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1. Introduction

In this article fine resolution of the sheaf of germs of complex projective
vector fields over the projectively flat manifold of lower n = 2 dimensional
case is given. General case is handled in article [12]. In order to illustrate
how the resolution and operators look like in lower dimesional case in this ar-
ticle more details are provided. Definition of main operators and motivation
are taken from [12] and are included for completness of purposes.
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Deformations of general Γ- structures and almost Γ- structures were an-
alyzed by Spencer [14], Kodaira [10], Kumpera [11], Griffiths [5] and their
followers. Such structures are given by a certain ”Maurer-Cartain” form
and its perturbation satisfying an integrability condition with a derivation D
which acts on a graded Lie algebra consisting of the sheaf of germs of smooth
Lie algebra-valued q-forms Σ∗ =

⊕
q≥0 Σq. The sheaf of germs of infinitesi-

mal transformations Θ of Γ enjoys the exact sequence 0 → Θ → Σ0 D→ Σ1.
Elements of H0(X, Σ1) satisfying an integrability condition determine de-
formations.

Construction of a long exact sequence extending the given one, more
precisely, the constructions of fine resolutions of the Killing vector fields on
various types of manifolds is the subject of cited papers as well as of [2],
[3], [4], [5], [6]. The essential problems were related to solving overdetem-
ined systems of linear partial differencial equations established by Spencer,
Kodaira, Griffits, Kumpera, Calabi, Goldschmidt, Gasqui and many other
successors of this theory (cf. [1]).

Simplified and direct construction of the fine resolution of the sheaf of
germs of Killing vector fields in the real (analytic) case was treated in [8].
This and paper [12] were inspired by [8] (see also [9]). The goal was to
make a simple construction of the fine resolution of Killing vector fields in
the case of locally complex projective manifolds (existence of such resolution
can be derived from the general theory). This is done using the graded Lie
algebras on the basis of Dolbeault type theorems for cohomology in sheaves
of complex projective vector fields (cf. [6], p. 23-25, 44-46 for the notation).

Since the sheaf of holomprphic vector fields is not fine additional level of
complexity in the construction of operators had to be introduced comparing
to that given in [8].

The resulting fine resolution of the sheaf of germs of holomorphic pro-
jective vector fields for the 2 dimensional complex manifold Khproj(M4) is
of the form

0 → Khproj(M4) i→ Ω̃(0)
L

D0→ Ω̃(1)
L

D1→ Ω̃(2)
L

D2→ Ω̃(3)
L

D3→ Ω̃(4)
L → 0, (1)

where Ω̃(k)
L denotes the sheaf of germs associated to elements of Ω(k)

L and
where the morphisms Dk, defined in the sequel, use operations derived from
ones introduced in [8].

One consequence of the result given in this article is that the deforma-
tions of the corresponding (one parameter) group of transformations (in the
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sense of [5]) is made by elements of H0(M4, Ω̃(0,1)
L ⊕Ω̃(1,0)

L ). Notation is given
below.

2. Fine Resolution

A locally complex projective manifold M4 is by definition a complex
manifold which carries an atlas P with coordinate charts U(z1, z2), U ′(z′1, z′2),
such that, in overlapping neighborhoods (U ∩ U ′ 6= ∅), the transition func-
tions are complex projective transformations:

z′i =
ai

1z
1 + ai

2z
2 + ai

a0
1z

1 + a0
2z

2 + a0
, det

∣∣∣∣∣∣∣

a1
1 a1

2 a1

a2
1 a2

2 a2

a0
1 a0

2 a0

∣∣∣∣∣∣∣
6= 0.

All work contained herein is expressed with respect to these local coordinate
charts.1

These local coordinate charts are not arbitrary – they are adapted to the
complex projective pseudo-group structure and cary therefore the geometry
of the structure. Using them one avoids any type of connection due to the
use of the projective pseudogroup structure , calculations are more direct
and straightforward and result is given in formulas that are ready to be
applied.

The main algebraic tool we need (see [8], [4]) is the bundle of graded
Lie-algebras over M4

L = T ⊕EndT ⊕ T ∗ = L−1 ⊕ L⊕ L1,

where T = (TM4)(1,0) is the bundle of complex tangent vectors of M4,
EndT is the bundle of endomorphisms of T, and T ∗ is the bundle dual of
T . The Lie algebra law on L is given by

[(v, h, ω), (v′, h′, ω′)] =
(
h(v′)− h′(v)− ( trh′)v + ( trh)v′,

h ◦ h′ − h′ ◦ h + v ⊗ ω′ − v′ ⊗ ω,
th′(ω)− th(ω′)− ( tr h)ω′ + ( tr h′)ω

)
.

This article does not contain Lie algebra computation. Lie algebra L is used
in order to explain the geometric meaning of the different sheaves which
enter into the resolution.

