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A b s t r a c t. We prove the existence and uniqueness of global general-
ized solutions in a Colombeau algebra of generalized functions to semilinear
hyperbolic systems with nonlinear boundary conditions. Our analysis covers
the case of non-Lipschitz nonlinearities both in the differential equations and
in the boundary conditions. We admit strong singularities in the differential
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1. Introduction

We study existence and uniqueness of global generalized solutions to
mixed problems for semilinear hyperbolic systems with nonlinear nonlocal
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boundary conditions. Specifically, in the domain Π = {(x, t) | 0 < x < l,
t > 0} we study the following problem:

(∂t + Λ(x, t)∂x)U = F (x, t, U), (x, t) ∈ Π (1)

U(x, 0) = A(x), x ∈ (0, l) (2)

Ui(0, t) = Hi(t, V (t)), k + 1 ≤ i ≤ n, t ∈ (0,∞)
Ui(l, t) = Hi(t, V (t)), 1 ≤ i ≤ k, t ∈ (0,∞) , (3)

where U , F , and A are real n-vectors, Λ = diag(Λ1, . . . ,Λn) is a diago-
nal matrix, Λ1, . . . ,Λk < 0, Λk+1, . . . ,Λn > 0 for some 1 ≤ k ≤ n, and
V (t) = (U1(0, t), . . . , Uk(0, t), Uk+1(l, t), . . . , Un(l, t)). Due to the conditions
imposed on Λ, the system (1) is non-strictly hyperbolic. Note also that the
boundary of Π is not characteristic. We will denote H = (H1, . . . , Hn).

Special cases of (1)–(3) arise in laser dynamics [7, 20, 21] and chemical
kinetics [22].

All the data of the problem are allowed to be strongly singular, namely,
they can be of any desired order of singularity. This entails nonlinear super-
positions of distributions in the right-hand sides of (1)–(3), including com-
positions of the singular initial data and the singular characteristic curves.
To tackle this complication, we use the framework of the Colombeau alge-
bra of generalized functions G(Π) [1, 16]. We show that all superpositions
appearing here are well defined in G(Π).

We establish a positive existence-uniqueness result in G(Π) for the prob-
lem (1)–(3) with strongly singular initial data and with nonlinearities of the
following type (more detailed description is given in Section 3): The func-
tions F and H may be non-Lipschitz with less than quadratic growth in U
and V .

For different aspects of the subject we refer the reader to sources [3, 4, 10,
11, 12, 14, 15, 16, 17]. The essential assumption made on F in papers [12, 16]
is that grad UF is globally bounded uniformly over (x, t) varying in any
compact set. In contrast to [12, 16], in [11] we investigated the problem (1)–
(3) with Colombeau-Lipschitz nonlinearities in (1) and (3). This means that
the functions F and H are Lipschitz with Colombeau generalized numbers as
Lipschitz constants and therefore their gradients are not globally bounded.

M. Nedeljkov and S. Pilipović [14, 15] deal with Cauchy problems for
semilinear hyperbolic systems (1) with F slowly increasing at the infinity.
The nonlinear term is replaced by a suitable regularization Fε having a
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bounded gradient with respect to U for every fixed ε and converging to F
as ε → 0. The regularized system is solved in G(R2). Moreover, in [14]
the components of Λ are allowed to be 1-tempered generalized functions.
The authors replace Λ by a regularization which is a 1-tempered generalized
function of bounded growth and solve the regularized problem.

T. Gramchev [3, 4] investigates weak limits for semilinear hyperbolic
systems and nonlinear superpositions for strongly singular distributions ap-
pearing in these systems. He establishes an optimal link between the singu-
larity of the initial data and the growth of the nonlinear term. Weak limits
of strongly singular Cauchy problems for semilinear hyperbolic systems with
bounded, sublinear, and superlinear growth are investigated in [2, 9, 18, 19].

In the present paper we develop some results of [10] and [12] to the case
of non-Lipschitz nonlinearities in (1) and (3). In Section 2 we compile some
facts about Colombeau algebra of generalized functions. In Section 3 we
state and prove our main result.

2. Preliminaries

In this section we summarize the relevant material on the full version of
Colombeau algebras of generalized functions.

Let Ω ⊂ Rn be a domain in Rn. By G(Ω) and G(Ω) we denote the full
version of Colombeau algebra of generalized functions over Ω and Ω, respec-
tively. To define G(Ω) and G(Ω), we first introduce the mollifier spaces used
to parametrize the regularizing sequences of generalized functions. Given
q ∈ N0, denote

Aq(R) =
{
ϕ ∈ D(R)

∣∣∣
∫

ϕ(x) dx = 1,

∫
xkϕ(x) dx = 0 for 1 ≤ k ≤ q

}
,

Aq(Rn) =
{
ϕ(x1, . . . , xn) =

n∏
i=1

ϕ0(xi)
∣∣∣ ϕ0 ∈ Aq(R)

}
.

