(t)〉, φ ∈ S

(
lim

k→∞

〈 f(t/k)
(1/kα)L(1/k)

, φ(t)
〉

= 〈g(t), φ(t)〉, φ ∈ S
)
.

Let us notice that in [10] is reformulated the definition of the q.a.b. at
0+ from [13].
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We need in the paper the following Structural theorem (for the q.a.b. at
∞, see [13] and for the q.a.b. at 0+, see [10]).

Structural theorem Let f
q∼ g at∞ (0+) with respect to kαL(k) ((1/k)α

L(1/k)). Then there exist F ∈ L1
loc, suppF ⊂ [0,∞), C 6= 0 and

m ∈ N0, m + α > −1, such that

f = DmF, F (k) ∼ Ckm+αL(k), k →∞
(F (1/k) ∼ C(1/k)m+αL(1/k), k →∞). (1.2)

We remark that the q.a.b. at 0+ is a local property while the q.a.b. at
∞ is a global property of an f ∈ S ′+.

For the quasiasymptotic Expansion of Distributions we extend slightly
the definitions of the closed and open quasiasymptotic expansion, in short
the q.a.e. at ∞, given in [4] and using the same idea we give the definition
of the q.a.e. at 0+.

Definition 2. Let α ∈ R and L ∈ ∑
∞

(L ∈ ∑
0

). We put

(fL)α+1 =

{
H(t)L(t) · tα/Γ(α + 1), α > −1
Dn(fL)α+n+1, α < −1, α + n > −1,

(1.3)

where n is the smallest natural number such that α + n > −1. Obviously,
(fL)α+1

q∼ fα+1 at ∞ (0+) with respect to kαL(k) ((1/k)αL(1/k)).

Definition 3. An f ∈ S ′+ has the closed q.a.e. at ∞ (0+) of order
(α,L) ∈ R ×∑

∞
((α, L) ∈ R ×∑

0
) and of length `, 0 ≤ ` < ∞, with respect

to kα−`L0(k) ((1/k)α+`×L0(1/k)) if f has the q.a.b. it ∞ (0+) with respect
to kαL(k) and if there exist αi ∈ R, Li ∈

∑
∞

(Li ∈
∑
0+

), ci ∈ C, i =

1, 2, ..., N, α1 ≥ α2 ≥ αN (α1 ≤ α2 ≤ ... ≤ αN ) and that f is of the form

f(t) =
N∑

i=1

ci(fLi)αi+1(t) + h(t) (1.4)

such that




lim
x→∞

〈
h(kt)

kα−`L0(k)
, φ(t)

〉
= 0, φ ∈ S

(
lim

x→∞

〈
h(k/t)

(1/k)α+`L0(1/k)
, φ(t)

〉
= 0, φ ∈ S

)
.

(1.5)
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Obviously, we can (and we shall) assume that ci 6= 0, i = 1, ..., N, and
that αN ≥ α − ` (αN ≤ α + `). Since the sum of the two slowly varying
functions is the slowly varying one, we can and we shall always assume that
in the representation (1.4) α1 > α2 > ... > αN (α1 < α2 < ... < αN ). Namely
(fLj )β+1 + (fLk

)β+1 = (fLj+Lk
)β+1. (fLj )β1+1 and (fLk

)β2+1 have the same
q.a.b. at ∞(0+) iff β1 = β2 and Lj ∼ Lk. So, we have

Proposition 1. Let f ∈ S ′+ satisfy conditions of above definition and
assume that there are two representation of f

f(t) =
N∑

i=1

ci(fLi)αi+1 + h(t)

f(t) =
M∑

i=1

c̃i(fLi)α̃i+1 + h̃(t)

for which all the assumptions given above hold. Then M = N,

α1 = α̃1...αN = α̃N , L1 ∼ L̃1...LN ∼ L̃N , α1 = α, L1 ∼ L.

We shall use the following notation for in f ∈ S ′+ in Definition 3.

f
q.e∼

N∑

i=1

ci(fLi)αi+1 at ∞(0+) of order (α, L) with respect to

kα−`L0(k)((1/k)α+`L0(1/k)).

2.2. Space M′(r)

We extend the definition of the space J ′(r) given in [10] and using the
same idea we give the definition of space M′(r).

M′(r), r ∈ R \ (−N) denotes the space of all generalized functions
f ∈ S ′+(R) such that there exist k ∈ N0 and a locally integrable function
F, suppF ⊂ [0,∞). so that f is of the form

f = t−rDkF, (2.1.)

where F is continuous on [0,∞) and
∫

R

|F (t)|(t + β)r−1−kdt < ∞, for β > 0, (2.2)
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More precisely M′(r) is the dual space for i.e.

