ON THE SPECTRAL RADIUS OF BICYCLIC GRAPHS

M. PETROVIĆ, I. GUTMAN, SHU-GUANG GUO

(Presented at the 3rd Meeting, held on April 22, 2005)
A bstract. Let K_{3} and K_{3}^{\prime} be two complete graphs of order 3 with disjoint vertex sets. Let $B_{n}^{*}(0)$ be the 5-vertex graph, obtained by identifying a vertex of K_{3} with a vertex of K_{3}^{\prime}. Let $B_{n}^{* *}(0)$ be the 4-vertex graph, obtained by identifying two vertices of K_{3} each with a vertex of K_{3}^{\prime}. Let $B_{n}^{*}(k)$ be graph of order n, obtained by attaching k paths of almost equal length to the vertex of degree 4 of $B_{n}^{*}(0)$. Let $B_{n}^{* *}(k)$ be the graph of order n, obtained by attaching k paths of almost equal length to a vertex of degree 3 of $B_{n}^{* *}(0)$. Let $\mathcal{B}_{n}(k)$ be the set of all connected bicyclic graphs of order n, possessing k pendent vertices. One of the authors recently proved that among the elements of $\mathcal{B}_{n}(k)$, either $B_{n}^{*}(k)$ or $B_{n}^{* *}(k)$ have the greatest spectral radius. We now show that for $k \geq 1$ and $n \geq k+5$, among the elements of $\mathcal{B}_{n}(k)$, the graph $B_{n}^{*}(k)$ has the greatest spectral radius.

AMS Mathematics Subject Classification (2000): 05C50, 05C35
Key Words: spectrum (of graph), spectral radius (of graph), bicyclic graphs, extremal graphs

1. Introduction

The spectral radius (the greatest graph eigenvalue, also called "index") is an important and much studied spectral property of graphs [1-3]. In a
recent work [4] one of the present authors examined the spectral radius of connected bicyclic graphs of order n, possessing k pendent vertices (vertices of degree 1), and arrived at the following result.

Let K_{3} and K_{3}^{\prime} be two complete graphs of order 3 with disjoint vertex sets. Let $B_{n}^{*}(0)$ be the 5 -vertex graph, obtained by identifying a vertex of K_{3} with a vertex of K_{3}^{\prime}. Let $B_{n}^{* *}(0)$ be the 4 -vertex graph, obtained by identifying two vertices of K_{3} each with a vertex of K_{3}^{\prime}. In other words, $B_{n}^{* *}(0)$ is the graph obtained by deleting an edge from K_{4}.

By P_{ℓ} is denoted the path of order ℓ. Two paths P_{ℓ} and $P_{\ell^{\prime}}$ are said to be of almost equal length, if $\left|\ell-\ell^{\prime}\right| \leq 1$.

The set of all connected bicyclic graphs of order n, possessing k pendent vertices will be denoted by $\mathcal{B}_{n}(k)$.

The graph $B_{n}^{*}(k) \in \mathcal{B}_{n}(k)$ is obtained by attaching k paths of almost equal length to the vertex of degree 4 of $B_{n}^{*}(0)$. The graph $B_{n}^{* *}(k) \in \mathcal{B}_{n}(k)$ is obtained by attaching k paths of almost equal length to the vertex of degree 3 of $B_{n}^{* *}(0)$.

Note that both $B_{n}^{*}(k)$ and $B_{n}^{* *}(k)$ exist if and only if $k \geq 1$ and $n \geq k+5$.
Theorem 1 [4]. Provided that both $B_{n}^{*}(k)$ and $B_{n}^{* *}(k)$ exist, among the elements of $\mathcal{B}_{n}(k)$, either $B_{n}^{*}(k)$ or $B_{n}^{* *}(k)$ have the greatest spectral radius.

The obvious question that emerges from Theorem 1 is which of the two graphs $B_{n}^{*}(k), B_{n}^{* *}(k)$ has greater spectral radius. Solving this seemingly simple problem it turned out to be not quite easy. In this paper we offer its solution:

Theorem 2. Provided that both $B_{n}^{*}(k)$ and $B_{n}^{* *}(k)$ exist, the spectral radius of $B_{n}^{*}(k)$ is greater than the spctral radius of $B_{n}^{* *}(k)$.

In order to prove Theorem 2 we need some preparations.

2. Some Auxiliary Results

Let G be a simple graph (i.e., a graph without loops, multiple and/or directed and/or weighted edges). Its vertex and edge sets of a graph G are denoted by $V(G)$ and $E(G)$, respectively. The graph G has n vertices, i.e., $|V(G)|=n$.

