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A b s t r a c t. Let K3 and K ′
3 be two complete graphs of order 3 with

disjoint vertex sets. Let B∗
n(0) be the 5-vertex graph, obtained by identifying

a vertex of K3 with a vertex of K ′
3 . Let B∗∗

n (0) be the 4-vertex graph, ob-
tained by identifying two vertices of K3 each with a vertex of K ′

3 . Let B∗
n(k)

be graph of order n , obtained by attaching k paths of almost equal length to
the vertex of degree 4 of B∗

n(0) . Let B∗∗
n (k) be the graph of order n , obtained

by attaching k paths of almost equal length to a vertex of degree 3 of B∗∗
n (0) .

Let Bn(k) be the set of all connected bicyclic graphs of order n , possessing
k pendent vertices. One of the authors recently proved that among the el-
ements of Bn(k) , either B∗

n(k) or B∗∗
n (k) have the greatest spectral radius.

We now show that for k ≥ 1 and n ≥ k + 5 , among the elements of Bn(k) ,
the graph B∗

n(k) has the greatest spectral radius.
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1. Introduction

The spectral radius (the greatest graph eigenvalue, also called “index”)
is an important and much studied spectral property of graphs [1–3]. In a
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recent work [4] one of the present authors examined the spectral radius of
connected bicyclic graphs of order n , possessing k pendent vertices (vertices
of degree 1), and arrived at the following result.

Let K3 and K ′
3 be two complete graphs of order 3 with disjoint vertex

sets. Let B∗
n(0) be the 5-vertex graph, obtained by identifying a vertex of

K3 with a vertex of K ′
3 . Let B∗∗

n (0) be the 4-vertex graph, obtained by
identifying two vertices of K3 each with a vertex of K ′

3 . In other words,
B∗∗

n (0) is the graph obtained by deleting an edge from K4 .
By P` is denoted the path of order ` . Two paths P` and P` ′ are said to

be of almost equal length, if |`− ` ′| ≤ 1 .
The set of all connected bicyclic graphs of order n , possessing k pendent

vertices will be denoted by Bn(k) .
The graph B∗

n(k) ∈ Bn(k) is obtained by attaching k paths of almost
equal length to the vertex of degree 4 of B∗

n(0) . The graph B∗∗
n (k) ∈ Bn(k)

is obtained by attaching k paths of almost equal length to the vertex of
degree 3 of B∗∗

n (0) .
Note that both B∗

n(k) and B∗∗
n (k) exist if and only if k ≥ 1 and n ≥ k+5 .

Theorem 1 [4]. Provided that both B∗
n(k) and B∗∗

n (k) exist, among the
elements of Bn(k) , either B∗

n(k) or B∗∗
n (k) have the greatest spectral radius.

The obvious question that emerges from Theorem 1 is which of the two
graphs B∗

n(k) , B∗∗
n (k) has greater spectral radius. Solving this seemingly

simple problem it turned out to be not quite easy. In this paper we offer its
solution:

Theorem 2. Provided that both B∗
n(k) and B∗∗

n (k) exist, the spectral
radius of B∗

n(k) is greater than the spctral radius of B∗∗
n (k) .

In order to prove Theorem 2 we need some preparations.

2. Some Auxiliary Results

Let G be a simple graph (i.e., a graph without loops, multiple and/or
directed and/or weighted edges). Its vertex and edge sets of a graph G are
denoted by V (G) and E(G) , respectively. The graph G has n vertices, i.e.,
|V (G)| = n .

The eigenvalues of G will be denoted by λi = λi(G) and, as usual [1],
it is assumed that λ1 ≥ λ2 ≥ · · · ≥ λn . If the graph G is connected, then
λ1 > λ2 .
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The characteristic polynomial of the graph G is denoted by φ(G,λ) .
We need the following well known Lemmas [1].

Lemma 1. Let v be a vertex of G and let C(v) be the set of all cycles of
G that contain v . Then

φ(G,λ) = λφ(G−v, λ)−
∑

(u,v)∈E(G)

φ(G−u−v, λ)−2
∑

Z∈C(v)

φ(G−V (Z), λ),

where G − V (Z) is the graph obtained by removing from G the vertices
belonging to Z .

