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1. Notation and notions

We repeat some definitions and facts, we need in our exposition but for
special case.

Let Q be an open set belonging to Rn. By D(Q) we denote the space
{ϕ ∈ C∞(Q); suppϕ ⊂ Kϕ}, Kϕ is a compact set in Q which depends on
ϕ. D′(Q) is the space of continuous linear functionals on D(Q) - the space
of distributions. Every f ∈ Lloc(Q) defines a distribution, called regular
distribution, denoted by [f ],

〈[f ], ϕ〉 =
∫

Q

f(t)ϕ(t)dt, ϕ ∈ D(Q).
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Important subspaces ofD′(Rn) we use, are: D′(Rn
+) = {f ∈ D′(Rn), suppf ⊂

Rn
+}, the space of tempered distributions S ′(Rn) and S ′(Rn

+) = {f ∈ S ′(Rn), suppf ∈
Rn

+}. For the space S ′(Rn) and its topology cf. [8].

Definition 1. The Laplace transform (in short LT) of f ∈ S ′(Rn
+) is

defined by

f̂(z) = L(f)(z) = 〈f(t), η(t)e−zt〉, z ∈ Rn
+ + iRn,

where η ∈ C∞(Rn), |η(α)(t)| ≤ Cα, α ∈ N and η(t) = 1, t ∈ (−ε,∞)n;
t ∈ Rn \ (−∞,−2ε)n, ε > 0; For the properties of so defined LT one can
consult [8] and [9].

Let Hα,β(Rn
+), α ≥ 0, β ≥ 0, denote the sets of holomorphic functions

on Rn
+ + iRn which satisfy the following growth condition:

|f(z)| ≤ M(1 + |z|2)α/2(1 + |x|−β), z = x + iy ∈ Rn
+ + iRn.

For the applications of the LT the following is very important:
Proposition A. ([8] ,p. 191). The algebras S ′(Rn

+) and H(Rn
+) =⋃

α≥0

⋃
β≥0

Hα,β(Rn
+) are isomorphic. This isomorphism is accomplished via the

LT.
We consider the space eωtS ′(Rn

+) ⊂ D′(Rn
+) ⊂ D′(Rn), ω > 0.

Definition 2. If f ∈ eωtS ′(Rn
+), then the LT of it is

f̂(z) = L(f)(z) = 〈f(t), η(t)e−(z−ω)t〉, z ∈ ω + Rn
+ + iRn.

Let b > 0. We denote by Ab the space

Ab = {f ∈ eωtD′(Rn
+), suppf ⊂ [b,∞)n}.

Now we can define an equivalent relation in eωtS ′(Rn
+) : f ∼ g ⇐⇒ f − g ∈

Ab. Then the space Bb by definition is:

Bb = eωtS ′(Rn
+)/Ab.

Definition 3. The space D′ω([0, b)n) is by definition:

D′ω([0, b)n) = {T ∈ D′([0, b)n);∃T ∈ eωtS ′(Rn
+), T |(−ε,b)n = T},

where T |(−ε,b)n is the restriction of T on (−ε, b)n, ε > 0.
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Proposition B. ([6], [7]) D′ω([0, b)n) is algebraically isomorphic to Bb.

2. Distribution-valued function and its Laplace transform

Our definition of the distribution-valued functions (in short d-v-f) (cf.
[5]) is appropriate to the mathematical models in mechanics.

In this section Ω denotes an open set belonging to Rm.

Definition 4. Let ω be a positive real number. The function [u(x, .)], x ∈
Ω, with values in eωtS ′(Rn

+) ⊂ D′(Rn
+) :

Ω 3 x → [u(x, .)] ∈ eωtS ′(Rn
+), ωt = ωt1 + .... + ωtn

will be refered to as distribution-valued function (d-v-f).

The space of d-v-f defined on Ω we denote by (eωtS ′(Rn
+))Ω. A d-v-f

[u(x, .)] = [u0(x, .)]eωt, where [u0(x, .)] ∈ S ′(Rn
+) for every x ∈ Ω, hence

[u(x, .)]e−ωt = [u0(x, .)] ∈ S ′(Rn
+).

It is easily seen that [u(x, .)] ∈ (eω1tS ′(Rn
+))Ω for every ω1 ≥ ω.

If [u1(x, .)] and [u2(x, .)] belong to (eωtS ′(Rn
+))Ω, then [u1(x, .)] = [u2(x, .)]

if and only if 〈[u1(x, t)− [u2(x, t)], ϕ(t)〉 = 0 for every ϕ ∈ D(Rn), x ∈ Ω.