1We will assume that all the coordinate functions or coordinates of vector fields and
forms which appear in this paper are smooth functions.
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We consider projective differential forms on M4 i.e., smooth differential
forms on M4 with values in L satisfying some restrictive conditions as fol-
lows. When decomposed in accordance with the grading of L and with the
classical type decomposition in the exterior algebra C∞(Λ(TM4)∗), a pro-
jective differential k-form ω(k) with smooth coefficients and values in L is
represented as a sum

ω(k) = ω
(0,k)
−1 + ω

(1,k−1)
0 + ω

(2,k−2)
1 , 0 ≤ k ≤ 4. (2)

(As usual, if some super-index on the right hand side is less than 0 or
grater than 2 (complex dimension of manifold), the corresponding element
in the sum is equal to zero). Here, with respect to complex projective local
coordinates U(z1, z2),

ω(0) = ω
(0,0)
−1 ω(1) = ω

(0,1)
−1 + ω

(1,0)
0 ω(2) = ω

(0,2)
−1 + ω

(1,1)
0 + ω

(2,0)
1

ω(3) = ω
(1,2)
0 + ω

(2,1)
1 ω(4) = ω

(2,2)
1

Here, with respect to complex projective local coordinates U(z1, z2),

ω
(0,k)
−1 |U =

∑

i,J,|J |=k

vi
Jdz̄J ⊗ ∂

∂zi
, 0 ≤ k ≤ 2.

The above is a differential k-form of type (0, k) with values in T, e.g.,

ω
(0,0)
−1 |U = v1

(0,0)

∂

∂z1
+ v2

(0,0)

∂

∂z2
,

ω
(0,1)
−1 |U = v1

(1,0)dz̄1⊗ ∂

∂z1
+v1

(0,1)dz̄2⊗ ∂

∂z1
+v2

(1,0)dz̄1⊗ ∂

∂z2
+v2

(0,1)dz̄2⊗ ∂

∂z2
,

ω
(0,2)
−1 |U = v1

(1,1)(dz̄1 ∧ dz̄2)⊗ ∂

∂z1
+ v2

(1,1)(dz̄1 ∧ dz̄2)⊗ ∂

∂z2
,

In formula (2)

ω
(1,k−1)
0 =

∑

i, j, L,M,
|L| = 1, |M | = k − 1

hi
jLMdzL ⊗ dz̄M ⊗ dzj ⊗ ∂

∂zi

e.g.

ω
(1,0)
0 |U =

(h1
1(1,0)(0,0)dz1+h1

1(0,1)(0,0)dz2)⊗ dz1 ⊗ ∂
∂z1 +(h1

2(1,0)(0,0)dz1+h1
2(0,1)(0,0)dz2)⊗ dz2 ⊗ ∂

∂z1

+(h2
1(1,0)(0,0)dz1+h2

1(0,1)(0,0)dz2)⊗ dz1 ⊗ ∂
∂z2 +(h2

2(1,0)(0,0)dz1+h2
2(0,1)(0,0)dz2)⊗ dz2 ⊗ ∂

∂z2
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ω
(1,1)
0 |U =

(h1
1(1,0)(1,0)dz1⊗dz̄1+h1

1(0,1)(1,0)dz2⊗dz̄1 + h1
1(1,0)(0,1)dz1⊗dz̄2 + h1

1(0,1)(0,1)dz2⊗dz̄2)⊗dz1⊗ ∂
∂z1

+(h1
2(1,0)(1,0)dz1⊗dz̄1+h1

2(0,1)(1,0)dz2⊗dz̄1 + h1
2(1,0)(0,1)dz1⊗dz̄2 + h1

2(0,1)(0,1)dz2⊗dz̄2)⊗dz2⊗ ∂
∂z1

+(h2
1(1,0)(1,0)dz1⊗dz̄1+h2

1(0,1)(1,0)dz2⊗dz̄1 + h2
1(1,0)(0,1)dz1⊗dz̄2 + h2

1(0,1)(0,1)dz2⊗dz̄2)⊗dz1⊗ ∂
∂z2

+(h2
2(1,0)(1,0)dz1⊗dz̄1+h2

2(0,1)(1,0)dz2⊗dz̄1 + h2
2(1,0)(0,1)dz1⊗dz̄2 + h2

2(0,1)(0,1)dz2⊗dz̄2)⊗dz2⊗ ∂
∂z2

ω
(1,2)
0 |U = (h1

1(1,0)(1,1)dz1 + h1
1(0,1)(1,1)dz2)⊗ (dz̄1 ∧ dz̄2)⊗ dz1 ⊗ ∂

∂z1

+(h1
2(1,0)(1,1)dz1 ⊗+h1

2(0,1)(1,1)dz2)⊗ (dz̄1 ∧ dz̄2)⊗ dz2 ⊗ ∂

∂z1

+(h2
1(1,0)(1,1)dz1 + h2

1(0,1)(1,1)dz2)⊗ (dz̄1 ∧ dz̄2)⊗ dz1 ⊗ ∂

∂z2

+(h2
2(1,0)(1,1)dz1 + h2

2(0,1)(1,1)dz2)⊗ (dz̄1 ∧ dz̄2)⊗ dz2 ⊗ ∂

∂z2

is a 1-form of type (1, 1), with values trace-less endomorphisms of T satisfying2

∑

j,L

hi
jLMdzL ∧ dzj = 0,

∑

i,L

∂

∂zi –– hi
jLMdzL = 0, (3)

i.e.,

hi
2(1,0)Mdz1 ∧ dz2 + hi

1(0,1)Mdz2 ∧ dz1 = 0, (4)
i = 1, 2, 0 ≤ |M | ≤ 2

∑

i

∂

∂zi –– (hi
j(1,0)Mdz1 + hi

j(0,1)Mdz2) = h1
j(1,0)M + h2

j(0,1)M = 0, (5)

j = 1, 2, 0 ≤ |M | ≤ 2.

