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A b s t r a c t. We study transversal vibrations of an elastic axially
compressed rod on a fractional derivative type of viscoelastic foundation. We
assume that the axial force has a constant and a time dependent part given by
Dirac distributions. The dynamics of the system is described by a system of
two partial differential equations, having integer and fractional derivatives.
The solution of this system is obtained in the space of distributions and its
asymptotic behavior is investigated. It is shown that the foundation increases
the stability bound.
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1. Formulation of the Problem

Consider an elastic rod simply supported at both ends. Let L be the
length of the rod. We assume that the rod is loaded by an axial force P (t)
that is a known function of time and has a fixed direction coinciding with the
rod axis in the initial (undeformed) state. In this work we shall generalize
our previous analysis [1] in two directions. First, we assume here that the



8 B. Stanković, T. M. Atanacković

axial force is given by generalized functions and second we assume that
the rod has a (not negligible) rotary inertia. Thus we allow for impulsive
(described by a Dirac distribution) axial loading of the rod. The rod is
positioned on a viscoelastic foundation described by a fractionl derivative
type constitutive equation (see Figure 1).

Figure 1. Coordinate system and load configuration

Such foundations are important for vibration damping and have been
recently analyzed in the context of the railpad in the railway track model
(see [2] and [3] for the physical explanation of the model). The equilibrium
equations of active and inertial forces are (see [4] p. 338)

∂H

∂S
= ρ0

∂2x

∂t2
− qx,

∂V

∂S
= ρ0

∂2y

∂t2
− qy,

∂M

∂S
= −V cosϑ+H sinϑ− J

∂2ϑ

∂t2
,

∂x

∂S
= cosϑ,

∂y

∂S
= sinϑ,

∂ϑ

∂S
=
M

EI
, S ∈ (0, L) , t ≥ 0,

(1)

where x and y are coordinates of an arbitrary point on the rod axis, S is the
arc length of the rod axis in the undeformed state so that S ∈ (0, L), t is
the time, H and V are components of the force in an arbitrary cross–section
of the rod along the x̄ and ȳ axes of a rectangular Cartesian coordinate
system x̄ − B − ȳ, respectively, M is the bending moment, and qx, qy are
the intensities of the distributed forces per unit length of the rod axis in the
undeformed state, J is moment of inertia of a part of the rod of unit length,
ϑ is the angle between the tangent to the rod axis and the x̄ axis, ρ0 is the
line density of the rod, EI is the bending rigidity of the rod. For the rod
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shown in Figure 1 the boundary conditions are

y (0, t) = 0, x (0, t) = 0; y (L, t) = 0,
M (0, t) = 0, M (L, t) = 0; H (L, t) = −P , t ≥ 0.

(2)

Suppose that the rod is positioned on a viscoelastic foundation. We assume
that the foundation is of the fractional derivative type. If the foundation is
made of a fractional type viscoelastic material, then the force in the foun-
dation Q and deformation Δ of the foundation (in our case Δ = y) are
connected as

Q+ τQQ
(β) = Ep

(
y + τyy

(β)
)
, (3)

with 0 < β < 1. In (3) we used (·)(β) to denote the β-th derivative of a
function (·) taken in Riemann-Liouville form as (see [5], and [6])

g(β) ≡ dβ

dtβ
g (t) ≡ d

dt

1
Γ (1 − β)

∫ t

0

g (ξ) dξ
(t− ξ)β

. (4)

The dimension of the constants τy and τQ is [time]α . The constants Ep, τQ
and τy in (3) are called the instantaneous modulus of the pad and the relax-
ation times, respectively. In Figure 1 the rheological model of the foundation
is presented, as given in [7], for example. We assume that the following in-
equality, as a consequence of the second law of thermodynamics, is satisfied
(see [9] and [8])

E > 0, τQ > 0, τy > τQ. (5)

We assume that the pads are positioned under the rod so that

qx = 0, qy = −bQ, (6)

where b is a constant depending on the part of the rod’s width that is
supported by pads. Note that in the case β = 1 the foundation becomes a
standard viscoelastic solid.

The trivial solution to the system (1),(2),(3) and (5) in which the rod
axis is straight reads

H0 (S, t) = −P , V 0 (S, t) = 0, M0 (S, t) = 0, x0 (S, t) = S,

y0 (S, t) = 0, ϑ0 (S, t) = 0, Q0 (S, t) = 0.
(7)

Let the solution to (1),(2),(3) and (5) be written in the form H = H0 +
ΔH, ...Q = Q0 + ΔQ, where ΔH, ...,ΔQ are perturbations, assumed to be
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small. By substituting this in (7) and neglecting the higher order terms in
the perturbations ΔH, ...,ΔQ, we obtain

∂ΔH
∂S

= ρ0
∂2Δx
∂t2

,
∂ΔV
∂S

= ρ0
∂2Δy
∂t2

+ bΔQ,

∂ΔM
∂S

= −ΔV − PΔϑ− J
∂2Δθ
∂t2

,
∂Δx
∂S

= 0,
∂Δy
∂S

= Δϑ,

∂Δϑ
∂S

=
ΔM
EI

, ΔQ+ τQΔQ(α) = Ep

(
Δy + τyΔy(α)

)
,

(8)

subject to

ΔH (L, t) = 0, ΔM(0, t) = 0, ΔM(L, t) = 0,

Δx (0, t) = 0, Δy(0, t) = 0, Δy(L, t) = 0.
(9)

Introducing the dimensionless quantities

λ =
PL2

EI
, τ =

t√
ρ0L4

EI

, μ =

√
EAL2

EI
, u =

Δy
l
,

ξ =
S

L
, γ = b

EpL
4

EI
, F =

ΔQ
LEp

, α =
J

ρ0L2
,

τq = τQ

(
EI

ρ0L4

)α/2

, τu = τy

(
EI

ρ0L4

)α/2

.