Set
E(Ω) = {u : A0 × Ω → R

∣∣∣ u(ϕ, .) ∈ C∞(Ω) ∀ϕ ∈ A0(R)}.
We define the algebra of moderate elements EM (Ω) to be the subalgebra of
E(Ω) consisting of the elements u ∈ E(Ω) such that

∀K ⊂ Ω compact, ∀α ∈ Nn
0 , ∃N ∈ N such that ∀ϕ ∈ AN (Rn)

∃C > 0, ∃η > 0 with sup
x∈K

|∂αu(ϕε, x)| ≤ Cε−N , 0 < ε < η,
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where ϕε(x) = 1/εnϕ(x/ε). The ideal N (Ω) (see [5]) consists of all u ∈
EM (Ω) such that

∀K ⊂ Ω compact, ∃N ∈ N such that ∀q ≥ N, ∀ϕ ∈ Aq(Rn)

∃C > 0, ∃η > 0 with sup
x∈K

|u(ϕε, x)| ≤ Cεq−N , 0 < ε < η.

Finally,
G(Ω) = EM (Ω)/N (Ω).

This is an associative and commutative differential algebra. The algebra
G(Ω) on an open set Ω is constructed in the same manner, with Ω in place
of Ω. Note that G(Ω) admits a canonical embedding of D′(Ω). We will use
the notation U = [(u(ϕ, x))ϕ∈A0(Rn)] for the elements U of G(Ω) with the
representative u(ϕ, x).

One of the advantages of using the Colombeau algebra of generalized
functions G lies in the fact that in a variety of important cases the division by
generalized functions, in particular the division by discontinuous functions
and measures, is defined in G. Complete description of the cases when the
division is possible in the full version of Colombeau algebras is given by the
following criterion of invertibility [10] (the criterion of invertibility for the
special version of Colombeau algebras Gs(Ω) is proved in [6]):

Theorem 1. Let U ∈ G(Ω) (resp. U ∈ G(Ω)). Then the following two
conditions are equivalent:
(i) U is invertible in G(Ω) (resp. in G(Ω)), i.e., there exists V ∈ G(Ω) (resp.
V ∈ G(Ω)) such that UV = 1 in G(Ω) (resp. in G(Ω)).
(ii) For each representative (u(ϕ, x))ϕ∈A0(Rn) of U and each compact set
K ⊂ Ω (resp. K ⊂ Ω) there exists p ∈ N such that for all ϕ ∈ Ap(Rn) there
is η > 0 with inf

K
|u(ϕε, x)| ≥ εp for all 0 < ε < η.

3. Existence and uniqueness of a Colombeau generalized solution

We will need a notion of a generalized function whose growth is more
restrictive than the 1/ε-growth (as in the definition of EM ).

Definition 2. ([10]) Let Ω ⊂ Rn be a domain in Rn. Given a function
γ : (0, 1) 7→ (0,∞), we say that an element U ∈ G(Ω) (resp. U ∈ G(Ω)) is
locally of γ-growth, if it has a representative u ∈ EM (Ω) (resp. u ∈ EM (Ω))
with the following property:
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For every compact set K ⊂ Ω (resp. K ⊂ Ω) there is N ∈ N such that for
every ϕ ∈ AN (Rn) there exist C > 0 and η > 0 with sup

x∈K
|u(ϕε, x)| ≤ CγN (ε)

for 0 < ε < η.

Let K ⊂ Rm be a compact. Let U(x, y) and V (x, y), as functions of x,
are in G(K) for each y ∈ Rn. We will say that U is bounded by V and write
U ≤ V if U and V have representatives u(·, y) ∈ EM (K) and v(·, y) ∈ EM (K),
respectively, satisfying the following property for some N ∈ N: For every
ϕ ∈ AN (Rn) there exists η > 0 such that |u(ϕε, x, y)| ≤ v(ϕε, x, y) for all
x ∈ K, y ∈ Rn, and 0 < ε < η.

We will write F (x, y) ∈ C∞y (Rn;G(Π)) if F is C∞ with respect to y ∈ Rn

and ∂α
y F (·, y) ∈ G(Π) for every α ∈ Nn

0 and each y ∈ Rn. Here ∂α
y =

∂α1+...+αn

∂
α1
y1

...∂αn
yn

.

We now make assumptions on the initial data of the problem (1)–(3).
Let γ(ε) be a function from (0, 1) to (0,∞) such that

γ(ε)γN (ε) = O

(
1
ε

)
(4)

for each N ∈ N. Assume that

1. Λ(x, t) ∈ (G(Π))n, A(x) ∈ (G[0, l])n.

2. Λi for i ≤ n are locally of γ-growth on Π and invertible on Π (see
Theorem 1).