Lemma 2. Let v be a vertex of G , let λ1 ≥ λ2 ≥ · · · ≥ λn be the
eigenvalues of the graph G , and let µ1 ≥ µ2 ≥ · · · ≥ µn−1 be the eigenvalues
of G− v . Then the inequalities

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ µn−1 ≥ λn

hold. If G is connected, then λ1 > µ1 .

Lemma 3. The characteristic polynomial of the n-vertex path Pn satis-
fies the expression

φ(Pn, λ) =
1√

λ2 − 4

(
xn+1

1 − xn+1
2

)
,

where

x1 =
1
2

(
λ +

√
λ2 − 4

)
and x2 =

1
2

(
λ−

√
λ2 − 4

)

are the roots of the equation x2 − λx + 1 = 0 .

Lemma 4. If the graphs G and H have exactly one eigenvalue greater
than some constant a , and if φ(G,λ1(H)) > 0 , then λ1(G) < λ1(H) .

In the proof that follows the special case of Lemma 4, for a = 2 will be
used.

3. Proof of Theorem 2

The graphs B∗
n(k) and B∗∗

n (k) are defined above. Evidently, in the case
of B∗

n(k) it must be k ≤ n − 5 whereas in the case of B∗∗
n (k) it must be

k ≤ n − 4 . If k = n − 4 then B∗
n(k) does not exist, and then among
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the elements of Bn(k) the graph B∗∗
n (k) has the greatest spectral radius.

Therefore in the following we assume that k < n − 4 . If so, then at least
one path attached to B∗∗

n (k) possesses at least two vertices (` ≥ 2).
The vertex of B∗

n(k) that has degree k + 4 is denoted by v . Also the
vertex of B∗∗

n (k) that has degree k + 3 is denoted by v . Denote by ` the
maximal number of vertices of a path attached to the vertex v of B∗∗

n (k) .
As already explained, ` ≥ 2 .

Let B∗∗ be the graph analogous to B∗∗
n (k) in which all paths attached

to vertex v have ` vertices.
Let B∗ be the graph analogous to B∗

n(k) in which all paths attached to
vertex v have `− 1 vertices.

Evidently, B∗ is an induced subgraph of B∗
n(k) whereas B∗∗

n (k) is an
induced subgraph of B∗∗ . Therefore, by Lemma 2,

λ1(B∗) ≤ λ1(B∗
n(k))

with equality if and only if n = (`− 1)k + 5 . Also,

λ1(B∗∗) ≥ λ1(B∗∗
n (k))

with equality if and only if n = ` k + 4 .
Thus for the proof of the Theorem it is sufficient to show that λ1(B∗∗) <

λ1(B∗) . We do this in the following.
Because of Lemma 2, the graphs B∗∗ and B∗ have exactly one eigenvalue

greater than 2. (This is because all components of the subgraphs B∗∗−v and
B∗ − v are paths, and the spectral radii of paths are less than 2. Therefore
λ2(B∗∗) < 2 and λ2(B∗) < 2 . By direct calculation we check that in the
case n = 6 , k = 1 , the greatest eigenvalues of B∗∗ and B∗ are greater than
2. Therefore the greatest eigenvalues of B∗∗ and B∗ are greater than 2 for
all values of n and k .)

Consequently, Lemma 4 is applicable to B∗∗ and B∗ and it is sufficient
to show that φ(B∗∗, λ1(B∗)) > 0 .

By applying Lemma 1 to the vertex v of B∗∗ we obtain

φ(B∗∗, λ) = λφ(P`, λ)k−1
[
(λ3 − 5λ− 4) φ(P`, λ)− k (λ2 − 2)φ(P`−1, λ)

]
.

In an analogous manner we obtain

φ(B∗,λ) = (λ2−1)φ(P`−1, λ)k−1
[
(λ3−5λ−4)φ(P`−1, λ)−k (λ2−1)φ(P`−2, λ)

]
.
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Denote the greatest eigenvalue of B∗ by r . For n = 6 and k = 1 the
greatest eigenvalue of B∗ is 2.709. . . . Therefore, for any n and k ,

r = λ1(B∗) ≥ 2.709 .