(10)

From (8),(9) we obtain

∂4u

∂ξ4
− α

∂4u

∂ξ2∂τ2
+ λ

∂2u

∂ξ2
+
∂2u

∂τ2
+ γF = 0,

F + τqF
(β) = u+ τuu

(β). (11)

where F (β) = d
dτ

1
Γ(1−β)

∫ τ
0

F (ξ)dξ

(τ−ξ)β and

u (0, τ) = 0,
∂2u

∂ξ2
(0, τ) = 0, u (1, τ) = 0,

∂2u

∂ξ2
(1, τ) = 0. (12)

Note that (5)2,3 imply
τu > τq > 0. (13)
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Suppose that the solution to (11),(12) is assumed to be of the form

u (ξ, τ) = Tk (τ) sin kπξ, F (ξ, τ) = Sk (τ) sin kπξ, k ∈ N. (14)

where Tk and Sk satisfy the system

(α(πk)2 + 1)T (2)
k (τ) + (πk)2((πk)2 − λ)Tk(τ) + γSk(τ) = 0,

aS
(β)
k (τ) + Sk(τ) = bT

(β)
k (τ) + Tk(τ), τ > 0,

(15)

for every k ∈ N, where a = τq, b = τu; 0 < a < b is a consequence of the
Second law of the thermodynamics. In this paper we look for solutions,
classical and generalized, to system (11), (12) in the form (14). Thus we
shall study the system (15). The problem of existence or nonexistence of
other solutions to (15) we do not treat here and is reported elsewhere [10].

2. Mathematical preliminaries

We repeat some definitions and facts that we need in our method of
solving system (11), which are related to the space of distributions and to
the Laplace transform of distributions (cf. [18],[19]).

Let Ω denote an open subset of R
n (Ω can be R

n on the whole).
The support of a function ϕ defined on Ω (suppϕ) is the closure in Ω of

the set {x ∈ Ω; ϕ(x) �= 0}.
The space D(Ω) is the space {ϕ ∈ C∞(Rn); suppϕ ⊂ Ω}. A sequence

ϕj ∈ D(Ω) converges in D(Ω) to zero if and only if there exists the compact
set K ⊂ Ω :

1. suppϕj ⊂ K, j ∈ N;
2. for every α = (α1, ..., αn) ∈ (N ∪ {0})n ≡ N

n
0 , ϕ

(α)
j → 0 uniformly on

K;

ϕ
(α)
j =

(
∂α1

∂xα1
1

...
∂αn

∂xαn
n

)
ϕj .

D′(Ω) is the space of all continuous linear functionals on D(Ω). It is called
the space of distributions on Ω. The value of a distribution f at a function
ϕ ∈ D′(Ω) will be denoted by 〈f, ϕ〉. The support of a distribution f is the
least closed set D such that 〈f, ϕ〉 = 0 for all ϕ ∈ D(Rn \D). Let D′

+ denote:
D′

+ = {f ∈ D′(R); suppf ⊂ [0,∞)}.
Every locally integrable function f on Ω defines the regular distribution

[f ], 〈[f ], ϕ〉 =
∫
Ω
f(x)ϕ(x)dx, ϕ ∈ D(Ω). Two functions f, g ∈ L1

loc(Ω) define

the same distribution [f ] = [g] on Ω if and only if f = g a.e. on Ω.
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We list some properties of the derivatives of distributions:

1. Every distribution has all derivatives Dαi and DαiDαj = DαjDαi ,
i, j = 1, ..., n.

2. The differentiation of distributions is a linear and continuous mapping
D′(Ω) → D′(Ω).

3. In particular, every regular distribution has derivatives of any order.
In this sense every locally integrable function has distributional derivatives.
The derivative of a regular distribution is not necessarily a regular distrib-
ution.

4. If F ∈ Cα(Ω), α = (α1, ..., αn), then Dα[F ] = [F (α)].
5. Let f ∈ C(p)((−∞, b)), p ∈ N0 = N ∪ {0}, and θa be a func-

tion such that θa(x) = 0, −∞ < x < a < b; θa(x) = 1, 0 ≤ a ≤
x < b. Denote by [θaf ] the regular distribution defined by θaf. Hence,
[θaf ] ∈ D′((−∞, b)), supp[θaf] ⊂ [a,b) or [θaf ] ∈ D′([a, b)), as well. By
[f (p)

∗ ], p ∈ N, we denote the distribution defined by the function f
(p)
∗ equal

to f (p)(x), x ∈ (a, b) and equal to zero for x ∈ (−∞, a) and is not defined
for x = a.