3. ∂xΛi for i ≤ n are locally of γ-growth on Π.

4. F (x, t, y) ∈ (C∞y (Rn;G(Π))n, H(t, z) ∈ (C∞z (Rn;G[0,∞)))n.

5. For every compact set K ⊂ Π, i ≤ n, and α ∈ Nn+2
0 , the function

DαFi(x, t, y) is bounded by a polynomial in G(K)[y] (polynomials over
y with coefficients in G(K)).

6. For every compact set K ⊂ [0,∞), i ≤ n, and α ∈ Nn+1
0 , the function

DαHi(t, z) is bounded by a polynomial in G(K)[z].

7. suppAi(x) ⊂ (0, l) and suppHi(t, 0) ⊂ (0,∞) for i ≤ n.

Assumptions imposed on Λi allow them to be strongly singular and,
even more, to have any desired order of singularity. Assumptions 4–6 state
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that, given U ∈ (G(Π))n and V ∈ (G[0,∞))n, F (x, t, U) and H(t, V ) are
well defined in the Colombeau algebra G. The last assumption ensures the
compatibility of (2) and (3) of any desired order.

Given T > 0, denote

ΠT = {(x, t) | 0 < x < l, 0 < t < T}.

To state the main result of the paper, we suppose additionally that at least
one of the following two assumptions holds.

Assumption 8.
a) H(t, V ) is smooth in t, V and the mapping V 7→ ∇V H(t, V ) is globally

bounded, uniformly over t varying in compact subsets of [0,∞);
b) Given T > 0, there exists CF such that for all 1 ≤ i ≤ n we have

|∇yFi(x, t, y)| ≤ CF log log D(x, t, y),

where D(x, t, y) ∈ G(ΠT )[y].

Assumption 9.
a) Given T > 0, there exists CH such that for all 1 ≤ i ≤ n we have

|∇zHi(t, z)| ≤ CH(log log B(t, z))1/4,

where B(t, z) ∈ G[0, T ][z].
b) Assumptions 2 and 3 are true with γ(ε) = O((log log 1/ε)1/4);
c) Given T > 0, there exists CF such that for all 1 ≤ i ≤ n we have

|∇yFi(x, t, y)| ≤ CF (log log D(x, t, y))1/4,

where D(x, t, y) ∈ G(ΠT )[y].

Theorem 3. Assume that Assumption 8 or 9 is true. Under Assump-
tions 1–7 where the function γ is specified by (4), the problem (1)–(3) has a
unique solution U ∈ G(Π).

Set

EU (α1, α2; T ) = max
{
|∂α1

x ∂α2
t Ui(x, t)|

∣∣∣ (x, t) ∈ ΠT
, 1 ≤ i ≤ n

}
, EF (α1, α2)

= max
{
|∂α1

x ∂α2
t Fi(x, t, y)|

∣∣∣ (x, t, y) ∈ ΠT×{y : |y| ≤ EU (0, 0;T )}, 1 ≤ i ≤ n
}
,
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EH(α) = max
{
|∂α

t Hi(t, z)|
∣∣∣ (t, z) ∈ [0, T ]×{z : |z| ≤ EU (0, 0;T )}, 1 ≤ i ≤ n

}
,

L∇F (U) = max
{
|∇UFi(x, t, U(x, t))| : (x, t) ∈ ΠT

, 1 ≤ i ≤ n
}
,

L∇H(V ) = max
{
|∇V Hi(t, V (t))| : t ∈ [0, T ], 1 ≤ i ≤ n

}
.

Simplifying the notation, we drop the dependence of EF (α1, α2), EH(α),
L∇F (U) and L∇H(V ) on T . Note that T will be a fixed positive number.

To prove the theorem, we need the following lemma.

Lemma 4. Assume that the initial data Λ, F , A, and H are smooth
with respect to all their arguments and satisfy Assumption 7, ∇yF (x, t, y) is
bounded on K ×Rn for every compact K ⊂ Π, and ∇zH(t, z) is bounded on
K×Rn for every compact K ⊂ [0,∞). Then, given T > 0, the problem (1)–
(3) has a unique smooth solution U in ΠT satisfying the following a priori
estimates:

EU (0, 0;T ) ≤ P1,0

(
1

1− q0t0
, n, L∇H(V )

)

×P2,0

(
max

x∈[0,l],1≤i≤n
|Ai(x)|, max

(x,t)∈Π
T

,1≤i≤n

|Fi(x, t, 0)|, max
t∈[0,T ],1≤i≤n

|Hi(t, 0)|
)

(5)
and

EU (m, 0;T ) ≤ P1,m

(
1

1− qmtm
, n, L∇H(V )

)