So from 3 it follows that

hi
2(1,0)M + hi

1(0,1)M = 0, h1
j(1,0)M + h2

j(0,1)M = 0, (6)

i, j ∈ {1, 2}, 0 ≤ |M | ≤ 2,

2 ∂

∂xi –– denotes inner product with the vector field
∂

∂xi
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and consequently that

ω
(1,0)
0 |U =

(h1
1(1,0)(0,0)dz1 + h1

1(0,1)(0,0)dz2)⊗ dz1 ⊗ ∂
∂z1 − (h1

1(1,0)(0,0)dz1 + h1
1(0,1)(0,0)dz2)⊗ dz2 ⊗ ∂

∂z1

−(h1
1(1,0)(0,0)dz1 + h1

1(0,1)(0,0)dz2)⊗ dz1 ⊗ ∂
∂z2 + (h1

1(1,0)(0,0)dz1 + h1
1(0,1)(0,0)dz2)⊗ dz2 ⊗ ∂

∂z2

= (h1
1(1,0)(0,0)dz1 + h1

1(0,1)(0,0)dz2)⊗ (dz1 ⊗ ∂
∂z1 − dz2 ⊗ ∂

∂z1 − dz1 ⊗ ∂
∂z2 + dz2 ⊗ ∂

∂z2 )

= (h1
1(1,0)(0,0)dz1 + h1

1(0,1)(0,0)dz2)⊗ (dz1 − dz2)⊗ ∂
∂z1 − (dz1 − dz2)⊗ ∂

∂z2

= (h1
1(1,0)(0,0)dz1 + h1

1(0,1)(0,0)dz2)⊗ (dz1 − dz2)⊗ ( ∂
∂z1 − ∂

∂z2 )

ω
(1,1)
0 |U = (h1

1(1,0)(1,0)dz1 ⊗ dz̄1+h1
1(0,1)(1,0)dz2 ⊗ dz̄1 + h1

1(1,0)(0,1)dz1 ⊗ dz̄2

+h1
1(0,1)(0,1)dz2 ⊗ dz̄2)⊗ dz1 ⊗ ∂

∂z1

+(h1
2(1,0)(1,0)dz1 ⊗ dz̄1+h1

2(0,1)(1,0)dz2 ⊗ dz̄1 + h1
2(1,0)(0,1)dz1 ⊗ dz̄2

+h1
2(0,1)(0,1)dz2 ⊗ dz̄2)⊗ dz2 ⊗ ∂

∂z1

+(h2
1(1,0)(1,0)dz1 ⊗ dz̄1+h2

1(0,1)(1,0)dz2 ⊗ dz̄1 + h2
1(1,0)(0,1)dz1 ⊗ dz̄2

+h2
1(0,1)(0,1)dz2 ⊗ dz̄2)⊗ dz1 ⊗ ∂

∂z2

+(h2
2(1,0)(1,0)dz1 ⊗ dz̄1+h2

2(0,1)(1,0)dz2 ⊗ dz̄1 + h2
2(1,0)(0,1)dz1 ⊗ dz̄2

+h2
2(0,1)(0,1)dz2 ⊗ dz̄2)⊗ dz2 ⊗ ∂

∂z2

= (h1
1(1,0)(1,0)dz1 ⊗ dz̄1 + h1

1(0,1)(1,0)dz2 ⊗ dz̄1 + h1
1(1,0)(0,1)dz1 ⊗ dz̄2

+h1
1(0,1)(0,1)dz2 ⊗ dz̄2)⊗ (dz1 − dz2)⊗ ( ∂

∂z1 − ∂
∂z2 )

ω
(1,2)
0 |U =

(h1
1(1,0)(1,1)dz1 + h1

1(0,1)(1,1)dz2)⊗ (dz̄1 ∧ dz̄2)⊗ dz1 ⊗ ∂
∂z1

−(h1
1(1,0)(1,1)dz1 + h1

1(0,1)(1,1)dz2)⊗ (dz̄1 ∧ dz̄2)⊗ dz2 ⊗ ∂
∂z1

+(h2
1(1,0)(1,1)dz1 + h2

1(0,1)(1,1)dz2)⊗ (dz̄1 ∧ dz̄2)⊗ dz1 ⊗ ∂
∂z2

−(h2
1(1,0)(1,1)dz1 + h2

1(0,1)(1,1)dz2)⊗ (dz̄1 ∧ dz̄2)⊗ dz2 ⊗ ∂
∂z2

= (h1
1(1,0)(1,1)dz1 + h1

1(0,1)(1,1)dz2)⊗ (dz̄1 ∧ dz̄2)⊗ dz1 ⊗ ∂
∂z1

−(h1
1(1,0)(1,1)dz1 + h1

1(0,1)(1,1)dz2)⊗ (dz̄1 ∧ dz̄2)⊗ dz2 ⊗ ∂
∂z1

−(h1
1(1,0)(1,1)dz1 + h1

1(0,1)(1,1)dz2)⊗ (dz̄1 ∧ dz̄2)⊗ dz1 ⊗ ∂
∂z2

+(h1
1(1,0)(1,1)dz1 + h1

1(0,1)(1,1)dz2)⊗ (dz̄1 ∧ dz̄2)⊗ dz2 ⊗ ∂
∂z2

= (h1
1(1,0)(1,1)dz1 + h1

1(0,1)(1,1)dz2)

⊗(dz̄1 ∧ dz̄2)⊗ (dz1 ⊗ ∂
∂z1 − dz2 ⊗ ∂

∂z1 − dz1 ⊗ ∂
∂z2 + dz2 ⊗ ∂

∂z2 )