Since the function (θaf)(k) has in general a discontinuity of the first kind
for x = a, k = 0, 1, ..., p, by the well-known formula (cf. [18])

Dp[θaf ] = [f (p)
∗ ] + f (p−1)(a)δ(x− a) + ...+ f(a)δ(p−1)(x− a).

An important subspace of D′(Rn) is the space of tempered distributions
S ′(Rn). Let us define it.

By S(Rn) we denote the space of rapidly decreasing functions ϕ with the
property that for every pair of multi–indices α, β ∈ N

n
0 , sup

x∈Rn
|xαϕ(β)(x)| <

∞.

The space of linear continuous functionals on S(Rn) is called the space
of tempered distributions and is denoted by S ′(Rn).

We will use the Laplace transform of a subspace of distributions, namely
of the space eσtS ′(R+), σ ≥ 0. For an f ∈ eσtS′(R+), f(t) = eσtg(t) the
Laplace transform, denoted by L is L(f)(s) def= 〈g(t), e−(s−σ)t〉, Re s > σ
(cf. [19]). The formalism we use in applications of the so defined Laplace
transform to differential equations is just the same as for the classical Laplace
transform. Moreover, if a function F̂ (s) is the classical Laplace transform
of F (t) = eσtG(t), such that [G] ∈ S ′(R+), then F̂ (s) = L([F ])(s), as well.
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3. Solutions for the case λ = A+Bδ(τ − τ0), τ0 > 0

3.1. Existence and character of the solution

In order for system (15) to have a meaning, Tk(τ), k ∈ N, has to be
defined by a continuous function on (0,∞). Then δ can be regarded as a
measure and we have that the second term on the left hand side of (15)
becomes

(πk)2((πk)2−λ)Tk(τ) = (πk)2((πk)2−A)Tk(τ)−(πk)2BTk(τ0)δ(τ−τ0), k ∈ N.

If the function Tk(τ) does not have classical derivatives equations have to
be satisfied with the derivatives in the sense of distributions. Therefore we
construct the system in D′([0,∞)) which corresponds to system (15). First
we use the relation

D2 [Tk] =
[(
T

(2)
k

)
∗

]
+ T

(1)
k (0) δ (τ) + Tk (0) δ(1) (τ)

If we introduce the notation T
(1)
k (0) ≡ T 1

k0 and Tk (0) ≡ Tk0 into (15) it
corresponds in D′([0,∞)) to the following equation

(α(πk)2 + 1)D2[Tk] + (πk)2((πk)2 −A)[Tk] + γ[Sk]

= (πk)2BTk(τ0)δ(τ − τ0) + T 1
k0δ (τ) + Tk0δ

(1) (τ)

aDβ[Sk] + [Sk] = bDβ[Tk] + [Tk].

(16)

Applying the LT to (16) and supposing that for every k ∈ N, Tk(t) and Sk(τ)
are bounded on [0, η] for an η > 0, we have[

(α(πk)2 + 1)s2 + (πk)2((πk)2 −A)
]
T̂k(s) + γŜk(s)

= (kπ)2BTk(τ0)e−sτ0 + (α(πk)2 + 1)(Tk0s+ T 1
k0)

(bsβ + 1)T̂k(s) − (asβ + 1)Ŝk(s) = 0, k ∈ N .

(17)

To solve linear algebraic system (17) we have to find the determinants
Δ0k,Δ1k and Δ2k. To shorten the form of Δik, i = 0, 1, 2, we introduce the
following notations

M = (α(πk)2 + 1), N = a(πk)2((πk)2 −A) + γb,

P = (πk)2((πk)2 −A) + γ.
(18)
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It is easily seen that M > 0 and N = aP + (b − a)γ. Consequently if
P ≥ 0, then N > 0.

Now, we have

Δ0k = −(aMs2+β +Ms2 +Nsβ + P ) ≡ −Δ∗
0k, (19)

and

Δ1k = −(sβ +
1
a
)(aMTk0s+ aMT 1

k0 + a(kπ)2BTk(t0)e−sτ0), (20)

Δ2k = −(sβ +
1
b
)(bMTk0s+ bMT 1

k0 + b(kπ)2BTk(t0)e−sτ0). (21)

The solutions to (17) for k ∈ N are:

T̂k(s) =
sβ + 1

a

Δ∗
0k(s)

(
aMTk0s+ aMT 1

k0 + a(kπ)2BTk(t0)e−sτ0
)
, (22)

and

Ŝk(s) =
sβ + 1

b

Δ∗
0k(s)

(
bMTk0s+ bMT 1

k0 + b(kπ)2BTk(t0)e−sτ0
)
, (23)

where Δ∗
0k is given by (19).

Let us remark that the domain of the analycity of T̂k(s) and Ŝk(s) de-
pends on the numbers of s such that Δ∗

0k(s) = 0. For such numbers cf.
Section 5.