Definition 5. A d-v-f (1) is called continuous if for every ϕ ∈ S(Rn)
the function x → 〈[u(x, t)]e−ωt, ϕ(t)〉 is continuous.

Let x0 ∈ ∂Ω (∂Ω is the boundary of Ω). By definition:

lim
x→x0,x∈Ω

[u(x, .)] = [u0(t)]eωt ∈ eωtS ′(Rn
+)

if [u(x, .)]e−ωt converges to [u0(t)] in S ′(Rn).

Remarks: a) The definition of the continuity and the limit do not
depend on ω1 ≥ ω.

b) The defined continuity of a d-v-f is equivalent to the statement that
the mapping x → [u(x, .)] of Ω into eωtS ′(Rn) is continuous (S ′(Rn) provided
with the usual topology).

Definition 6. A distribution u ∈ D′(Ω × Rn) is called the distribution
induced by the d-v-f (1) if

〈u, ψ〉 =
∫

Ω

〈[u(x, .)], ψ(x, .)〉dx, ψ ∈ D(Ω× Rn),

provided the integral exists for every ψ ∈ D(Ω× Rn).
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The next Proposition gives conditions that a distribution, induced by a
d-v-f, has been induced by a unique d-v-f.

Proposition 1. Let u ∈ D′(Ω × Rn
+) ⊂ D′(Ω × Rn) be the distribution

induced by a continuous d-v-f [u(x, .)], x ∈ Ω. Then [u(x, .)], x ∈ Ω, is
uniquely determined by u in the class of continuous d-v-fs: Ω → eωtS ′(Rn

+).

P r o o f. Assume that there are two d-v-fs [u1(x, .)] and [u2(x, .)] which
induce the distribution u. Put [w(x, .)] = [u1(x, .)]− [u2(x, .)] and let

ψ(x, t) ∈ D(Ω× Rn), ψ(x, t) = α(x)β(t), α ∈ D(Ω) and β ∈ D(Rn).

By Definition 6 we have for every α and β :
∫

Ω

〈[w(x, .)], β(t)〉α(x)dx = 0.

It follows that

〈[w(x, .)]e−ωt, eωtβ(t)〉 = 0 for a.a. x ∈ Ω. (1)

Since D(Rn) is dense in S(Rn), (1) is also true for every ϕ ∈ S(Rn), i.e.,

〈[w(x, .)]e−ωt, ϕ(t)〉 = 0 for a.a. x ∈ Ω.

From the Definition on continuity it follows that the distribution [w(x, .)] = 0
for x ∈ Ω. Consequently, [u1(x, .)] = [u2(x, .)], x ∈ Ω.

Definition 7. Let η = (η1, ..., ηm), ηs = 0 for s 6= j and ηj = 1. Let
ε0 > 0 be such that for x0 ∈ Ω, x0 + ηε ∈ Ω, |ε| < ε0. If for [u(x, .)] ∈
(eωtS ′(Rn

+))Ω the limit

lim
ε→0

1
ε
([u(x0 + εη, .)]− [u(x0, .)])e−ωt = [v(x0, .)]

exists in S ′(Rn) for every x0 ∈ Ω, we put by definition

∂

∂xj
[u(x, .)] = [v(x, .)]eωt ∈ (eωtS ′(Rn

+))Ω.

If the function Ω 3 x → 〈[u(x, t)]e−ωt, ϕ(t)〉 is of class Ck(Ω) for every
ϕ ∈ S(Rn), then the d-v-f [u(x, .)] is by definition of class Ck(Ω).
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Remark. Let U(x, t) denote U(x, t) = 〈[u(x, t)]e−ωt, ϕ(t)〉. Then
∂

∂x
[u(x, .)] exists if and only if there exists v(x, t) ∈ S ′(Rn

+), x ∈ Ω, such
that

∂

∂x
U(x, t) =

∂

∂x
〈[u(x, t)]e−ωt, ϕ(t)〉 = 〈v(x, t), ϕ(t)〉

for every ϕ ∈ S(Rn) and x ∈ Ω.

The next two propositions refer to the connection between some opera-
tions on a distribution induced by a d-v-f [u(x, .)] and this d-v-f [u(x, .)].