M′(r) = {ψ ∈ C∞ \ (0,∞); ψ = trϕ; ψ ∈ S([0,∞))}

with the multinorm
‖ψ‖α = sup{trϕ(i)(t)(1 + t)k; i ≤ k, t ∈ [0,∞), k ∈ N0}.
The Stieltjes transformation Sr(f)(s), r ∈ R \ (−N) is complex valued

function, defined by

Sr(f(t))(s) =
∞∫

0

f(t)
(s + t)r+1

dt. (2.3)

s ∈ C \ (−∞, 0], 0 < t < ∞, r ∈ R \ (−N)

Modified Stieltjes transformation introduced by Marichev is defined as

(Tαf)(x) =
1

Γ(α)

∞∫

0

(
1 +

x

y

)−α
1
y

f(y)dy, x ∈ C \ (−∞, 0], (2.4)

0 < y < ∞, α ∈ R \ (−N). It can be written as

Tα(f)(x) =
1

Γ(α)

∞∫

0

yα−1f(y)
(x + y)α

dy, x ∈ C \ (−∞, 0]. (2.5)

Now, we shall find relation between (2.3) and (2.5). Putting r = α −
1, f(t) = yα−1f(y) in (2.3) we get,

Sα−1(yα−1f(y))(x) =
∞∫

0

yα−1f(y)
(x + y)α

dy, x ∈ C \ (−∞, 0]. (2.6)

By (2.5) and (2.6), we have

Tα(f)(x) =
1

Γ(α)
Sα−1(yα−1f(y))(x), x ∈ C \ (−∞, 0].

Interchanging x by z and α by r + 1, it follows that

Γ(r + 1)Tr+1(f)(z) = Sr(yrf)(z), z ∈ C \ (−∞, 0]. (2.7)
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2.3. Modified Stieltjes transformation Tr+1

Let us define the Tr+1-transformation r ∈ R \ (−N). Assume that f ∈
M′(r) that is f = t−rDkF and

∫
R
|F (t)|(t + β)−r−1−kdt < ∞, for β > 0.

Modified Stieltjes transformation is defined.

Tr+1(f), r ∈ R \ (−N) is complex valued function defined by

Γ(r + 1)Tr+1(f)(s) = (r + 1)k

∞∫

0

F (t)
(s + t)r+1+k

dt,

r ∈ R \ (−N), s ∈ C \ (−∞, 0], 0 < t < ∞.

2.4. Generalized Modified Stieltjes Transformation T̃r+1

The T̃r+1-transformation of a distribution f ∈ S ′+(R) is complex valued
function T̃r+1(f) defined by

Γ(r + 1)T̃r+1(f)(s) = lim
w→∞〈f(t), η(t)(s + t)−r−1 exp(−wt)〉.

w ∈ R, s ∈ Λ ⊂ (C \ (−∞, ]), η ∈ A(s).

Here Λ is the set of complex numbers for which this limit exists; A(s) is the
family of all smooth functions, defined on R for which there exists ε = εη,s >
0 such that 0 ≤ η(t) ≤ 1, t ∈ R, η(t) = 1 if t belongs to the ε-neighbourhood
of R+, η(t) = 0 if it belongs to the complement of the 2ε-neighbourhood of
R+, where ε > 0 is arbitrary if Im s 6= 0 and 0 < 2ε < maxRes, if Im s = 0.
Moreover, assume |Dpη(t)| ≤ Cp, t ∈ R. If η(t) ∈ A(s), s ∈ (C \R−), then
η(t)(s + t)−r−1 exp(−wt) ∈ S(R) for w ∈ R+, r ∈ R.

3. Main results

For the main results of this section we need the following assertion from
[10].

Theorem 1. Let f ∈ S ′+, and f = DmF. Then if f has the q.a.b at ∞
with respect to kαL(k), it follows that

F (kt)
kα+mL(k)

→ Cfα+m+1 in S ′p for p > α + m + 1 as k →∞. (3.1)
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In the case of q.a.b. at 0+

F (t/k)
(1/k)α+mL(1/k)

→ Cfα+m+1 in S ′p for p > α + m + 1 as k →∞.