To analyze the existence of Tk(t) and Sk(t) such that L(Tk)(s) = T̂k(s)
and L(Sk)(s) = Ŝk(s), where T̂k(s) and Ŝk(s) are given by (22) and (23),
respectively, we give another form to T̂k(s) and Ŝk(s)using elementary alge-
braic operations

T̂k(s) = Tk0

(
N

aM

Nsβ + P

s3Δ∗
k0(s)

+
(b− a)γ

a

1
sΔ∗

k0(s)

− N

aMs3
+

1
s

)
+ T 1

k0

(
−Nsβ − P

s2Δ∗
k0(s)

+
1
s2

)

+
(kπ)2

M
BTk(t0)e−st0

(
−Nsβ − P

s2Δ∗
k0(s)

+
1
s2

)
,

(24)
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and

Ŝk(s) =
b

a
T̂k(s) − b

(
1
a
− 1
b

)
MTk0s+MT 1

k0 + (kπ)2BTk(t0)e−st0

Δ∗
k0(s)

=
b

a
T̂k(s) − b

(
1
a
− 1
b

)[
MTk0

(
1

aMs1+β
− Ms2 +Nsβ + P

aMs1+βΔ∗
k0(s)

)

+
MT 1

k0 + (kπ)2BTk (t0) e−st0

Δ∗
k0(s)

]
.

(25)

Let us consider first T̂k(s). We have only to prove that there exist

φi(τ), i = 2, 3 and φ1(τ) such that L(φi)(s) =
Nsβ + P

siΔ∗
0k

, i = 2, 3 and

L(φ1)(s) =
1

sΔ∗
0k(s)

. It is easily seen by Theorem 3 and Theorem 5 in [11],

part I, ch. 7, § 2, that such continuous functions exist for τ ≥ 0. Conse-
quently, for τ ≥ 0 and k ∈ N,

Tk(τ) = Tk0
N

aM
φ3(τ) +

b− a

a
γ φ1(τ) − N

2aM
τ2 + 1

−T 1
k0 (φ2(τ) − τ) − (kπ)2B

M
Tk(τ0)H(τ − τ0) (φ2(τ − τ0) − (τ − τ0)) ,

(26)
where H is Heaviside’s function.

With regard to Ŝk(s), given by (25), we need to prove the existence of a
new continuous function φ4, beside φi, i = 1, 2, 3, such that

L(φ4)(s) =
Ms2 +Nsβ + P

aMs1+βΔ∗
0k(s)

.

But this follows just from the same two theorems we cited from [11]. Con-
sequently, we have for τ ≥ 0 and k ∈ N :

Sk(τ) =
b

a
Tk(τ) − b

(
1
a
− 1
b

)[
MTk0

(
τβ

aMΓ(1 + β)
− φ4(τ)

)

+MT 1
k0φ1(τ) + (kπ)2BTk(τ0)H(τ − τ0)φ1(τ − τ0)

]
.

(27)

The next step is to analyze the character of the found solution given by
(26), (27), with respect to system (15).
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1) If B = 0 the solution is a classical one and it can be obtained by the
classical LT.

To prove this we use the relation between the classical LT and integration
(cf. [11], II, p. 18]): If there exist Fi(τ), i = 1, 2, 3, such that

L(Fi)(s) =
s(Nsβ + P )
siΔ∗

0k(s)
, i = 2, 3, L(F1)(s) =

1
Δ∗

0k(s)

converge for an s0,Re s0 > 0, then there exist

L(
t∫

0

F1(τ)dτ)(s) =
1

sΔ∗
0k

, L(
t∫

0

Fi(τ)dτ)(s) =
Nsβ + P

siΔ∗
0k(s)

, i = 2, 3

By mentioned Theorem 3 in [11] I, ch. 7, § 2 Fi, i = 1, 2, 3, exist. By the

uniqueness of the inverse LT, we have that φi(τ) =
τ∫
0
Fi(t)dt. Consequently,

φi(τ) → 0, τ → 0. If we repeat the same operation, then we obtain that

Fi(τ) =
τ∫
0
ψi(t)dt and φi(τ) =

τ∫
0

t∫
0
ψi(u)du dt, i = 1, 2, 3.

In such a way we prove that every φi(τ), i = 1, 2, 3, belongs to C(2)((0,∞))
and that φi(τ) → 0, τ → 0. Now it is easily seen that Tk ∈ C([0,∞)) ∩
C(2)((0,∞)), k ∈ N, as well and that Sk(τ) ∈ C([0,∞)), k ∈ N. The proved
properties of Tk and Sk guarantee that they are a classical solution to (15)
which can be obtained by the classical LT.

Remark. Let us notice that in the case B = 0 system (16) represents
the case when λ is only a constant, λ = A. Consequently, if we take in (26),
(27) B = 0, then these Tk and Sk constitute a solution to system (11), with
conditions (12) and with λ = A (cf. (14)).

2) If B �= 0, then we have a generalized solution to (11), (12), defined
by continuous function (regular distributions).

The problem is concentrated in the last term in the expression for Tk(τ)
(cf. (26)) and at the point τ = τ0. The function H(τ − τ0) (φ2(τ − τ0)
−(τ − τ0)) is continuous because φ2(τ) → 0, τ → 0+, but the derivative of
H(τ−τ0)[φ2(τ−τ0)−(τ−τ0)] does not tend to zero when τ → τ+

0 (it tends to
1) and H(τ − τ0) (φ2(τ − τ0) − (τ − τ0)) does not belong to C1((0,∞)). We
have only that Tk ∈ C([0,∞)). The same conclusion is valued for Sk, k ∈ N.