Proposition 2. Let u ∈ D′(Ω × Rn) be the distribution induced by a
d-v-f [u(x, .)] ∈ (eωtS(Rn

+))Ω of class C1. Then the distribution derivative
Dxju, j ∈ (1, ..., m), is indiced by the d-v-f:

Ω 3 x → ∂

∂xj
[u(x, .)] = [qj(x, .)]eωt ∈ eωtS ′(Rn

+),

i.e., for every ψ ∈ D(Ω×Rn) we have

〈Dxju, ψ〉 =
∫

Ω

〈 ∂

∂xj
u(x, .), ψ(x, .)

〉
dx.

P r o o f. By Definition 6 for every ψ ∈ D(Ω×Rn) :

〈Dxju, ψ〉 = −
〈
u,

∂

∂xj
ψ

〉

= − ∫
Ω

〈
u(x, .)],

∂

∂xj
ψ(x, .)

〉
dx.

It is well-knowm (cf. [4, Chapter IV, Theorem III]) that the subspace of
functions of the form

∑
i

vi(x)wi(t) is dense in D(Ω× Rn), where vi ∈ D(Ω)

and wi ∈ D(Rn). For every ψ ∈ D(Ω × Rn) there exists a sequence ψν(t) =
ν∑
i

vi(x)wi(t) which converges in D(Ω× Rn) to ψ(x, t).

Hence, there exist compact sets Kv ⊂ Ω and Kw ⊂ Rn such that suppψ ⊂
Kv×Kw, vi ∈ C∞0 (Kv) and wi ∈ C∞0 (Kw) for i ∈ N; {ψν(x, t)}ν∈N converges
uniformly on Kv ×Kw. Thus

〈Dxju, ψ〉 = − lim
ν→∞

ν∑
i

∫
Ω
〈[u(x, .)], wi(.)〉 ∂

∂xj
vi(x)dx

= lim
ν→∞

ν∑
i

∫
Ω

∂

∂xj
〈[u0(x, .)], eωtwi(.)〉vi(x)dx
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= lim
ν→∞

ν∑
i

∫
Ω
〈[q(x, .)]eωt, wi(.)〉vi(x)dx

=
∫
Ω
〈[q(x, .)]eωt, ψ(x, .)〉dx

=
∫
Ω

〈 ∂

∂xj
[u(x, .)], ψ(x, .)

〉
dx.

Proposition 3. Let Ω be an open interval (a, b) ⊂ R. Suppose that
u ∈ eωtS ′((a, b) × Rn) satisfies the equation Dxu = 0. The distribution u is
induced by the constant d-v-f defined on (a, b). This is the unique continuous
d-v-f on Ω which induces u.

P r o o f. If Dxu = 0, then u does not depend on x ∈ (a, b). Let ψ be
any function belonging to D((a, b) × Rn). As in the previous proof we use

the sequence ψν(x, t) =
ν∑
i

vi(x)wi(t) and we have

〈u, ψ〉 = lim
ν→∞

ν∑
i
〈〈u(.), wi(.)〉, vi(x)〉

= lim
ν→∞

ν∑
i

∫
Ω
〈u(.), wi(.)〉vi(x)dx

=
∫
Ω
〈u(.), ψ(x, .)〉dx.

By Definition 6 u is defined by the d-v-f: (a, b) 3 x → [u(.)]. By Propo-
sition 1 this is the unique continuous d-v-f which induces u.

We are going now to prove some properties of the regular d-v-f.
Let CΩ,Rn

+
denote the class of functions f(x, t), x ∈ Ω, t ∈ Rn such that:

1. suppf(x, t) ⊂ Rn
+, x ∈ Ω;

2. |f(x, t)e−ωt/(1 + |t|2)m/2| ≤ g(t) ∈ L1(Rn
+) for an m ∈ N0 and for

x ∈ Ω.

Proposition 4. Let Ω be an open set in Rm.
a) If f ∈ CΩ,Rn

+
, then f defines a d-v-f [f(x, .)] which is called regular

d-v-f.
b) If f ∈ CΩ,Rn

+
and f is continuous in x ∈ Ω for almost all t ∈ Rn

+,

then [f(x, .)] is a continuous d-v-f on Ω. It defines a regular distribution on
Ω× Rn, as well.
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c) If f is a function defined on Ω×Rn such that
∂i

∂xj
f(x, t), i = 0, ..., k,

are continuous in x ∈ Ω for a.a. t ∈ Rn
+. and belong to CΩ,Rn

+
, then

∂i

∂xi
j

f(x, t) defines a regular continuous d-v-f on Ω :

[ ∂i

∂xi
j

f(x, t)
]
, i = 0, ..., k, j ∈ (1, ..., m) and

∂i

∂xi
j

[
f(x, .)