If f ∈ M′(r), and f = t−rDmF then F ∈ S ′r+m+1. For given z ∈
C \ (−∞, 0], we denote by A(z) the space of all η ∈ C∞, such that η ∈ A(z),
if 0 ≤ η ≤ 1, η(t) = 1 for t > −ε, η(t) = 0 for t < −2ε, where ε > 0 is
arbitrary if z 6∈ (0,∞) and z ∈ (0,∞) then we choose ε such that 0 < 2ε < z.
Clearly, for a given z ∈ C \ (−∞, 0] and every η ∈ A(z)

R 3 t → η(t)(t + z)−r−m−1 ∈ Sp for p < r + m + 1. (3.2)

Let f ∈M′(r). we have (x > 0, t > 0),

Γ(r + 1)(Tr+1f)(tx) = x(r + t)
∫ ∞

0
Γ(r + 2)(Tr+2f)(xu)du

and if
Γ(r + 2)(Tr+2)(x) ∼ x−(r−α)−1L(x) (3.3)

as x →∞(x → 0+), then

Γ(r + 1)(Tr+1f)(x) ∼ (r + 1)
(1− α)

x−(r−α)L(x) as x →∞(x → 0+).

Now we are ready to prove.

Theorem 2. Let f have the closed q.a.e at ∞ of order (α, L) and of
length ` related to kα−`L0(k) (see the notation in Definition 3). Let r >
α, r ∈ R \ (−N). Then

(i) f ∈M′(r), (fL)α+1 ∈M′(r);

(ii) If we put Γ(r+1)Tr+1(fL)α+1(x) = Sα,L(x), then for L ∼ L̃, Sα,L(x) ∼
Sα,L̃(x) ∼ Γ(r − α)

Γ(r + 1)
xa−rL(x), x →∞;

(iii) Γ(r + 1)(Tr+1f)(x)− C
Γ(r − α)
Γ(r + 1)

xα−rL(x) = 0(xα−`−rL0(x)), (3.4)
x →∞.
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P r o o f. We shall prove the theorem by using the similar idea in the
proof of the main theorem in [9]. Obviously, (i) follows from (1.2).

(ii) Let β < r − 1, x ∈ R,L ∈ ∑
∞

. Let m be the smallest element from

N0 such that β + m > −1. Then

Γ(r + 1)(Tr+1(fL)β+1)(x) = (r + 1)m

∫ ∞

0

fβ+m+1(t)L(t)
(x + t)r+m+1

dt

= (r + 1)m < fβ+m+1(t)L(t),
η(t)

(x + t)r+m+1
>, η ∈ A(x),

where < fβ+m+1(t)L(t), η(t)
(x+t)r+m+1 > is observed as a pair from (S′r+m, Sr+m).

Obviously this pair does not depend on η ∈ A(x). Since r + m > β + m + 1,
we have

Γ(r + 1)Tr+1(fL)β+1(kx)
kβ−rL(k)

=

= (r + 1)m

〈
fm+β+1L(t),

η(t)
kβ+m+1L(k)(x + (t/k))r+m+1

〉

= (r + 1)m

〈fβ+m+1(kt)L(kt),
kβ+mL(k)

,
η(kt)

(x + t)r+m+1

〉
.

If k →∞ from equation (3.1) it follows

Γ(r + 1)Tr+1(fL)β+1(kx)
kβ−rL(k)

→
〈
fβ+m+1(t),

η(t)
(x + t)r+m+1

〉
=

=
(r + 1)m

Γ(β + m + 1)

∫ ∞

0

tβ+m

(x + t)r+m+1
· dt =

Γ(r − β)
Γ(r + 1)

xβ−r.

On putting x = 1 we obtain that (ii) holds for all α < r− 1. Let us suppose
that r − 1 ≤ β < r. Then by the same arguments given above, we have

Γ(r + 2)Tr+2(fL)β+1(x) ∼ Γ(r + 1− β)
Γ(r + 2)

xβ−r−1L(x), x →∞.

Now we completed the proof of result (ii).
(iii) We can assume that α < r − 1 because if r − 1 ≤ α < r we have

as in (ii), to observe Γ(r + 2)Tr+2(fL)β+1 firstly and after that to use (3.3).
Since f − C(fL)α+1 ∈ S′r+m, equation (3.1) implies that
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{
Γ(r + 1)(Tr+1f)(xk)− C(Γ(r + 1)Tr+1(fL)α+1)(kx)

xα−`−rL0(x)

}

=< {f(kt)− C(fL)(kt)}/(kα−`L0(k)), η(t)(x + t)−r−m−1 >→ 0

as k →∞. On putting x = 1 the assertion (iii) follows. The similar assertion
holds for closed q.a.e. at 0+ but with more restrictive assumptions.

Theorem 3. Let f have the closed q.a.e. at 0+ of order (α,L) and of
length ` with respect to (1/k)α+`L0(1/k). If (α+ `) < r and f ∈M′(r), then

Γ(r + 1)(Tr+1f)(x)− CΓ(r − α)
Γ(r + 1)

xα−rL(x) = 0(xα+`−rL0(x)), x → 0, (3.5)

P r o o f. The proof of this theorem is very similar to the proof of Theorem
2. We only notice that we must observe firstly Sr+1f and after that to use
(3.3). From f ∈ M ′(r) we have F ∈ S′r+m+1 and this implies that we have
to observe the dual pair (S′r+m+1Sr+m+1) (η(t)(x + t)−r−m−2 ∈ Sr+m+1 as
a function of t).