We can be more precise leaving no doubt about properties of the function

F (τ) ≡ H(τ − τ0) (φ2(τ − τ0) − (τ − τ0)) .
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It defines the regular distribution [F ]. Let [F (i)
∗ (τ)], i = 1, 2, denote the

regular distribution defined by F
(i)
∗ (τ) = F (i)(τ), τ �= τ0, τ0 > 0. Let Fτ0

denote the jump of the function F at τ = τ0. Then we have the following
relation between the distributional derivativeDi[F ] and [F (i)

∗ (τ)] (cf. Section
2):

D2[F ] = [F (2)
∗ (τ)] + Fτ0δ

(1)(τ − τ0) + F (1)
τ0 δ(τ − τ0)

D1[F ] = [F (1)
∗ (τ)] + Fτ0δ(τ − τ0).

In our case it gives

D2[F ] = [F (2)
∗ (τ)] + δ(τ − τ0) and D1[F ] = [F (1)

∗ ]. (28)

Let us also remark that a function f has a derivative in the sense of dis-
tributions if the regular distribution [f ] defined by this function has the
demanded derivative.

Now we can give meaning to the sentence: ”We have a generalized so-
lution to (15)”: Solutions Tk and Sk to (15) are given by the continuous
functions on [0,∞) and Tk(τ) has two derivatives in the sense of distribu-
tions, which have been defined by (28). In this case the restrictions of Tk

on two intervals (0, τ0) and (τ0,∞) are classical solutions to (15)1 on these
intervals. What occurs at the point τ = τ0 one can explain by (28).

As matters stand now, uk and Fk, defined by (14), are distribution valued
functions in ξ ∈ [0, 1) (cf. [12], p. 99). uk(ξ, τ) has four derivatives with
respect to ξ.

3.2. Analytical form of the solution when λ = A+Bδ(τ − τ0), τ > 0

As it is easily seen, the main role in describing T̂k(s) and Ŝk(s) is played
by the function

f̂(s) =
1

Δ∗
0k(s)

.

There exist many possibilities to find the analytical form of f(t), such that
L(f)(s) = f̂(s). We choose to express it by a functional series.

First we give a different form of Δ∗
0k(s), given by (19). Introducing the
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notation e =
b− a

a
γ > 0 we have

1
Δ∗

0k(s)
=

1
aM

1
(s2 + N

Ma)(sβ + 1/a) − e

=
1
aM

1
s2 + N

aM

1
sβ + 1

a

⎛⎝1 +
∞∑
i=1

ei
(

1
s2 + N

Ma

)i (
1

sβ + 1/a

)i
⎞⎠

Let w(τ) = βτβ−1E
(1)
β (z), where z = −

(
1
aτ

β
)
, τ ≥ 0, and Eβ(z) is Mittag–

Leffler’s function (cf. [13]). It is an entire function given by

Eβ(z) =
∞∑

k=0

zk

Γ(αk + 1)
.

We know that L(w)(s) =
(
sβ +

1
a

)−1
(cf. [13]). To find the inverse function

to
1

s2 + N
Ma

we have to consider three different cases which depend on the

sign of N. Thus we have

1
s2 + N

Ma

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
Ma
N L

(
sin
√

N
Maτ

)
, N > 0

L(τ), N = 0

√
−Ma

N L
(

sinh
√
− N

Maτ

)
, N < 0.

Let us prove the existence of a function ψN (τ) such that L(ψN )(s) = ψ̂N (s)
and

ψ̂N (s) =
∞∑
i=1

ei
(

1
s2 + N

Ma

)i (
1

sβ + 1/a

)i

.

For this proof we need some properties of the Mittag-Leffler function By
[14], p.36: E(1)

β (z) = 1
Γ(1−α)

1
z2 + O

(
1
z3

)
, z → ∞, |arg(−z)| < (1 − 3

4β)π.

With this property of E(1)
β (z) it follows that

w(τ) ∼ 1
Γ(1 + β)

τβ−1, τ → 0,

w(τ) ∼ a2β

Γ(1 − β)
τ−(1+β), τ → ∞.
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Consequently, there exists a constant C1 such that

|w(τ)| ≤ C1τ
β−1, 0 < τ <∞.

In case N > 0, we have for τ ≥ 0∣∣∣∣∣∣
√
Ma

N
sin

√
N

Ma
τ ∗ w(τ)

∣∣∣∣∣∣ ≤
√
Ma

N
C1

τ∫
0

uβ−1du ≤
√
Ma

N
C2

τβ

Γ(β + 1)
,

and ∣∣∣∣∣∣∣
⎛⎝√Ma

N
sin

√
N

Ma
τ ∗ w(τ)

⎞⎠∗i∣∣∣∣∣∣∣ ≤ Ci
2

(
Ma

N

) i
2 τ (β+1)i−1

Γ(i(β + 1))
, (29)

where g∗i means i− fold convolution of g (C2 does not depend on i). The
existence of the function ψN (τ),

ψN (τ) =
∞∑
i=1

ei

⎛⎝√Ma

N
sin

√
N

Ma
τ ∗ w(τ)

⎞⎠∗i

(30)

follows from Theorem 2 in [11], I, p. 305.