]
=

[ ∂i

∂xi
j

f(x, .)
]
, x ∈ Ω.

P r o o f. a) By Proposition 3, p. 158 in [5], [f(x, .)] ∈ (eωtS ′(Rn
+))Ω.

b) By definition of a regular d-v-f defined by f(x, t) depending on the
parameter x, we have for x ∈ Ω and ϕ ∈ S(Rn) :

〈[f(x, .)]e−ωt, ϕ(·)〉 =
∫

Rn
+

f(x, t)e−ωtϕ(t)dt.

The proof of b) follows now by the properties of the integral (cf. [4], Propo-
sition 45).

c) We prove only if i = 1. For i > 1 we have only to repeat the procedure.
By a) f defines a regular d-v-f

[f(x, .)] = eωt[e−ωtf(x, t)].

Following Definition 7 of the derivative in xj of [f(x, .)] and the Remark
after it we analyse the limit:

lim
ε→0

1
ε 〈[e−ωtf(x + εη, t)]− [e−ωtf(x, t)], ϕ(t)〉

= lim
ε→0

1
ε

∫
Rn

+

e−ωt(f(x + εη, t)− f(x, t))ϕ(t)dt

=
∫
Rn

+

e−ωt ∂

∂xj
f(x, t)ϕ(t)dt

= 〈e−ωt ∂

∂xj
f(x, t), ϕ(t)〉, ϕ ∈ S(Rn)

(cf. Proposition 46, p. 62 in [4]).

We apply a) once more to
∂

∂xj
f(x, t). Then this partial derivative defines

a d-v-f, as well, and
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e−ωt
[ ∂

∂xj
f(x, .)] ∈ S ′(Rn

+).

Hence
∂

∂xj
[f(x, .)] =

[
∂

∂xj
f(x, .)

]
.

Proposition 5. Let Ω ⊂ Rm be an open set and Ω1 any open subset of
Ω, Ω1 ⊂ Ω.. Let f ∈ CΩ,Rn

+
. If for any x0 ∈ ∂Ω1 we have:

a) There exist

lim
x→x0,x∈Ω1

f(x, t) = v1(t) and lim
x→x0,x∈Ω\Ω1

f(x, t) = v2(t)

for a.a. t ∈ Rn
+;

b) there exist pi ∈ N0, such that e−ωtvi(t)/(|t|pi + 1) ∈ L1(Rn
+), i = 1, 2;

c) [f(x, .)] is a continuous d-v-f on Ω.
Then f(x, t) is continuous on Ω for a.a. t ∈ Rn

+.

P r o o f. By Definition 5

lim
x→x0,x∈Ω1

[f(x, .)] = lim
x→x0,x∈Ω1

∫
Rn

+

f(x, t)e−ωtϕ(t)dt

=
∫
Rn

+

v1(t)e−ωtϕ(t)dt

and
lim

x→x0,x∈Ω\Ω1

[f(x, .)] = lim
x→x0,x∈Ω\Ω1

∫
Rn

+

f(x, t)e−ωtϕ(t)dt

=
∫
Rn

+

v2(t)e−ωtϕ(t)dt

for every ϕ ∈ S(Rn). Since [f(x, .)] is continuous, we have:
∫

Rn
+

e−ωt(v1(t)− v2(t))ϕ(t)dt

for every ϕ ∈ S(Rn). Consequently, v1(t) = v2(t) for a.a. t ∈ Rn
+.

Proposition 6. Let ∂Ω denote the boundary of Ω. If f ∈ CΩ,Rn
+

and for
an x0 ∈ ∂Ω there exists
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lim
x→x0,x∈Ω

f(x, t) = f0(t) for a.a. t ∈ Rn
+,

then we have

lim
x→x0,x∈Ω

[f(x, .)] = [f0(t)e−ωt]eωt = [f(·)].

P r o o f. By Definition 5 we have first to find

lim
x→x0
x∈Ω

〈[f(x, t)]e−ωt, ϕ(t)〉 = lim
x→x0
x∈Ω

∫
Rn

+

f(x, t)e−ωtϕ(t)dt

=
∫
Rn

+

f0(t)e−ωtϕ(t)dt

because f ∈ CΩ,Rn
+
. This proves the assertion of Proposition 6.

The product of a numerical function c(x), x ∈ Ω, and a d-v-f [u(x, .)] ∈
(eωtS ′(Rn

+))Ω, c(x)[u(x, .)], we define in every point x0 ∈ Ω :

x0 → c(x0)[u(x0, .)]. (2)

It is easily seen that if c(x) is continuous on Ω, then c(x) [u(x, .)] is a
continuous d-v-f on Ω.