4. The uniform Behaviour of Tr+1(f)

Let F be a continuous function with supp F ⊂ [0,∞), r > α > −1 and
F (x) ∼ xα as x →∞. Denote by λa,ε, a > 0, ε > 0, a subset of C defined by
Λa,ε = {a + Reiφ; R ≥ 0,−π + ε ≤ φ ≤ π − ε}. If z = a + Reiφ ∈ Λa,ε and
t ∈ [0,∞), then we have

|z + t|r+1 > (
1− cosφ

2
)(r+1)/2(R + a + t)r+1. (4.1)

This follows from the elementary inequalities:

(a + t)2 + 2(a + t)R cos φ + R2 ≥ (a + t)2 − 2(a + t)R cos ε + R2

= (a + t)2 + R2 + ((a + t)2 + R2) cos ε− (a + t + R)2 cos ε

≥ ((a + t)2 + R2)(1 + cos ε)− 2((a + t)2 + R2) cos ε

= ((a + t)2 + R2)(1− cos ε).

Assumptions on F imply F (x) < C(1 + xα), x ≥ 0 For z ∈ Λa,ε and suitable
C1

∣∣∣
∫ ∞

0

F (t)
(z + t)r+1

dt
∣∣∣ ≤ C(

2
1− cos ε

)(r+1)/2
∫ ∞

0

(1 + tα)
(R + a + t)r+1

dt
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≤ C1

[1
r

+
Γ(r − α)Γ(α + 1)

Γ(r + 1)

][ 1
a + R

]r−α
. (4.2)

So, we have proved the following

Lemma 1. Let F satisfy the conditions given above. The function
zr−αΓ(r + 1)(Tr+1F )(z) is bounded in Λa,ε, a > 0, ε > 0.

We use this lemma for the proof the following theorem.

Theorem 4. Let f satisfy the conditions of Theorem 2 and let all the
slowly varying functions in Theorem 2 be equal to 1. Then

i) Af,r(z) = Γ(r + 1)(Tr+1f)(x)− C
Γ(r − α)
Γ(r + 1)

zα−r

zα−`−r

is bounded analytic function in any Λa,ε, a > 0, ε > 0;
(ii) Af,r(z) converges uniformly to zero in Λa,ε when |z| → ∞.

P r o o f: (i) It follows from the Structural theorem (cf. 2.1) and Lemma
1.

(ii) It follows from (i) and Theorem 2 which enable us to use the Montel
theorem [1, p.5].

Theorem 5. Let f satisfy the conditions of Theorem 3 and let all the
solwly varying functions in Theorem 3 be equal to 1. Let

Af,r(z) = {Γ(r + 1)(Tr+1f)(z)− Γ(r − α)
Γ(r + 1)

zα−r}/zα+`−r.

Then
(i) Af,r(z) is a bounded function in Λ0,ε ∩ B(0, R0), ε > 0, R0 > 0,

where B(0, R0) = {z; |z| < R0};
(ii) Af,r(z) converges uniformly to zero in Λ0,ε when |z| → 0.

For the proof of this theorem, we need

Lemma 2. Let F ∈ L1
loc, suppF ⊂ [0,∞), r > α > −1,

F (x) ∼ xα, x → 0+, and
∫ ∞

0
|F (t)(z + t)−r−1|dt < ∞,

z ∈ Λ0,ε ∩ B(0, R0). Then zr−αΓ(r + 1)(Tr+1F )(z) is bounded in Λ0,ε ∩
B(0, R0), R0 > 0.
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P r o o f of Theorem 4:
(i) From the Structural theorem and Lemma 2 it follows that Af,r(z) is

bounded in Λ0,ε ∩B(0, R0).
(ii) Let Ãf,r(z) = Af,r(1/z), z ∈ C \ (−∞, 0]. The function Af,r(w), w ∈

Λ0,ε ∩ {w : |w| > 1/R0}, ε > 0, R0 > 0 is analytic and bounded. As well,
we have Ãf,r(x) → 0 as x →∞. This implies that the same assertions hold
for Af,r in the domain Λa,ε ∩ {w; |w| > 1/R0}, a > 0, R0 > 0. So by the
Montel theorem it follows that Ãf,r(z) converges uniformly to 0, in Λa,ε as
|z| → ∞. Further on this implies that Af,r(z) converges uniformly to 0 in
Λ0,ε as |z| → ∞ and so that the assertion (ii) holds.
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