The eigenvalues of G will be denoted by $\lambda_{i}=\lambda_{i}(G)$ and, as usual [1], it is assumed that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. If the graph G is connected, then $\lambda_{1}>\lambda_{2}$.

The characteristic polynomial of the graph G is denoted by $\phi(G, \lambda)$.
We need the following well known Lemmas [1].
Lemma 1. Let v be a vertex of G and let $\mathcal{C}(v)$ be the set of all cycles of G that contain v. Then
$\phi(G, \lambda)=\lambda \phi(G-v, \lambda)-\sum_{(u, v) \in E(G)} \phi(G-u-v, \lambda)-2 \sum_{Z \in \mathcal{C}(v)} \phi(G-V(Z), \lambda)$,
where $G-V(Z)$ is the graph obtained by removing from G the vertices belonging to Z.

Lemma 2. Let v be a vertex of G, let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of the graph G, and let $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n-1}$ be the eigenvalues of $G-v$. Then the inequalities

$$
\lambda_{1} \geq \mu_{1} \geq \lambda_{2} \geq \mu_{2} \geq \cdots \geq \mu_{n-1} \geq \lambda_{n}
$$

hold. If G is connected, then $\lambda_{1}>\mu_{1}$.
Lemma 3. The characteristic polynomial of the n-vertex path P_{n} satisfies the expression

$$
\phi\left(P_{n}, \lambda\right)=\frac{1}{\sqrt{\lambda^{2}-4}}\left(x_{1}^{n+1}-x_{2}^{n+1}\right)
$$

where

$$
x_{1}=\frac{1}{2}\left(\lambda+\sqrt{\lambda^{2}-4}\right) \quad \text { and } \quad x_{2}=\frac{1}{2}\left(\lambda-\sqrt{\lambda^{2}-4}\right)
$$

are the roots of the equation $x^{2}-\lambda x+1=0$.
Lemma 4. If the graphs G and H have exactly one eigenvalue greater than some constant a, and if $\phi\left(G, \lambda_{1}(H)\right)>0$, then $\lambda_{1}(G)<\lambda_{1}(H)$.

In the proof that follows the special case of Lemma 4 , for $a=2$ will be used.

3. Proof of Theorem 2

The graphs $B_{n}^{*}(k)$ and $B_{n}^{* *}(k)$ are defined above. Evidently, in the case of $B_{n}^{*}(k)$ it must be $k \leq n-5$ whereas in the case of $B_{n}^{* *}(k)$ it must be $k \leq n-4$. If $k=n-4$ then $B_{n}^{*}(k)$ does not exist, and then among
the elements of $\mathcal{B}_{n}(k)$ the graph $B_{n}^{* *}(k)$ has the greatest spectral radius. Therefore in the following we assume that $k<n-4$. If so, then at least one path attached to $B_{n}^{* *}(k)$ possesses at least two vertices $(\ell \geq 2)$.

The vertex of $B_{n}^{*}(k)$ that has degree $k+4$ is denoted by v. Also the vertex of $B_{n}^{* *}(k)$ that has degree $k+3$ is denoted by v. Denote by ℓ the maximal number of vertices of a path attached to the vertex v of $B_{n}^{* *}(k)$. As already explained, $\ell \geq 2$.

Let $B^{* *}$ be the graph analogous to $B_{n}^{* *}(k)$ in which all paths attached to vertex v have ℓ vertices.

Let B^{*} be the graph analogous to $B_{n}^{*}(k)$ in which all paths attached to vertex v have $\ell-1$ vertices.

Evidently, B^{*} is an induced subgraph of $B_{n}^{*}(k)$ whereas $B_{n}^{* *}(k)$ is an induced subgraph of $B^{* *}$. Therefore, by Lemma 2 ,

$$
\lambda_{1}\left(B^{*}\right) \leq \lambda_{1}\left(B_{n}^{*}(k)\right)
$$

with equality if and only if $n=(\ell-1) k+5$. Also,

$$
\lambda_{1}\left(B^{* *}\right) \geq \lambda_{1}\left(B_{n}^{* *}(k)\right)
$$

with equality if and only if $n=\ell k+4$.
Thus for the proof of the Theorem it is sufficient to show that $\lambda_{1}\left(B^{* *}\right)<$ $\lambda_{1}\left(B^{*}\right)$. We do this in the following.