We cite the next Proposition which gives the relation between the dis-
tributional and classical derivatives of a function.

Proposition C. (cf. [3]) Let f ∈ C(p)((−∞, b)), p ∈ N0 ≡ N ∪ {0}, and
Ha be a function such that Ha(x) = 0, −∞ < x < a < b ≤ ∞; Ha(x) =
1, 0 ≤ a ≤ x < b. Denote by [Haf ] the regular distribution defined by Haf.
Hence, [Haf ] ∈ D′((−∞, b)), supp[Haf ] ⊂ [a, b) or [Haf ] ∈ D′([a, b)), as
well. By [f (p)

a ], p ∈ N, we denote the distribution defined by the function
f

(p)
a equals f (p)(x), x ∈ (a, b) and equals zero for x ∈ (−∞, a) and is not

defined for x = a.
Since the function (Haf)(k) has in general a discontinuity of the first

kind in x = a, k = 0, 1, ..., p, by the well known formula (cf. [51])

Dp[Haf ] = [f (p)
a ] + f (p−1)(a)δ(x− a) + ... + f(a)δ(p−1)(x− a)

= [f (p)
a ] + Rp,a(f) = [Haf

(p)] + Rp,a(f),

where Dp[Haf ] is the derivative of order p in the sense of distributions, and

Ra,p(f) = f (p−1)(a)δ(x− a) + ... + f(a)δ(p−1)(x− a).
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We define now the Laplace transform (in short LT) of a d-v-f.

Definition 8. Let [u(x, .)] ∈ (eωtS ′(Rn
+))Ω. The LT of [u(x, .)] is defined

by
L[u(x, .)](z) ≡ û(x, z) =

= 〈[u(x, t)]e−ωt, η(t)e−(z−ω)t〉, z ∈ ω + Rn
+ + iRn.

For the function η(t) cf. Definition 1. In this way the LT of a d-v-f has
been deduced to the LT of tempered distributions.

Definition 9. The LT of elements belonging to D′ω is defined by

L(D′ω([0, b)n) = L(eωtS(Rn
+))/L(Ab).

Proposition 7. If f(x, t) belongs to CΩ,Rn
+

and for every x ∈ Ω has the
classical LT in t denoted by F (x, z), Re z > ω, then the regular d-v-f [f(x, .)]
has the LT f̂(x, z), Re z > ω, and f̂(x, z) = F (x, z), Re z > ω.

P r o o f. By Proposition 1. a) f(x, t) defines the regular d-v-f [f(x, .)].
Then

f̂(x, z) = 〈[f(x, t)]e−ωt, η(t)e−(z−ω)t〉

=
∫
Rn

+

f(x, t)e−ztdt = F (x, z), x ∈ Ω, Re z > ω.

Proposition 8. Let x0 ⊂ ∂Ω. If f(x, t) belongs to CΩ,Rn
+

and converges
for almost all t ∈ Rn

+ to f0(t) when x → x0, x ∈ Ω, then

lim
x→x0,x∈Ω

L[f(x, t)](z) = L([f0])(z), z ∈ ω + Rn
+ + iRn.

Since η(t)e−(z−ω)t ∈ S(Rn), Re z > ω, the proof of Proposition 8 follows
from Proposition 6 and Proposition 7.

3. Application to mathematical models appeared in mechanics

In this Section 3 our aim is only to illustrate the method elaborated in
Section 2 analysing the generalized solutions to a partial differential equa-
tion.
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The mathematical model of the vibrating rod is

∂4

∂x4
u(x, t) +

∂2

∂t2
u(x, t) = 0, 0 < x < 1, t ≥ 0. (3)

We shall examine first the uniqueness of generalized solutions to (3) with
boundary conditions (4) of clamped ends:

lim
x→0+

u(x, t) = lim
x→1−

u(x, t) = lim
x→0+

∂

∂x
u(x, t)

= lim
x→1−

∂

∂x
u(x, t) = 0, t ∈ R+.

(4)

First we have to find the equation in (e−ωtS ′(R+)(0,1) which corresponds
to equation (3) in such a way that if there exists a solution [u(x, .)] ∈
(eωtS ′(R+))(0,1) of this equation and is given by a function u(x, t) which

has the continuous classical partial derivatives
∂4

∂x4
u(x, t) and

∂2

∂t2
u(x, t),

then u(x, t) has to be a solution to (3). Let us do it.
The function u(x, t), a solution to (3), has its support in (0, 1)× [0,∞).