= (h1
1(1,0)(1,1)dz1 + h1

1(0,1)(1,1)dz2)⊗ (dz̄1 ∧ dz̄2)⊗ (dz1 − dz2)⊗ ( ∂
∂z1 − ∂

∂z2 )
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For 2 ≤ k ≤ 4,

ω
(2,k−2)
1 |U =

∑

j,M,|M |=k−2

ωjMdzj ⊗ dz1 ∧ dz2 ⊗ dz̄M

is a differential k-form of type (2, k − 2) with values in ((TM4)∗)(1,0).
The space of projective differential forms on M4 is denoted ΩL. When
one puts in evidence the grading of L, or the degrees of its differential
forms, or their (complex, anti-complex) types, ΩL admits several splittings:

ΩL = ΩL−1 ⊕ ΩL0 ⊕ ΩL1 =
4∑

k=0

Ω(k)
L =

4∑

k=0

k∑

i=0

Ω(i,k−i)
L .

A complex projective vector field v (infinitesimal complex projective trans-
formation) on a locally projective complex manifold M4 is a field whose
local expression in projective coordinates in U(z1, z2) is of the form

v|U =
2∑

i=1

(αi +
2∑

r=1

αi
rz

r + zi
2∑

r=1

αrz
r)

∂

∂zi
,

where (αi, αi
j , αi) are 8 arbitrary constants. We call them projective Killing

vector fields and denote Khproj(M4) the sheaf of germs of holomorphic pro-
jective Killing vector fields.
The operator π : Ω̃(0,k)

L−1
→ Ω̃(1,k)

L0
is locally defined as follows: given ω

(0,k)
−1 ,

express it in local coordinates U(z1, z2) with

ω
(0,k)
−1 |U =

∑

i,J,|J |=k

vi
Jdz̄J ⊗ ∂

∂zi
= v.

Consider then the ”trace-less ∂-hessian” of the associated vectorial form
with components

vi
J,jk =

∂2vi
J

∂zj∂zk
− δi

j

3

∑
s

∂2vs
J

∂zs∂zk
− δi

k

3

∑
s

∂2vs
J

∂zs∂zj
, (7)

and define a local (1, k)-form with values in End0T using

πv =
∑

i,j

(πv)i
j ⊗ dzj ⊗ ∂

∂zi
, (πv)i

j =
∑

k,J

vi
J,jkdzk ⊗ dz̄J . (8)

Proposition 1. Local (1, k)− forms defined through the formulae (7)
and (8) with respect to all projective coordinate charts match together into
an element of Ω̃(1,k)

L0
, denoted by πω−1(0, k). In other words, (8) is the local

expression of πω.
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Operator Υ : Ω̃(0,m)
L0

→ Ω̃(1,m)
L0

is locally defined as follows. Express first an

element ω
(0,m)
0 in local projective coordinates as

ω
(0,m)
0 |U =

∑

i,j

hi
j ⊗ dzj ⊗ ∂

∂zi
= h

and define a local (1,m)-form with values in End0T through

Υh =
∑

i,j

(Υh)i
j ⊗ dzj ⊗ ∂

∂zi
, (Υh)i

j = ∂hi
j −

1
2
dzi ∧

∑
s

∂

∂zs –– ∂hs
j . (9)

Proposition 2. The matrix-form
(
(Υh)i

j

)
, locally defined by (9), is in-

dependent of the projective coordinate chart, and defines an element of Ω̃(1,m)
L0

denoted as Υω
(0,m)
0 .

Operator ∂ ◦ div : Ω̃(1,m)
L0

→ Ω̃(2,m)
L1

is locally defined as follows. Again,
express first an element ω(1,m) in local projective coordinates as

ω
(1,m)
0 |U =

∑

i,j

hi
j ⊗ dzj ⊗ ∂

∂zi
= h,

where hi
j are differential forms of type (n− 1,m), and define a local (n,m)-

form with values in T ∗ using

∂ ◦ divh =
∑

j

(∂ ◦ divh)j ⊗ dzj , (∂ ◦ divh)j = ∂

(∑
s

∂

∂zs –– ∂hs
j

)
.

Proposition 3. The previous differential form is the local expression of
an element of Ω̃(2,m)

L1
denoted (∂ ◦ div )(ω(1,m)

0 ).

We define now the morphisms Dk which appear in sequence (1) as fol-
lows:

Dk|Ω̃(0,k)
L−1

def=

{
∂̄ + π, 0 ≤ k < 2
π, k = 2;

Dk|Ω̃(p,k−p)
L0

def=





∂̄ + ∂ div , p = 1, 0 ≤ k − p < 2;
∂̄, p = 2, 0 ≤ k − p ≤ 2
∂ div , p = 1, k − p = 2;
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From previous definitions it follows that

Dk
def=





(∂̄ + π)⊕ ∂̄, k = 0;
(∂̄ + π)⊕ (∂̄ + ∂ div ), k = 1;
π ⊕ (∂̄ + ∂ div )⊕ ∂̄, k = 2;
∂ div ⊕ ∂̄, k = 3;
0, k = 4;

(10)

Theorem 1. Let (M4,P), be a locally projective two dimensional com-
plex manifold, and Khproj(M4) be the sheaf of germs of holomorphic projec-
tive vector fields. The fine resolution of the sheaf Khproj(M4,P) is of the
form (1), where operators Dk are defined by equation (10). The following
sequence of sheaves and homomorphisms is the fine resolution of the sheaf
Khproj(M4,P) : For n = 2,

0 → Khproj(M
4)

i→ x- (M4)
∂̄+π−−−→ Ω̃

(0,1)
L−1

⊕ Ω̃
(1,0)
L0

(∂̄+π)⊕(∂̄+∂ div )

−−−−−−−−−−−−−→

Ω̃
(0,2)
L−1

⊕ Ω̃
(1,1)
L0

⊕ Ω̃
(2,0)
L1

π⊕(∂̄+∂ div )⊕∂̄

−−−−−−−−−−−−−−→ Ω̃
(1,2)
L0

⊕ Ω̃
(2,1)
L1

∂ div⊕∂̄−−−−−−−−−→ Ω̃
(2,2)
L1

0−→ 0.