Therefore, in case N > 0, the function f(τ) such that L(f)(s) =
1

Δ∗
0k(s)

is

f(τ) =
1
aM

√
Ma

N
sin

√
N

Ma
τ ∗ w(τ)

+
( 1
aM

√
Ma

N
sin

√
N

Ma
τ ∗ w(τ)

)
∗ ψN (τ).

(31)

In the other two cases, N = 0 and N < 0 the procedure is just the same.
Now we can give the analytic form to L−1

(
sβ+1/a
Δ∗

0k
(s)

)
as

L−1
(sβ + 1/a

Δ∗
0k(s)

)
=

1
aM

√
Ma

N
sin

√
N

Ma
τ

+
1
aM

√
Ma

N
sin

√
N

Ma
τ ∗ ψN (τ) ≡ ϕ(τ).

(32)

Thus

L−1
(sβ + 1/a

Δ∗
0k

s
)

= ϕ(1)(t),
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because ϕ(0) = 0, (cf. [11] I, p. 99).
The functions Tk(τ) and Sk(τ) given by (26) and (27) can be also rep-

resented by

Tk(τ) = aMTk0ϕ
(1)(τ) + aMT 1

k0ϕ(τ) + a(kπ)2BTk(τ0)H(τ − τ0)ϕ(τ − τ0),
(33)

and
Sk(τ) =

b

a
Tk(τ) −

(
b− a

a
(MTk0f

(1)(τ) +MT 1
k0f(τ)

+ (kπ)2BTk(τ0)H(τ − τ0)f(τ − τ0)
)
,

(34)

where ϕ(τ) and f(τ) have been given by (32) and (31) respectively.
These forms of Tk and Sk have the property that both functions have

been expressed by the same function ψN (τ) (via f and ϕ). However this
function can be approximated by a finite sum

N∑
i=1

ei

⎛⎝√Ma

N
sin

√
N

Ma
τ ∗ w(τ)

⎞⎠∗i

,

and the elements of this sum may be estimated by
(

Ma
N

)i/2
Ci

2
τ (β+1)i−1

Γ(i(β+1)) (cf.
(29)). Moreover, with the same relation (29) one can estimate the error that
is introduced by taking only a finite number of terms in ψN (τ).

4. Solution in case λ = A+BH(τ − τ0)

We consider the system (11), (12) not on (0, 1) × (0,∞), but on two
domains: (0, 1) × (0, τ0) and (0, 1) × (τ0,∞). In the case when the domain
is (0, 1) × (0, τ0), the first equation of system (11) has the form(

∂4

∂ξ4
− α

∂4

∂ξ2∂t2
+A

∂2

∂τ2
+

∂2

∂τ2

)
u(ξ, τ) + γF (ξ, τ) = 0. (35)

In this case a solution to (35) is constituted by the restriction on (0, τ0),
T 0

k (t) and S0
k(τ), of functions Tk(τ) and Sk(τ), respectively in which B = 0

(cf. Remark in Section 3.1). Thus

u0
k(ξ, τ) = Ck sin kπξ · T 0

k (τ), F 0
k (ξ, τ) = Ck sin kπξ · S0

k(τ),

is a classical solution to (11) with λ = A, for (ξ, τ) ∈ (0, 1)× (0, τ0) and the
boundary condition (12).



On the compressed elastic rod with rotary inertia 21

If the domain is (0, 1)× (τ0,∞), the first equation in system (11) has the
form (35) but in which A is replaced by A+ B. A solution for this domain
has been constituted by the restrictions on (τ0,∞), T τ0

k and Sτ0
k , of Tk(τ)

and Sk(τ) given by (26) and (27), respectively but in which instead of A
stands A + B and instead of B stands zero. For the analytical form of Tk

and Sk cf. Section 3.2.
A question arises: Is it possible to extend the function (T 0

k , T
τ0
k ) and

(S0
k , S

τ0
k ), which are continuous on (0, τ0) ∪ (τ0,∞) to continuous functions

on the whole interval (0,∞)? It is easily seen that it is not possible in the
general case. But we can extend the distribution [(T 0

k , T
τ0
k )] and [(S0

k , S
τ0
k )]

to distributions defined on (0,∞) (cf. [12], p. 44). Let us denote them by
T̃k and S̃k respectively.

A solution to system (11) with λ = A+BH (τ − τ0) , τ0 > 0 is now

uk(ξ, τ) = Ck sin kπξ · T̃k and Fk(ξ, τ) = Ck sin kπξ · S̃k.

The explanation of the character of this solution is just the same as we
give in case λ = A+Bδ(τ − τ0), B �= 0 (cf. Section 3.1).

5. Asymptotic behavior of the solution to (15)

Since the domain of the analycity of T̂k(s) and Ŝk(s) (cf. (22), (23)) and
also the asymptotic behavior of the solution found for (15) depend on the
real parts of the values of s for which Δ0k(s) = 0 (cf. [11], I chapter 13),
we consider such complex numbers s. In Section 3.1. we have found Δ0k(s)
and have introduced Δ∗

0k

Δ∗
0k(s) = aMs2+β +Ms2 +Nsβ + P, (36)

where

M = (α(πk)2+1)>0, N =a(πk)2((πk)2−A)+bγ, P =(πk)2((kπ)2−A)+γ.