To use the Laplace transform we have to extend it on (0, 1) × (−∞,∞) in
such a way that u(x, t) = 0 on (0, 1)× (−∞, 0). Then by Proposition C

[ ∂2

∂t2
u(x, t)

]
= D2

t [u(x, t)]− u(x, 0)δ(1)(t)− ∂

∂t
u(x, t)

∣∣∣
t=0

δ(t).

Now to equation (3) it corresponds in the space (eωtS ′(Rn
+))(0,1) the

equation (cf. Proposition 4 c) and Proposition C):

∂4

∂x4
[u(x, .)] + D2

t [u(x, .)] = B1(x)δ(t) + B0(x)δ(1)(t), (5)

where
B0(x) = u(x, 0) and B1(x) =

∂

∂t
u(x, t)

∣∣∣
t=0

. (6)

The functions B0 and B1 are continuous in x ∈ (0, 1) which can be continu-
ously extended to [0, 1]. D2

t is the second partial derivative in the sense of
distributions.

Because of the equality in the space (eωtS ′(R+))(0,1) equation (5) can be
written in the form:

〈 ∂4

∂x4
[u(x, t)] + D2

t [u(x, t)]−B1(x)δ(t)−B0(x)δ(1)(t), ϕ(t)
〉

= 0
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for every ϕ ∈ S(R). Since η(t)e−zt ∈ S(R), z ∈ ω + R+ + iR, by Definition
8 and the Remark after Definition 7 the last equation gives

∂4

∂x4
〈u(x, t)e−ωt, e−(z−ω)t〉+ 〈D2

t u(x, t), e−zt〉 = B0(x)z + B1(x),

z ∈ ω + R+ + iR, and finally

∂4

∂x4
û(x, z) + z2û(x, z) = B1(x) + B0(x)z. (7)

Let us remark that (7) is a classical differential equation in x with a param-
eter z. Hence we can apply the well known methods to solve it.

3.1 Uniqueness of a solution to (3)

Suppose that we have two solutions u1(x, t) and u2(x, t) to (3), (4) with
the same initial condition (6). Then W (x, t) = u1(x, t) − u2(x, t) satisfies
the initial condition with B0(x) = 0 and B1(x) = 0, the boundary condition
(4) and the homogenuous part of equation (3). Then the corresponding
equation (5) is also homogeneous and the LT of it is

∂4

∂x4
Ŵ (x, z) + z2Ŵ (x, z) = 0, 0 < x < 1, Re z > ω. (8)

The general solution to (8) is

Ŵ (x, z) =
4∑

j=1

Cj(z)erjx, 0 < x < 1, Re z > ω, (9)

where Cj(z), j = 1, ..., 4, are functions in z, Re z > ω and rj , j = 1, ..., 4
are solutions to equation r4 + z2 = 0 :

r1 =
√

z

2
(1+i), r2 =

√
z

2
(−1+i), r3 =

√
z

2
(−1−i), r4 =

√
z

2
(1−i). (10)

In order to apply Proposition 8 we give an other form to Ŵ (x, z) given
in (9):

Ŵ (x, z) = D1(z)e−r1(1+a−x) + D2(z)er2(x+a)

+D3(z)er3(x+a) + D4(z)e−r4(1+a−x) ,

where a > 0 and Di(z), i = 1, ..., 4 are holomorphic functions for Re z > ω >
0. Now we can apply Proposition 8 when we use boundary conditions (4).
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In this way the functions Dj , j = 1, ..., 4 have to satisfy the homogeneous
system:

D1(z)e−r1(1+a) + D2(z)er2a + D3(z)er3a + D4(z)e−r4(1+a) = 0

D1(z)e−r1a + D2(z)er2(1+a) + D3(z)er3(1+a) + D4(z)e−r4a = 0

D1(z)r1e
−r1(1+a) + D2(z)r2e

r2a + D3(z)r3e
r3a + D4(z)r4e

−r4(1+a) = 0

D1(z)r1e
−r1a + D2(z)r2e

r2(1+a) + D3(z)r3e
r3(1+a) + D4(z)r4e

−r4a = 0.
(11)

We will prove that there is no number ω > 0 such that Di(z), i = 1, ..., 4,
are solutions to the system (11) and are not identically zero for Re z > ω.

The determinant of the system (11) has the form

∆(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

er1 er2 e−r1 e−r2

r1 r2 −r1 −r2

r1e
r1 r2e

r2 −r1e
−r1 −r2e

−r2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e−r1(1+2a)+r2(1+2a) (12)

= ∆′(z)e−r1(1+2a)+r2(1+2a).