In order to more obviously represent ”rules” of how operators in given
resolutions look like we are giving another ”representation” of resolutions
on two dimensional manifold:

0

↓
Khproj(M

4)

↓
x- (M4)

∂̄ ↙ ↘ π

Ω̃
(0,1)
L−1

⊕ Ω̃
(1,0)
L0

∂̄ ↙ ↘ π ∂̄ ↙ ↘ ∂ div

Ω̃
(0,2)
L−1

⊕ Ω̃
(1,1)
L0

⊕ Ω̃
(2,0)
L1

π ↘ ∂̄ ↙ ↘ ∂ div ↙ ∂̄

Ω̃
(1,2)
L0

⊕ Ω̃
(2,1)
L1

∂ div ↘ ↙ ∂̄

Ω̃
(2,2)
L1

↓
0
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It is not difficult to prove the following lemmas.

Lemma 1. Projective differential (2, i)-forms, 0 ≤ i ≤ 2 satisfying con-
ditions (3) on M4 are identically equal to zero.

The next three lemmas assertions are needed in the proof of previous
theorem:

Lemma 2. With appropriate domains of operators the following equal-
ities hold:

(i) ∂̄π = −π∂̄; (ii) ∂̄Υ = −Υ∂̄; (iii) ∂̄(∂ div ) = −(∂ div )∂̄;

where Ker denotes the kernel.

Lemma 3. With appropriate domains of operators the following equal-
ities hold:

(i) Im π = Ker (∂ div ); (ii) Im (∂ div ) = Ω(2,k)
L ;

where Im denotes the image and index i, j and k depend on the domain of
∂ div .

For the proof of this lemma we refer to [13]. Actually, we consider here
smooth vector fields and use the Dolbeault lemma 3 while in [13] is used the
Poincare lemma.

Lemma 4. With appropriate domains of operators the following equal-
ities hold:

Ker (∂̄π) = {S + T |S ∈ Ker ∂̄, T ∈ Kerπ}.

Lemma 5. Dk+1 ◦Dk = 0, 0 ≤ k < 4.

3Generalization of the Dolbeault lemma is (see [7]): If on a neighborhood U ⊆ Cn of
z0 C∞ (p, q)–form ϕ, q ≥ 1 satisfies ∂̄ϕ = 0, then there exists C∞ (p, q−1)- form Υ on W
with z0 ∈ W ⊆ U (W open) such that ϕ = ∂̄Υ on W. ¿From this Lemma it follows that
the same statement holds not just for the operator ∂̄, but also for ∂ : If on a neighborhood
U ⊆ Cn of z0 C∞ (p, q)–form ϕ, p ≥ 1 satisfies ∂ϕ = 0, then there exists C∞ (p − 1, q)
-form Υ on W with z0 ∈ W ⊆ U (W open) such that ϕ = ∂Υ on W. In the sequel we will
use the second version of the Dolbeault lemma.
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Lemma 5 can be proved using lemmas 2 and 3:

Dk+1 ◦Dk |Ω̃(p,k−p)
L0

=





∂̄∂̄ + π∂̄ + ∂̄π︸ ︷︷ ︸
0

+ ∂ divπ︸ ︷︷ ︸
0

= 0, p = 0, k = 0;

π∂̄ + ∂̄π︸ ︷︷ ︸
0

+ ∂ div π︸ ︷︷ ︸
0

= 0, p = 0, k = 1;

∂̄∂̄ + ∂ div ∂̄ + ∂̄∂ div︸ ︷︷ ︸
0

= 0, p = 1, k = 1;

∂ divπ︸ ︷︷ ︸
0

= 0, p = 0, k = 2;

∂ div ∂̄ + ∂̄∂ div︸ ︷︷ ︸
0

= 0, p = 1, k = 2;

∂̄∂̄ = 0, p = 2, k = 2;

Since from the definition of operator D0 it follows that KerD0 = Khproj(M4)
proof of Theorem 1 consists of the proofs of

ImDk−1 = KerDk, 1 ≤ k ≤ 2n.

¿From lemma 5 it follows that ImDk−1 ⊆ KerDk, 1 ≤ k ≤ 2n, so it is
enough to prove that

Im Dk−1 ⊇ KerDk, 1 ≤ k ≤ 4. (11)

The proofs of (11) for various k, 1 ≤ k ≤ 4 can be grouped so that
calculations involved in them have some parts in common. We have done it
in the following way:

We will prove the exactness of the sequence of sheaves and homomor-
phisms for n = 2. It will follow from the proof of (11) for k = 1, 2, 3, 4.

