DISTRIBUTION ANALOGUE OF THE TUMARKIN RESULT¹

VESNA MANOVA-ERAKOVIK, N. PANDESKI, LJ. NASTOVSKI

(Presented at the 1st Meeting, held on February 24, 2006)

A b s t r a c t. We give a distribution analogue of the Tumarkin result that concerns approximation of some functions by sequence of rational functions with given poles.

AMS Mathematics Subject Classification (2000): 46F20, 30E25, 32A35 Key Words: Distribution, boundary value of function, approximation

1. Background and the Tumarkin result

For the needs of our subsequent work we will define the Blashcke product in the upper half plane Π^+ . Assume

$$\sum_{n=1}^{\infty} \frac{y_n}{1+|z_n|^2} < \infty, z_n = x_n + iy_n \in \Pi^+.$$
(1.1)

Then the Blaschke product with zeros z_n is

$$B(z) = \left(\frac{z-i}{z+i}\right)^m \prod_{n=1}^{\infty} \frac{|z_n^2+1|}{z_n^2+1} \frac{z-z_n}{z-\bar{z}_n}, \ z \in \Pi^+.$$
(1.2)

¹This paper was presented at the Conference GENERALIZED FUNCTIONS 2004, Topics in PDE, Harmonic Analysis and Mathematical Physics, Novi Sad, September 22– 28, 2004

Let

$$z_{k1}, z_{k2}, \dots, z_{kN_k}, k = 1, 2, \dots, Im z_{ki} \neq 1, N_k \le \infty$$
(1.3)

be given complex numbers. Some of the numbers in (1.3) might be equal and also some of them might be equal to ∞ (in that case Imz = 0).

Let R_k be the rational function of the form

$$R_k(z) = \frac{c_0 z^p + c_1 z^{p-1} + \dots + c_p}{(z - z_{kn_1})(z - z_{kn_2})\dots(z - z_{kn_p})}, \ z \in \Pi^+,$$
(1.4)

whose poles are some of the number in (1.3) and $c_0, c_1, ..., c_p$ are arbitrary numbers (if some $z_{ki} = \infty$, then in (1.4) we put 1 instead $z - z_{ki}$).

All z_{ki} , for which $Imz_{ki} > 0$, will be denoted by z'_{ki} and all those z_{ki} , for which $Imz_{ki} < 0$, will be denoted by z''_{ki} .

Let

$$S'_k = \sum_i \frac{Imz'_{ki}}{1 + |z'_{ki}|^2} \quad \text{and} \quad S''_k = \sum_i \frac{(-Imz''_{ki})}{1 + |z''_{ki}|^2}.$$

With (1.5) we denote the following conditions

$$\limsup_{k \to \infty} S'_k < \infty, \quad \lim_{k \to \infty} S''_k = \infty.$$
(1.5)

Let B_k be the Blaschke product whose zeros are the numbers, $z_{k1}, z_{k2}, ..., z_{kN_k}$, from the numbers (1.3), k = 1, 2, 3, ... Assume (1.5). Then $\mu(z) = \lim_{k \to \infty} \log |B_k(z)|$ is subharmonic on Π^+ and differs from $-\infty$. Let u(z)be the harmonic majorant of $\mu(z)$ in Π^+ . Since $\mu(z) \leq 0$, we have that $u(z) \leq 0$. Let $\phi(z) = e^{u(z)+iv(z)}$, where v(z) is the harmonic conjugate of u(z). Let $B(z), z \in \Pi^+$ be the Blaschke product whose zeros of multiplicity r are all the numbers α that satisfy the following: For arbitrary neighborhood of α and arbitrary number M > 0, there exists K, such that for every k > K either $S'_k > M$ or there are at least r numbers z'_{ki} , from (1.3), in the neighborhood of α .

Tumarkin has proved the following results.

Theorem 1. [4] Assume that (1.5) holds and that ϕ is as above. For a continuous function F on R there exists a sequence $\{R_k\}$ of rational functions of the form (1.4) which converges uniformly on R to F if and only if F coincide almost everywhere on R with the boundary value of meromorphic function F on Π^+ of the form

$$F(z) = \frac{\psi(z)}{B(z)\phi(z)}, \ z \in \Pi^+,$$
 (1.6)

where ψ is any bounded analytic function on Π^+ .

Let σ be a nondecreasing function of bounded variation on R. By $L^p(d\sigma; R), p > 0$ is denoted the set of all complex valued functions F, for which the Lebesgue-Stieltjes integral exists i.e. $\int_{\Omega} |F(x)|^p d\sigma(x) < \infty$.