In this calculations we used the relations between rj : r3 = −r1 and r4 =
−r2.

Let k0 ∈ N be such that 8k2
0π

2 > ω for a given ω > 0. Then if z = 8k2π2,

then
√

z
2 = 2kπ. It is easily seen that ∆′(8k2π2) 6= 0, k > k0, k ∈ N. Since

∆′(ξ) is continuous function for ξ > 0, then ∆′(ξ) 6= 0 in a sequence of open
neighbourhoods Ωk of the points ξ = 8k2π2. Consequently, every function
Di(z), i = 1, ..., 4, equals zero in each open set in which it is holomorphic,
if this open set contains an Ωk. Hence, there is no ω > 0 such that ∆(z) 6= 0
for Re z > ω. This prove that the system (11) has the unique solution
Dj(z) ≡ 0, j = 1, ..., 4, Re z > ω.

Theorem 1. A generalized solution [u(x, .)] to (3), (4), (6), such that

the d-v-f
∂i

∂xi
[u(x, .)] ∈ (eωtS ′(R+))(0,1), i = 0, 1, ..., 4, and u

(i)
x (x, t) ∈

C(0,1)×R+
, i = 0, 1, if it exists, it is unique.
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Remark. It is well known that (3), (4) has a family of solutions of
the form uk(x, t) = Vk(x)Tk(t), k ∈ N, (cf. [1]). Then B0(x) = V (x)T (0)
and B1(x) = V (x)T (1)(0) for a fixed k ∈ N. With such initial condition
the corresponding solution is unique. Hence the boundary conditions of the
form (4) is not sufficient for unicity.

3.2. Existence of the solution to (3), (13), (6)

We have seen that the existence of a solution to (3) depends not only on
the boundary conditions but it also depends on the initial condition. We are
interested in finding the form of the initial condition (6) such that equation
(3) has a solution in case of supported ends of the vibrating rod. Then the
boundary condition is

lim
x→0+

u(x, t) = lim
x→1−

u(x, t) = lim
x→0+

∂2

∂x2
u(x, t) =

= lim
x→1−

∂2

∂x2
u(x, t) = 0, t ∈ R+.

(13)

For this purpose we have first to find a particular solution ûp(x, z) to
differential equation (7) which satisfies condition (13) (cf. Proposition 8).
This is very easy if B0(x) and B1(x) are of some special form. Then by
Proposition A we have to show that ûp(x, z) is the LT of a solution to (3).

To reduce the routine work, let us suppose that B0 = 0 in (6). The
solution of the homogeneous part of equation (7) is

û0(x, z) =
4∑

j=1

Cj(z)erjx, 0 < x <, Re z > ω, (14)

where Cj(z), j = 1, ..., 4, have the same properties as in (9) and rj , j =
1, ..., 4 have been given in (10).

In order to find a particular solution û1(x, z) to (7) with B0 = 0, we use
the method named ”Variation of Constants”.

Suppose that Cj(x, z), j = 1, ..., 4 are functions with the continuous
first partial derivative in x for every z, Re z > ω. Then we have to solve the
system

4∑
j=1

∂

∂x
Cj(x, z)erjx = 0

4∑
j=1

∂

∂x
Cj(x, z)rje

rjx = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4∑

j=1

∂

∂x
Cj(x, z)r3

j erjx = B1(x).

(15)
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The determinant of the system (15) is

∆(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

er1x ... er4x

r1e
r1x ... r4e

r4x

. . . . . . . . . . . . . . . . .
r3
1e

r1x ... r3
4e

r4x

∣∣∣∣∣∣∣∣∣∣∣∣∣

= −2(
√

2z)6 6= 0,
Re z > ω > 0.

(16)

Hence we can find

∂

∂x
Cj(x, z) =

1
2(
√

2z)3
AjB1(x)e−rjx, j = 1, ..., 4,

where A1 = (−1)(1 + i), A2 = −1 + i, A3 = 1 + i and A4 = 1 − i. The
looked - for functions Cj(x, z), j = 1, ..., 4 are

Cj(x, z) =
1

2(
√

2z)3
Aj

( x∫

0

B1(ξ)e−rjξdξ + Ej(z)
)
, (17)

where Ej(z) are undefined functions.
A general solution to (7) with B0(x) = 0 is:

û(x, z) =
1

2(
√

2z)3

4∑

j=1

Aj

( x∫

0

B1(ξ)e−rjξdξ + Ej(z)
)
erjx. (18)