1. Proof of (11) for k = 1, e.g. Im (∂̄ + π) ⊇ Ker ((∂̄ + π)⊕ (∂̄ + ∂ div )) :

Let A01 ∈ Ω̃(0,1)
L−1

, A10 ∈ Ω̃(1,0)
L0

and ((∂̄ + π)⊕ (∂̄ + ∂ div ))(A01, A10) =
(0, 0, 0), i.e.

∂̄A01 = 0,

πA01 + ∂̄A10 = 0,

(∂ div )(A10) = 0.

By lemma 3 from ∂ div A10 = 0 it follows that there exists a smooth
vector field v1 such that π(v1) = A10. By the Dolbeault lemma, from
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∂̄A01 = 0, it follows that there exists a smooth vector field v2 such
that ∂̄v2 = A01. We have

0 = ∂̄A10 + πA01

= ∂̄πv1 + π∂̄v2

= ∂̄πv1 − ∂̄πv2

= ∂̄π(v1 − v2)

By lemma 4 we have that v1 − v2 = S + T, S ∈ Ker ∂̄, T ∈ Kerπ. Let
v3 = v1 − T and v4 = v2 + S. Then v3 = v4,

πv3 = π(v1 − T ) = πv1 − πT = A10 − 0 = A10

and
∂̄v4 = ∂̄(v2 + S) = ∂̄v2 + ∂̄S = A01 + 0 = A01.

Vector field v3 (v3 = v4) is such that fulfills (∂̄ + π)(v3) = (A01, A10).
Therefore the sequence

x- (M4)
∂̄+π−−−→ Ω̃(0,1)

L−1
⊕ Ω̃(1,0)

L0

(∂̄+π)⊕(∂̄+∂ div )
−−−−−−−−→ Ω̃(0,2)

L−1
⊕ Ω̃(1,1)

L0
⊕ Ω̃(2,0)

L1

is exact.

2. Proof of (11) for k = 2, e.g. Im ((∂̄ + π) ⊕ (∂̄ + ∂ div )) ⊇ Ker (π ⊕
(∂̄ + ∂ div )⊕ ∂̄) :

Let (A02, A11, A20) ∈ Ker (π⊕(∂̄+∂ div )⊕ ∂̄) ⊂ Ω̃(0,2)
L−1

⊕Ω̃(1,1)
L0

⊕Ω̃(2,0)
L1

.
Then

πA02 + ∂̄A11 = 0, (12)
∂ div A11 + ∂̄A20 = 0. (13)

We should find (B01, B10) ∈ Ω̃(0,1)
L−1

⊕ Ω̃(1,0)
L0

that satisfies

((∂̄ + π)⊕ (∂̄ + ∂ div ))(B01, B10) = (A02, A11, A20),

i.e., the solution of the following system of equations:

∂̄B01 = A02, (14)
πB01 + ∂̄B10 = A11, (15)

∂ divB10 = A20. (16)
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Since operator ∂ div is surjective (lemma 3 (iii)), there exists B̃10 ∈
Ω̃(1,0)

L0
such that

∂ div B̃10 = A20.

By the Dolbeault lemma and ∂̄A02 = 0 it follows that there exists
B̃01 ∈ Ω̃(0,1)

L−1
such that

∂̄B̃01 = A02.

System (14), (16) has solution (B̃01, B̃10), but that is not necessarily
the solution of equation (15).

Let
Ã11 = πB̃01 + ∂̄B̃10.

If Ã11 = A11 then (B01, B10) = (B̃01, B̃10) is the solution of system
(14), (15), (16).

If Ã11 6= A11 then (B̃01, B̃10) is not the solution of equation (15). We
will find a projective matrix form C ∈ Ω̃(1,0)

L0
such that ∂̄C = A11−Ã11

and ∂ divC = 0. With this, we have

∂̄B̃01 = A02,

∂̄(C + B̃10) + πB̃01 = ∂̄C︸︷︷︸
A11−Ã11

+ ∂̄B̃10 + πÃ01
︸ ︷︷ ︸

Ã11

= A11,

∂ div (C + B̃10) = ∂ div C︸ ︷︷ ︸
0

+ ∂ div B̃10
︸ ︷︷ ︸

A20

= A20,

and (B01, B10) = (B̃01, C + B̃10) is the solution of system (14), (15)
and (16).

Proof of existence of C ∈ Ω̃(1,0)
L0

such that ∂̄C = A11 − Ã11 and
∂ div C = 0 :

Since

∂̄(A11 − Ã11) = ∂̄A11 − ∂̄(∂̄Ã10 + πÃ01)
= −πA02 − ∂̄π︸︷︷︸

−π∂̄

Ã01

= −πA02 + πA02

= 0,
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by the Dolbeault lemma it follows that there exists C ∈ Ω̃(1,0)
L0

such
that

∂̄C = A11 − Ã11 6= 0. (17)

Since

∂ div (A11 − Ã11) = ∂ divA11
︸ ︷︷ ︸
−∂̄A20

−∂ div (∂̄B̃10 + πX̃01)

= −∂̄A20 − ∂ div ∂̄︸ ︷︷ ︸
−∂̄∂ div

B̃10 − ∂ div π︸ ︷︷ ︸
0

X̃01

= −∂̄A20 + ∂̄ ∂ div B̃10
︸ ︷︷ ︸

A20

(18)

= 0

and ∂ div (A11−Ã11) = ∂ div ∂̄C = −∂̄∂ divC it follows that ∂̄∂ divC =
0. Therefore coefficients of ∂ divC ∈ Ω̃(2,0)

L1
do not depend on z̄1, z̄2.