Because of Lemma 2, the graphs $B^{* *}$ and B^{*} have exactly one eigenvalue greater than 2. (This is because all components of the subgraphs $B^{* *}-v$ and $B^{*}-v$ are paths, and the spectral radii of paths are less than 2. Therefore $\lambda_{2}\left(B^{* *}\right)<2$ and $\lambda_{2}\left(B^{*}\right)<2$. By direct calculation we check that in the case $n=6, k=1$, the greatest eigenvalues of $B^{* *}$ and B^{*} are greater than 2. Therefore the greatest eigenvalues of $B^{* *}$ and B^{*} are greater than 2 for all values of n and k.)

Consequently, Lemma 4 is applicable to $B^{* *}$ and B^{*} and it is sufficient to show that $\phi\left(B^{* *}, \lambda_{1}\left(B^{*}\right)\right)>0$.

By applying Lemma 1 to the vertex v of $B^{* *}$ we obtain

$$
\phi\left(B^{* *}, \lambda\right)=\lambda \phi\left(P_{\ell}, \lambda\right)^{k-1}\left[\left(\lambda^{3}-5 \lambda-4\right) \phi\left(P_{\ell}, \lambda\right)-k\left(\lambda^{2}-2\right) \phi\left(P_{\ell-1}, \lambda\right)\right]
$$

In an analogous manner we obtain

$$
\phi\left(B^{*}, \lambda\right)=\left(\lambda^{2}-1\right) \phi\left(P_{\ell-1}, \lambda\right)^{k-1}\left[\left(\lambda^{3}-5 \lambda-4\right) \phi\left(P_{\ell-1}, \lambda\right)-k\left(\lambda^{2}-1\right) \phi\left(P_{\ell-2}, \lambda\right)\right] .
$$

Denote the greatest eigenvalue of B^{*} by r. For $n=6$ and $k=1$ the greatest eigenvalue of B^{*} is $2.709 \ldots$. Therefore, for any n and k,

$$
r=\lambda_{1}\left(B^{*}\right) \geq 2.709
$$

From the above expression for $\phi\left(B^{*}, \lambda\right)$ it is seen that r satisfies the equation

$$
\left(r^{3}-5 r-4\right) \phi\left(P_{\ell-1}, r\right)-k\left(r^{2}-1\right) \phi\left(P_{\ell-2}, r\right)=0
$$

from which

$$
k=\frac{\left(r^{3}-5 r-4\right) \phi\left(P_{\ell-1}, r\right)}{\left(r^{2}-1\right) \phi\left(P_{\ell-2}, r\right)} .
$$

Now, the inequality $\phi\left(B^{* *}, r\right)>0$ holds if and only if

$$
r \phi\left(P_{\ell}, r\right)^{k-1}\left[\left(r^{3}-5 r-4\right) \phi\left(P_{\ell}, r\right)-k\left(r^{2}-2\right) \phi\left(P_{\ell-1}, r\right)\right]>0
$$

if and only if

$$
\left(r^{3}-5 r-4\right) \phi\left(P_{\ell}, r\right)-k\left(r^{2}-2\right) \phi\left(P_{\ell-1}, r\right)>0
$$

if and only if

$$
\left(r^{3}-5 r-4\right) \phi\left(P_{\ell}, r\right)-\frac{\left(r^{3}-5 r-4\right) \phi\left(P_{\ell-1}, r\right)}{\left(r^{2}-1\right) \phi\left(P_{\ell-2}, r\right)}\left(r^{2}-2\right) \phi\left(P_{\ell-1}, r\right)>0
$$

Now, the expression $r^{3}-5 r-4$ is positive-valued for $r \geq 2.709$. Therefore the above inequality holds if and only if

$$
\left(r^{2}-2\right) \phi\left(P_{\ell-1}, r\right)^{2}<\left(r^{2}-1\right) \phi\left(P_{\ell}, r\right) \phi\left(P_{\ell-2}, r\right) .
$$

From Lemma 3 we get

$$
\phi\left(P_{n}, r\right)=\frac{1}{\sqrt{r^{2}-4}}\left(r_{1}^{n+1}-r_{2}^{n+1}\right)
$$

where

$$
r_{1}=\frac{1}{2}\left(r+\sqrt{r^{2}-4}\right) \quad \text { and } \quad r_{2}=\frac{1}{2}\left(r-\sqrt{r^{2}-4}\right)
$$

are the roots of the equation $x^{2}-r x+1=0$. From the Vieta formulas,

$$
r_{1}+r_{2}=r \quad ; \quad r_{1} r_{2}=1
$$

and therefore

$$
\begin{gathered}
r_{1}^{2}+r_{2}^{2}=\left(r_{1}+r_{2}\right)^{2}-2 r_{1} r_{2}=r^{2}-2 \\
r_{1}^{4}+r_{2}^{4}=\left(r_{1}^{2}+r_{2}^{2}\right)^{2}-2 r_{1}^{2} r_{2}^{2}=\left(r^{2}-2\right)^{2}-2 .
\end{gathered}
$$