We have two limitations on û(x, z). One of them comes from the boundary
condition (13) and the other requires that there exists [u(x, .)] ∈
(eωtS ′(R+))(0,1) such that L([u(x, .)]) = û(x, z). This limitations give the
conditions for B1(x) to have a solution to (5), (13). For practical use we
shall prove

Theorem 2. A sufficient condition that the differential problem (3),
(13) has a solution [u(x, .)] such that the d-v-f

∂i

∂xi
[u(x, .)] ∈ (eωtS ′(R+))(0,1), i = 0, 1, ..., 4,

and u(i)(x, t) ∈ C(0,1)×R+
, i = 1, 2, is that we can find functions Ei(z) such

that:
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1.
x∫
0

B1(ξ)e−riξdξ + Ei(z) = F̂i(x, z)e−rix, i = 1, ..., 4, for 0 ≤ x ≤ 1,

where
E1(z) = E3(z), E2(z) = E4(z), Re z > ω.

2. F̂1(x, z)− F̂3(x, z) = F̂2(x, z)− F̂4(x, z) = 0 for x = 0, and x = 1.
3. F̂i(x, z)/(

√
z)3 is holomorphic for Re z > ω, for an ω > 0 and tends to

zero when z tends to infinity belonging to the half plane {Re z ≥ ω+δ, δ > 0}
uniformly in x ∈ [0, 1]. Also

∞∫

−∞
|F̂ (x, z)/(

√
z)3|d(Imz) < ∞, 0 < x < 1, Re z > ω.

P r o o f. Let us suppose that conditions 1., 2. and 3. are satisfied.
Then û(x, z), given by (8) can have the form

û(x, z) =
1

2(
√

2z)3

4∑

j=1

AjF̂ (x, z). (19)

By Theorem 3 in [2, I, p. 263] there exist functions Fi(x, t) such that
L−1(F̂i(x, z) /(2

√
2z)2)(t) = Fi(x, t), i = 1, ..., 4, and the function u(x, t) =

L−1û(x, z)(t),

u(x, t) =
4∑

j=1

AjFj(x, t), 0 ≤ x ≤ 1, t > 0. (20)

Now we can use Proposition 8 to satisfy boundary condition (13). We
start with (19) and

∂2

∂x2
û(x, z) =

1
2(
√

2z)3

4∑

j=1

Aj(r−2
j F̂j(x, z) + r−1

1 B1(x) + B
(1)
1 (x)).

In order to satisfy boundary condition (13) we obtain the following system:

4∑
j=1

AjF̂j(0, z) = 0

4∑
j=1

AjF̂j(1, z) = 0

4∑
j=1

Aj(r−2
j F̂j(0, z) + B

(1)
1 (0)) = 0

4∑
j=1

Aj(r−2
j F̂j(1, z) + B

(1)
1 (1)) = 0.

(21)
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Since
4∑

j=1

Aj = 0 and
4∑

j=1

Ajr
−2
j = (−1)j+1Aj ,

system (21) becomes:

4∑
j=1

AjF̂j(0, z) = 0

4∑
j=1

AjF̂j(1, z) = 0

4∑
j=1

(−1)j+1AjF̂j(0, z) = 0

4∑
j=1

(−1)j+1AjF̂j(1, z) = 0.

(22)

From (22) it follows that E1(z) = E3(z), E2(z) = E4(z) and

F̂1(x, z)− F̂3(x, z) = F̂2(x, z)− F̂4(x, z) = 0

for x = 0 and x = 1 which is our supposition 2. This completes the proof of
Theorem 2.

As an example we consider the case B1(x) = sin kπx, for a k ∈ N. Then
equation (7) becomes

∂4

∂x4
û(x, z) + z2û(x, z) = sin kπx, 0 < x < 1, Re z > ω (23)

In order to find a solution to (23), we suppose that û(x, z) = A(z) sin kπx.
In that case (23) gives

(kπ)4A(z) sin kπx + z2A(z) sin kπx = sin kπx.

Hence,

A(z) = 1/((kπ)4 + z2), Re z > 0, and û(x, z) = sin kπx/((kπ)4 + z2).

It is easily seen that û(x, z) satisfies the boundary condition (13). A solu-
tion to (3), (13) with initial condition (6), expressed by B0(x) = 0, B1(x) =
sin kπx is u(x, t) = (kπ)−2 sin kπx sin(kπ)2t. That is a well known result. It
is also easy to verify that B1(x) = sin kπx satisfies the cited conditions in
Theorem 2.
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