So ∂ divC 6= 0 implies that the coefficients of C do not depend on
z̄1, z̄2 because the operator ∂ div acts only on variables z1, z2. There-
fore ∂̄C = 0 and this is in contradiction with (17). So it follows that
∂ divC = 0.

By this it is proved that the sequence

Ω̃
(0,1)
L−1

⊕Ω̃
(1,0)
L0

(∂̄+π)⊕(∂̄+∂ div )

−−−−−−−−−−−→ Ω̃
(0,2)
L−1

⊕Ω̃
(1,1)
L0

⊕Ω̃
(2,0)
L1

π⊕(∂̄+∂ div )⊕∂̄

−−−−−−−−−−−−−−−→ Ω̃
(1,2)
L0

⊕Ω̃
(2,1)
L1

is exact.

3. Proof of (11) for k = 3, e.g. Im (π⊕(∂̄+∂ div )⊕∂̄) ⊇ Ker (∂ div ⊕∂̄) :

Let (A12, A21) ∈ Ker (∂ div ⊕ ∂̄). Then

∂ divA12 + ∂̄A21 = 0 (19)

We should find (B02, B11, B20) ∈ Ω̃(0,2)
L−1

⊕ Ω̃(1,1)
L0

⊕ Ω̃(2,0)
L1

so that

(π ⊕ (∂̄ + ∂ div )⊕ ∂̄)(B02, B11, B20) = (A12, A21),

i.e., the solution of the following system of equations:

πB02 + ∂̄B11 = A12, (20)
∂ divB11 + ∂̄B20 = A21 (21)



Fine resolution of the sheaf of germs 23

Lets take any B̃02 ∈ Ω̃(0,2)
L−1

and define M as M = A12 − πB̃02. Since

M ∈ Ω̃(1,2)
L0

it follows that ∂̄M = 0 and by the Dolbeault lemma we

have that there exists B̃11 ∈ Ω̃(1,1)
L0

such that ∂̄B̃11 = M = A12−πB̃02.

Let N = A21 − ∂ div B̃11. Then

∂̄N = ∂̄A21 − ∂̄∂ div B̃11

= −∂ div A12 + ∂ div ∂̄B̃11

= −∂ div (πB̃02 + ∂̄B̃11) + ∂ div ∂̄B̃11

= −∂ div π︸ ︷︷ ︸
0

B̃02 = 0

and therefore by the Dolbeault lemma we have that there exists B̃20 ∈
Ω̃(2,0)

L1
such that ∂̄B̃20 = N.

System (20), (21) has solution (B̃02, B̃11, B̃20).
By this it is proved that the sequence

Ω̃
(0,2)
L−1

⊕ Ω̃
(1,1)
L0

⊕ Ω̃
(2,0)
L1

π⊕(∂̄+∂ div )⊕∂̄

−−−−−−−−−−−−−−−−−−→ Ω̃
(1,2)
L0

⊕ Ω̃
(2,1)
L1

∂ div⊕∂̄−−−−−−−−−→ Ω̃
(2,2)
L1

is exact.

4. Proof of (11) for k = 4, e.g. We should prove that Im (∂ div ⊕ ∂̄) =
Ω̃(2,2)

L1
.

Let (A2,2) ∈ Ω̃(2,2)
L1

. We should find (B1,2, B2,1) ∈ Ω̃(1,2)
L0

⊕ Ω̃(2,1)
L1

so that

(∂ div ⊕ ∂̄)(B1,2, B2,1) = A2,2,

i.e., the solution of the equation:

∂ divB1,2 + ∂̄B2,1 = A2,2. (22)

Since ∂̄A2,2 = 0 by the Dolbeault lemma we have that there exists
B2,1 ∈ Ω̃(2,1)

L1
such that ∂̄B2,1 = A2,2. Therefore (0, B2,1) is the solution

of equation (22) and the following sequence is exact

Ω̃(1,2)
L0

⊕ Ω̃(2,1)
L1

∂ div⊕∂̄−−−−−−−−−→ Ω̃(2,2)
L1

−→ 0.

By this the proof of the main Theorem 1 is finished.
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P r o o f of Lemma 4 for two dimensional complex manifold M4:
Let Ki be the set of the functions of the form

αi = ai(z̄) +
2∑

j=1

ai
j(z̄)zj + zi

2∑

s=1

as(z̄)zs (z̄ = (z̄1, z̄2)),

where ai(z̄), ai
j(z̄), as(z̄) are smooth functions of z̄ and 1 ≤ i, j, s ≤ 2. In

general, smooth functions f with ∂f = 0 are called antiholomorphic ones.
Let K̃i be the set of the (0,1)–forms of the form

αi = ai(z̄) +
2∑

j=1

ai
j(z̄)zj + zi

2∑

s=1

as(z̄)zs,

where ai(z̄), ai
j(z̄), as(z̄) are (0,1)–forms whose coefficients are antiholomor-

phic functions.

We will use the fact that Kerπ = {a ∂

∂z1
+ b

∂

∂z2
| a ∈ K1, b ∈ K2}. ¿From

the definition of the operator π̃ it follows that Ker π̃ = {a ∂

∂z1
+ b

∂

∂z2
| a ∈

K̃1, b ∈ K̃2}.
Since by lemma 2 ∂̄π = −π̃∂̄, it follows that Ker ∂̄π = Ker π̃∂̄. Let v ∈

Ker π̃∂̄ ⊂ x- (M4), v =
2∑

i=1

vi ∂

∂zi
. Then 0 = π̃∂̄(v) = π̃

(
2∑

i=1

∂̄vi ⊗ ∂

∂zi

)

and therefore

π̃

(
2∑

i=1

∂vi

∂z̄j
dz̄i ⊗ ∂

∂zi

)
= 0 1 ≤ j ≤ 2.