It is easily seen that N = aP + (b− a)γ, consequently if P ≥ 0 then N > 0.
This connection we will use in the following.

Our analysis of values of s such that Δ0k(s) = 0 we divide in three
parts: P < 0, P = 0, P > 0, taking into account that sβ means the
principal branch.

Case 1. If P < 0 then there exists at least one ρ > 0 such that Δ0k (s) =
0, s = ρ.
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To show this we only have to write

aMρ2+β +Mρ2 = (−N) ρβ + (−P ) . (37)

Then, the existence of a ρ > 0 follows from the graph of the two functions
y1 = aMρ2+β +Mρ2 and y2 = (−N)ρβ + (−P ) (see Figure 2).

Figure 2. Graph of the functions y1 (ρ) and y2 (ρ)

Case 2. If P = 0. Then there are three values s1, s2 and s3 such that
Δ0k(si) = 0, i = 1, 2, 3. Namely, s1 = 0, and for s2 and s3 we have
Re s2 < 0,Re s3 < 0.

To show this, note that by the relation between P and N it follows

N > 0. If we apply the well–known result that
p∑

j=1
wj cannot vanish if

γ ≤ argwj < γ + π, j = 1, ..., p, where γ is a real constant (cf. [16]), then
sβ(aMs2 +Ms2−β +N) cannot vanish for s,Re s > 0. Neither can it vanish
for s = ρe±iπ/2, ρ �= 0 because

Im (aMρ2e±π +Mρ2−βe±(2−β)π/2 +N) = Mρ sin(2 − β)π/2.

The only complex number s for which Δ0k(s) = 0, Re s ≥ 0 (if P = 0)
is s = 0 and this is a branch point. To prove the existence of the points
s1, s2 we use:

The Argument Principle [17] which says: Let f(z) be a single valued
function on the domain G and suppose that in G it has no singular points.
Let Γ be a closed Jordan rectifying curve which with its interior belongs to
G and which does not contain points s such that f(s) = 0. The number of
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zeros of the function f in the interior of Γ equals to the number of entire
turns of the vector f(s) around the point s = 0 when the point s makes a
round on Γ in the positive sense.

To apply the Argument Principle, note first that s = ρe±iπ, ρ > 0,
cannot be a solution of Δ0k(s) = 0. To prove this, suppose there exists ρ,
such that

f(s) = aMρ2 +Mρ2−β(cosβπ ± i sinβπ) +N = 0.

so that Mρ2−β sinβπ = 0. This contradicts with ρ > 0.

Figure 3. The contour Γ and corresponding curve Γ
′

Now we apply the Argument Principle to the curve Γ shown in the left
part of Figure 3 with R large enough and ε > 0 small enough. Let the
point s run along Γ in the positive sense from the point s = R. Then f (s)
describes the curve such that when R → ∞, the vector f (s) turns once
around the point s = 0. Consequently in the interior of Γ we have single s1
such that f (s1) = 0. Since we proved that Re s1 can not be nonnegative it
follows that Re s1 < 0, Im s1 > 0.

If we take a curve Γ
′
symmetric to Γ with respect to the real axis we can

prove the existence of s2, Re s2 < 0, Im s2 < 0.
Case 3. Suppose that P > 0. Then there exists no complex number

s = ρeiϕ, ρ ≥ 0,−π/2 ≤ ϕ ≤ π/2, such that Δ0k(s) = 0. But there exists
two numbers si, Re si < 0, such that Δ0k(si) = 0, i = 1, 2.

Let us analyze first the case ϕ = ±π/2. Then

Im (−Δ0k(s)) = ρβ(N − aMρ2) sin(±βπ
2
),

Re (−Δ0k(s)) = ρβ(N − aMρ2) cos(±βπ
2
) −Mρ2 + P.

(38)
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If there exists ρ > 0 such that Δ0k(ρe±π/2) = 0, we would have Im (−Δ0k(s)) =
0 and Re (−Δ0k(s)) = 0 or N − aMρ2 = 0 and Mρ2 − P = 0. This is pos-
sible only if N = aP. Consequently, we would have a = b or γ = 0 which is
contrary to our suppositions.

In order to prove that there is no complex number s = ρeiϕ, ρ >
0, −π

2 < ϕ < π
2 , such that Δ0k(s), we start from another form of the

equation Δ0k(s) = 0, namely(
Ms2 +

N

Ma

)(
1
a

+ sβ
)

=
1
a

b− a

γ
. (39)

From (37) it follows directly that s cannot be a real positive number.
Consequently we can consider two cases 0 < ϕ < π/2 and −π/2 < ϕ < 0.

Let there existed a ϕ, 0 < ϕ < π/2 such that s = ρeiϕ satisfies (39).
Then we would have

ρ2ei2ϕ +
N

Ma
= r1e

iθ and ρβeiβϕ +
1
a

= r2e
−iθ,

where r1r2 = 1
a

b−a
γ and θ ∈ R.