From the above expression for φ(B∗, λ) it is seen that r satisfies the
equation

(r3 − 5 r − 4) φ(P`−1, r)− k (r2 − 1)φ(P`−2, r) = 0

from which

k =
(r3 − 5 r − 4)φ(P`−1, r)

(r2 − 1)φ(P`−2, r)
.

Now, the inequality φ(B∗∗, r) > 0 holds if and only if

r φ(P`, r)k−1
[
(r3 − 5 r − 4) φ(P`, r)− k (r2 − 2)φ(P`−1, r)

]
> 0

if and only if

(r3 − 5 r − 4) φ(P`, r)− k (r2 − 2)φ(P`−1, r) > 0

if and only if

(r3 − 5 r − 4)φ(P`, r)− (r3 − 5 r − 4)φ(P`−1, r)
(r2 − 1)φ(P`−2, r)

(r2 − 2) φ(P`−1, r) > 0 .

Now, the expression r3− 5 r− 4 is positive–valued for r ≥ 2.709 . Therefore
the above inequality holds if and only if

(r2 − 2)φ(P`−1, r)2 < (r2 − 1)φ(P`, r) φ(P`−2, r) .

From Lemma 3 we get

φ(Pn, r) =
1√

r2 − 4

(
rn+1
1 − rn+1

2

)
,

where
r1 =

1
2

(
r +

√
r2 − 4

)
and r2 =

1
2

(
r −

√
r2 − 4

)

are the roots of the equation x2 − r x + 1 = 0 . From the Vieta formulas,

r1 + r2 = r ; r1 r2 = 1
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and therefore
r2
1 + r2

2 = (r1 + r2)2 − 2 r1 r2 = r2 − 2

r4
1 + r4

2 = (r2
1 + r2

2)
2 − 2 r2

1 r2
2 = (r2 − 2)2 − 2 .

In view of the above, φ(B∗∗, r) > 0 holds if and only if

1
r2 − 4

(r2 − 2) (r`
1 − r`

2)
2 <

1
r2 − 4

(r2 − 1) (r`+1
1 − r`+1

2 )(r`−1
1 − r`−1

2 )

if and only if

(r2 − 2) (r2`
1 + r2`

2 − 2) < (r2 − 1) [r2`
1 + r2`

2 − (r2 − 2)]

if and only if
r2`
1 + r2`

2 > (r2 − 2)(r2 − 3) .

We now demonstrate that for ` ≥ 2 the series a` = r2`
1 + r2`

2 strictly
increases.

Because

r2`
1 + r2`

2 =
r4`
1 + 1
r2`
1

we get that
a`+1

a`
=

r4`+4
1 + 1

r4`+2
1 + r2

1

will be greater than unity (in which case a` increases) if and only if

r4`+4
1 + 1 > r4`+2

1 + r2
1

i.e., if (
r4`+2
1 − 1

)
(r2

1 − 1) > 0

which is evidently obeyed since r1 > 1 .
We have previously shown that φ(B∗∗, r) > 0 holds if and only if

r2`
1 + r2`

2 > (r2 − 2)(r2 − 3) .

Now, if this inequality is satisfied for ` = 2 it will be satisfied for all ` ≥ 2 .
For ` = 2 we get

r4
1 + r4

2 > (r2 − 2)(r2 − 3)

if and only if
(r2 − 2)2 − 2 > (r2 − 2)(r2 − 3)
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if and only if r2 > 4 , which is evidently satisfied.
Thus we have demonstrated that

φ(B∗∗, λ1(B∗)) > 0

which, by Lemma 4, implies

λ1(B∗∗) < λ1(B∗)

which, in turn, is sufficient for the validity of Theorem 2. It is interesting to
note that we managed to verify the above inequalities without knowing the
actual value of r = λ1(B∗) .

By this the proof of the Theorem 2 is completed.
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