Since ∂̄vi ∈ K̃i, 1 ≤ i ≤ 2 it follows that
∂vi

∂z̄1
,
∂vi

∂z̄2
∈ Ki, 1 ≤ i ≤ 2.

Therefore they can be written in the following way

∂vi

∂z̄1
= ai(z̄) +

∑

j

ai
j(z̄)zj + zi

∑
s

as(z̄)zs = αi, 1 ≤ i ≤ 2, αi ∈ Ki,

∂vi

∂z̄2
= bi(z̄) +

∑

j

bi
j(z̄)zj + zi

∑
s

bs(z̄)zs = βi, 1 ≤ i ≤ 2, βi ∈ Ki.

(23)
¿From (23), for i = 1, it follows that

v1 =
∫ z̄1

z̄1
0

α1 dz̄1 + f1(z̄2, z),

v1 =
∫ z̄2

z̄2
0

β1 dz̄2 + f2(z̄1, z),
(24)
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where f1, resp., f2, resp. are smooth functions of variables z1, z2, z̄2, resp.,
z1, z̄1, z2, resp., considered as independent variables. Integrals in (24) are
elements of K1 so

v1 = m1 + f1(z̄2, z) = m2 + f2(z̄1, z), m1,m2 ∈ K1. (25)

We have

f1(z̄2, z)− f2(z̄1, z) = m2 −m1 = t1(z̄) +
2∑

j=1

t1j (z̄)zj + z1
2∑

s=1

ts(z̄)zs., (26)

We shall prove that (26) implies

t1(z̄) = p1(z̄1)− q1(z̄2), t1j (z̄) = p1
j (z̄

1)− q1
j (z̄

2), 1 ≤ j ≤ 2,

ts(z̄) = ps(z̄1)− qs(z̄2), 1 ≤ s ≤ 2, z = (z1, z2), (27)

where on the right hand side appear appropriate antiholomorphic functions.

Applying
∂

∂z1
and then

∂

∂zs
on both sides of (26), we obtain that

ts(z̄) =
∂

∂z1

∂

∂zs
(f(z̄2, z)− g(z̄1, z)), 1 ≤ s ≤ 3. (28)

This gives

f(z̄2, z)− g(z̄1, z)− z1
2∑

s=1

zs ∂

∂z1

∂

∂zs

(
f(z̄2, z)− g(z̄1, z)

)
(29)

= t1(z̄) +
2∑

j=1

t1j (z̄)zj .

Now apply ∂
∂zj on both sides of (29). This implies (1 ≤ j ≤ 3)

t1j (z̄) =
∂

∂zj

(
f1(z̄2, z)−f2(z̄1, z)−z1

2∑

s=1

zs ∂

∂z1

∂

∂zs
(f1(z̄2, z)−f2(z̄1, z))

)
,(30)

t1(z̄) = f1(z̄2, z)−f2(z̄1, z)−z1
2∑

s=1

zs ∂

∂z1

∂

∂zs

(
f1(z̄2, z)−f2(z̄1, z)

)
(31)

−
2∑

j=1

∂

∂zj

(
f1(z̄2, z)−f2(z̄1, z)−z1

2∑

s=1

zs ∂

∂z1

∂

∂zs
(f1(z̄2, z)−f2(z̄1, z))

)
.
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We have (1 ≤ j, s ≤ 2)

t1(z̄) = F 1(z̄2, z)− F̃ 1(z̄1, z),
ts(z̄) = Fs(z̄2, z)− F̃s(z̄1, z),
t1j (z̄) = F 1

j (z̄2, z)− F̃ 1
j (z̄1, z),

where Fs, F̃s F 1, F̃ 1 and F 1
j , F̃ 1

j are smooth functions on the left side of (28),
(30) and (31), of variables considered as independent ones.

This implies

F 1(z̄2, z)− F̃ 1(z̄1, z) = F 1(z̄2, z0)− F̃ 1(z̄1, z0) = p1(z̄1)− q1(z̄2),

Fs(z̄2, z)− F̃s(z̄1, z) = Fs(z̄2, z0)− F̃s(z̄1, z0) = ps(z̄1)− qs(z̄2), (32)

F 1
j (z̄2, z)− F̃ 1

j (z̄1, z) = F 1
j (z̄2, z0)− F̃ 1

j (z̄1, z0) = p1
j (z̄

1)− q1
j (z̄

2),

1 ≤ j, s ≤ 2.

This proves (27).
Decomposition (27) and (26) imply

f1(z̄2, z)− f2(z̄1, z) = p1(z̄1)− q1(z̄2) +
2∑

j=1

(p1
j (z̄

1)− q1
j (z̄

2))zj +

z1
2∑

s=1

(ps(z̄1)− qs(z̄2)zs) = m̃2(z̄1, z)− m̃1(z̄2, z),

where m̃1, m̃2 ∈ K1.
Equation (33) implies f1(z̄2, z) + m̃1(z̄2, z) = A1(z). It follows that A1

does not depend on z̄2. This gives f1(z̄2, z) = Ã1(z)−m̃(z̄2, z) ∈ Ker ∂̄+K1.
This completes the proof of lemma 4 for two dimensional complex man-

ifold.
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