Since 0 < ϕ < π/2, then

0 < arg(ρ2ei2ϕ +
N

Ma
) < π; and 0 < arg(ρβeiβϕ +

1
a
) < π/2.

Consequently, θ would satisfy two inequalities: 0 < θ < π and 0 < −θ < π/2
which is impossible.

The same conclusion holds if −π
2 < ϕ < 0. Thus we proved the first part

of the assertion in case P > 0.
From (39) it follows that there exists no ρ > 0 such that s = ρeiπ and

vanishing Δ0k(s). Because in this case for such s = ρeiπ in (39) we would
have that the product of a real and a complex number equals to a real
number.

The existence of s1 and s2, with Re s1 < 0 and Re s2 < 0 we can prove
just in the same manner as we did for the case P = 0. When R → ∞, the
vector f (s) turns once around the point s = 0. Consequently, we have a
point s1 in the interior of Γ and Re s1 < 0, Im s1 > 0. The existence of s2
one can prove taking the curve Γ

′
symmetric to Γ with respect to the real

axis (cf. Figure 3).

Remark 1 Note that in all cases of system (11) treated here, that is, λ =
A, λ = A + Bδ(t − t0), λ = A + BH(t − tτ0), B �= 0. τ0 > 0, we have the
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same value of Δ∗
0k. Only in the case λ = A + BH(t − τ0), B �= 0, we have

to take in Δ∗
0k, A+B instead of A. Also, since P does not depend on α, the

discussion with different P gives the same result for any α > 0. Thus, the
rotary inertia of the rod does not influence the asymptotic behavior of the
rod.

6. Conclusions

In this work we studied transversal vibrations of an elastic axially com-
pressed rod on a fractional derivative type of viscoelastic foundation. We
assumed that the axial force has a constant and a time dependent part.
Thus, we generalized the results of our work [1].

Our main result concerns the influence of the fractional type viscoelastic
foundation on the stability of the rod.

We compare the asymptotic behavior of solutions to system (11) and
the equation which is obtained from system (11) when γ = 0, to judge the
contribution of a viscoelastic foundation to the stability of the rod.

Let in system (11) λ be λ = A + Bδ(τ − τ0), τ0 > 0 with A and B
constants (see Section 3). Then, we distinguish two cases:

Case 1: B = 0 and λ = A :
If λ < (πk)2 +

γ

(πk)2
, then P > 0 and we have two complex numbers

si, Re si < 0 such that Δ0k(si) = 0, i = 1, 2.
If λ = (πk)2 +

γ

(kπ)2
, then P = 0 and there are three numbers s1 =

0, s2, s3, Re si < 0, i = 2, 3, such that Δ0k(si) = 0, i = 1, 2, 3.
If λ > (πk)2 +

γ

(kπ)2
, then P < 0 and there is at least one s, Re s > 0

such that Δ0k(s) = 0.
Suppose now that in system (11) γ = 0. Then for the function Tk(t) (see

(15)) we have the equation

T
(2)
k (t) − qkTk(t) = 0, t > 0,

where

qk =
(kπ)2

α(kπ)2 + 1
(λ− (kπ)2).

If λ < (kπ)2, then qk < 0 and

Tk(t) = C1 cos
√−qkt+ C2 sin

√−qkt. (40)
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If λ = (kπ)2, then qk = 0 and

Tk(t) = C1t+ C2. (41)

If λ > (kπ)2, then qk > 0 and

Tk(t) = C1 cosh
√
qkt+ C2 sinh

√
qkt. (42)

We note that the initial condition ∂u
∂t (x, 0) = 0 leads to C1 = 0 in (41). In

this case both (40) and (41) are bounded functions of time and the solution
u (ξ, τ) = Tk (τ) sin kπξ (see (14)) is also bounded while for case (42) the
solution u (ξ, τ) = Tk (τ) sin kπξ is unbounded.

In application we are interested in lowest mode k = 1 the stability is
guaranteed if (note that λ = A):

In the case γ �= 0 and k = 1

P = π2(π2 −A) + γ, (43)

or
A ≤ π2 +

γ

π2
. (44)

In the case γ = 0 we conclude that in the cases (40), (41) we have
stability. Thus with k = 1, λ = A we obtain

A = λ ≤ π2. (45)

The stability bound (45) is in agreement with the results of static (cf. [4])
and dynamic methods (cf. [20] for the case without rotary inertia). By com-
paring (43) and (45) we conclude that the foundation increases the stability
boundary of the rod.

If B = 0 in λ = A + Bδ (τ − τ0) we have a classical solution Tk (τ) and
Sk (τ) .

Case 2: B �= 0 in λ = A+Bδ (τ − τ0) :
If B �= 0 we have a generalized solution defined by a continuous function

(see remark in Section 3.1). The solution to (11), uk (x, τ) , Fk (x, τ) may
be viewed as a distribution valued function in x ∈ [0, 1). As far as stability
is concerned we have similar conclusions. The only difference being that in
(44) we have to take A + B instead of A. Thus the stability bound in this
case reads

A+B ≤ π2 +
γ

π2
. (46)

Again, the foundation increases the stability bound. The rotary inertia does
not increase the stability bound in both cases.
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