In view of the above, $\phi\left(B^{* *}, r\right)>0$ holds if and only if

$$
\frac{1}{r^{2}-4}\left(r^{2}-2\right)\left(r_{1}^{\ell}-r_{2}^{\ell}\right)^{2}<\frac{1}{r^{2}-4}\left(r^{2}-1\right)\left(r_{1}^{\ell+1}-r_{2}^{\ell+1}\right)\left(r_{1}^{\ell-1}-r_{2}^{\ell-1}\right)
$$

if and only if

$$
\left(r^{2}-2\right)\left(r_{1}^{2 \ell}+r_{2}^{2 \ell}-2\right)<\left(r^{2}-1\right)\left[r_{1}^{2 \ell}+r_{2}^{2 \ell}-\left(r^{2}-2\right)\right]
$$

if and only if

$$
r_{1}^{2 \ell}+r_{2}^{2 \ell}>\left(r^{2}-2\right)\left(r^{2}-3\right) .
$$

We now demonstrate that for $\ell \geq 2$ the series $a_{\ell}=r_{1}^{2 \ell}+r_{2}^{2 \ell}$ strictly increases.

Because

$$
r_{1}^{2 \ell}+r_{2}^{2 \ell}=\frac{r_{1}^{4 \ell}+1}{r_{1}^{2 \ell}}
$$

we get that

$$
\frac{a_{\ell+1}}{a_{\ell}}=\frac{r_{1}^{4 \ell+4}+1}{r_{1}^{4+2}+r_{1}^{2}}
$$

will be greater than unity (in which case a_{ℓ} increases) if and only if

$$
r_{1}^{4 \ell+4}+1>r_{1}^{4 \ell+2}+r_{1}^{2}
$$

i.e., if

$$
\left(r_{1}^{4 \ell+2}-1\right)\left(r_{1}^{2}-1\right)>0
$$

which is evidently obeyed since $r_{1}>1$.
We have previously shown that $\phi\left(B^{* *}, r\right)>0$ holds if and only if

$$
r_{1}^{2 \ell}+r_{2}^{2 \ell}>\left(r^{2}-2\right)\left(r^{2}-3\right) .
$$

Now, if this inequality is satisfied for $\ell=2$ it will be satisfied for all $\ell \geq 2$.
For $\ell=2$ we get

$$
r_{1}^{4}+r_{2}^{4}>\left(r^{2}-2\right)\left(r^{2}-3\right)
$$

if and only if

$$
\left(r^{2}-2\right)^{2}-2>\left(r^{2}-2\right)\left(r^{2}-3\right)
$$

if and only if $r^{2}>4$, which is evidently satisfied.
Thus we have demonstrated that

$$
\phi\left(B^{* *}, \lambda_{1}\left(B^{*}\right)\right)>0
$$

which, by Lemma 4, implies

$$
\lambda_{1}\left(B^{* *}\right)<\lambda_{1}\left(B^{*}\right)
$$

which, in turn, is sufficient for the validity of Theorem 2. It is interesting to note that we managed to verify the above inequalities without knowing the actual value of $r=\lambda_{1}\left(B^{*}\right)$.

By this the proof of the Theorem 2 is completed.

REFERENCES

[1] D. C ve t k o vić, M. D o o b, H. S a c h s, Spectra of Graphs - Theory and Application, Academic Press, New York, 1980; 2nd revised ed.: Barth, Heidelberg, 1995.
[2] D. Cvetković, P. R owlinson, On connected graphs with maximal index, Publ. Inst. Math. (Beograd) 44 (1988) 29-34.
[3] D. Cvetković, P. R owlinson, The largest eigenvalue of a graph: A survey, Lin. Multilin. Algebra 28 (1990) 3-33.
[4] S.-G. Guo, The spectral radius of unicyclic and bicyclic graphs with n vertices and k pendant vertices, Lin. Algebra Appl., 408 (2005) 78-85.

Faculty of Science
University of Kragujevac
P. O. Box 60 34000 Kragujevac
Serbia and Montenegro

Department of Mathematics
Yancheng Teachers College
Yancheng 224002
Jiangsu
P. R. China