With (1.7) we denote the following condition:

$$\int_{R} \frac{\log \sigma'(x)}{1+x^2} dx > -\infty \tag{1.7}$$

Theorem 2. Assume (1.5) and (1.7). For a function $F \in L^p(d\sigma; R)$, p > 0 there exists a sequence $\{R_k\}$ of rational functions of the form (1.4) such that $\lim_{k\to\infty_R} \int |F(x) - R_k(x)|^p d\sigma(x) = 0$ if and only if F coincide almost everywhere on R with the boundary value of a meromorphic function F on Π^+ of the form (1.6), where B and ϕ are as in theorem 1, and ψ is analytic function on Π^+ of the class N^+ .

Note. N^+ is the class of all analytic functions on Π^+ which satisfy the following condition

$$\lim_{y \to 0^+} \int_R \frac{\log^+ |f(x+iy)|}{1+x^2} dx = \int_R \frac{\log^+ |f(x)|}{1+x^2} dx$$

2. Main result

If f is a locally integrable function on R, then we will denote by T_f the corresponding regular distribution $\langle T_f, \varphi \rangle = \int_R f(x)\varphi(x)dx, \ \varphi \in D.$

Theorem 3. Let $z_{k1}, z_{k2}, ..., z_{kN_k}, k = 1, 2, ..., Im z_{ki} \neq 1, N_k \leq \infty$ be given complex numbers which satisfy (1.5) and F be of the form (1.6) (as in Theorem 2). Let $T_{F^*}, F^* \in L^p(R)$ be the distribution in D' generated by the boundary value $F^*(x)$ of F(z) on Π^+ . Then there exists a sequence, $\{R_k\}$, of rational functions of the form (1.4) and, respectively, a sequence, $\{T_{R_k}\}, T_{R_k} \in D'$ of distributions, T_{R_k} generated by R_k , satisfying

$$i) T_{R_k} \to T_{F^*}, k \to \infty \ in \ D',$$

ii)
$$\limsup_{k \to \infty} \int_{R} |R_k(x)|^p |\varphi(x)| dx < \infty, \forall \varphi \in D.$$

P r o o f. We can apply Theorem 2, and obtain a sequence $\{R_k\}$ of rational functions of the form (1.4) satisfying

$$\lim_{k \to \infty} \int_{R} |F^*(x) - R_k(x)|^p dx = 0$$
(2.1)

Let $\varphi \in D$ and $supp \varphi = K \subset R$. With $\frac{1}{p} + \frac{1}{q} = 1$, we have

$$| < T_{R_k}, \varphi > - < T_{F^*}, \varphi > |$$

$$= |\int_R [R_k(x) - F^*(x)]\varphi(x)dx|$$

$$\leq (\int_R |R_k(x) - F^*(x)|^p dx)^{1/p} (\int_K |\varphi(x)|^q dx)^{1/q} \leq$$

$$\leq M(m(K))^{1/q} \left(\int_R |R_k(x) - F^*(x)|^p dx\right)^{1/p} \stackrel{(2.1)}{\to} 0, \ k \to \infty.$$

Thus, $T_{R_k} \to T_{F^*}$, as $k \to \infty$, in D'. ii) Let $\varphi \in D$ and $supp \varphi = K \subset R$. Then

$$(\int_{R} |R_{k}(x)|^{p} |\varphi(x)| dx)^{1/p}$$

$$\leq M^{1/p} (\int_{R} |R_{k}(x) - F^{*}(x) + F^{*}(x)|^{p} dx)^{1/p}$$

$$\leq M^{1/p} [(\int_{R} |R_{k}(x) - F^{*}(x)|^{p} dx)^{1/p} + (\int_{R} |F^{*}(x)|^{p} dx)^{1/p}]$$

$$\leq M^{1/p} (\int_{R} |R_{k}(x) - F^{*}(x)|^{p} dx)^{1/p} + M^{1/p} ||F||_{p} \xrightarrow{(2.1)} M^{1/p} ||F||_{p}, k \to \infty$$

It follows that $\int_{R} |R_k(x)|^p |\varphi(x)| dx \le M^{1/p} ||F||_p$, which proves (ii).

REFERENCES

- [1] R. D. C a r m i c h a e l, D. M i t r o v i ć, *Distributions and analytic functions*, John Wiley and Sons, Inc., New York (1988)
- [2] P. L. D u r e n, Theory of H^p Spaces, Acad. Press, New York (1970)
- [3] N. Mochizuki, Nevanlinna and Smirnov classes on the upper half plane, Hocaido Math. J., Vol. 20, Sapporo (1991)
- [4] G. C. T u m a r k i n, Приближение функции рационалыными дробми с заранее заданными полсами, Доклады Академии Наук СССР 1954. Том ХСVIII, N 6

Faculty of Natural Sciences and Mathematics Institute of Mathematics P.O.Box 162 1000 Skopje Macedonia e-mail: vesname@iunona.pmf.ukim.edu.mk