×P2,m

(
n, max

x∈[0,l],1≤i≤n
|A(m)

i (x)|, max
0≤α1+α2≤m−1

EΛ−1(α1, α2; T ),

max
0≤α1+α2≤m

EΛ(α1, α2;T ), max
1≤|β|+α1+α2≤m

E
∂β

UF
(α1, α2), max

1≤|β|+α1≤m
E

∂β
V H

(α1),

L∇F (U), L∇H(V ), max
1≤α1+α2≤m−1

EU (α1, α2; T )
)

, m ∈ N,

(6)
where

qm = (nL∇F (U) + mEΛ(1, 0;T ))(1 + nL∇H(V )), m ∈ N0,

tm ≤ min{L/EΛ(0, 0;T ), 1/qm}, m ∈ N0,

P1,m is a polynomial of degree 3dT/tme with all coefficients identically equal
to 1, P2,m is a polynomial whose degree depends on m but neither on T nor
on tm and whose coefficients are positive constants depending only on m
and T .
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The lemma directly follows from the proof of Theorem 2.1 in [11]. Note
that similar global a priori estimates for EU (α1, α2;T ), where α1 + α2 ≤ m,
follow from the estimates (5) and (6) as well as from the system (1) and its
suitable differentiations.

P r o o f o f t h e t h e o r e m. The classical smooth solution to
the problem (1)–(3) satisfying estimates (5) and (6) in ΠT for any m ∈ N0

and T > 0 can be constructed by the sequential approximation method. We
now use this solution to construct a representative of the Colombeau solu-
tion. According to the assumptions of the theorem, we consider all the initial
data as elements of the corresponding Colombeau algebras. We choose repre-
sentatives λ, a, f , and h of Λ, A, F , and H, respectively, with the properties
required in the theorem. Let φ = ϕ ⊗ ϕ ∈ A0(R2). Consider a prospective
representative u = u(φ, x, t) of U which is the classical smooth solution to the
problem (1)–(3) with the initial data λ(φ, x, t), a(ϕ, x), f(φ, x, t, u(φ, x, t)),
h(ϕ, t, v(ϕ, t)), where v(ϕ, t) = (u1(φ, 0, t), . . . , uk(φ, 0, t), uk+1(φ, l, t), . . . ,
un(φ, l, t)). For the existence part of the proof, we have to show that u ∈ EM ,
i.e., to obtain moderate growth estimates of u(φε, x, t) in ΠT for any T > 0
in terms of the regularization parameter ε. Set fε(x, t, y) = f(φε, x, t, y),
hε(t, z) = h(ϕε, t, z), and λε(x, t) = λ(φε, x, t).

In the proof we will use a modified notion of EM (Π). Namely, let u ∈
EM (Π) iff u ∈ E(Π) and for every compact set K ⊂ Π there is N ∈ N such
that for every ϕ ∈ AN (Rn) there exists η > 0 with sup

x∈K
|u(φε, x, t)| ≤ γN (ε)

for all 0 < ε < η.
Fix an arbitrary T > 0. Fix N ∈ N to be so large that for all ϕ ∈ AN (R)

there exists ε(ϕ) such that for all ε < ε(ϕ) the following conditions are true:
(a) The moderate estimate (see the definition of EM ) holds for a(ϕε, x),

f(φε, x, t, 0), and h(ϕε, t, 0).
(b) The invertibility estimate (see Theorem 1) holds for λ(φε, x, t).
(c) The local-γ-growth estimate (see Definition 2) holds for λ(φε, x, t)

and ∂xλ(φε, x, t).
(d) For all i ≤ n, all y, z ∈ Rn, and some C > 0 the following estimates

are true: |∇yfi,ε(x, t, y)| ≤ CF log log d(φε, x, t, y) and |∇zhi,ε(t, z)| ≤ C if
Assumption 8 is fulfilled or |∇yfi,ε(x, t, y)|≤CF sup

(x,t)∈Π
T

(log log d(φε, x, t, y))1/4

and |∇zhi,ε(t, z)| ≤ CF sup
(x,t)∈Π

T

(log log b(ϕε, t, z))1/4 if Assumption 9 is ful-

filled, where b and d are representatives of B and D, respectively.
(e)The moderate estimate holds for the coefficients of the polynomial
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d(φε, x, t, y) if Assumption 8 is fulfilled or for the coefficients of the polyno-
mials d(φε, x, t, y) and b(ϕε, t, z) if Assumption 9 is fulfilled.

Given ϕ ∈ AN (R), denote by p1,m(ϕ), p2,m(ϕ), qm(ϕ), and tm(ϕ) the
value of, respectively, P1,m, P2,m, qm, and tm, where U(x, t), Λ(x, t), A(x),
F (x, t, U(x, t)), H(t, V (t)), L∇F (U), L∇H(V ) are replaced by their repre-
sentatives u(φ, x, t), λ(φ, x, t), a(ϕ, x), f(φ, x, t, u(φ, x, t)), h(ϕ, t, v(ϕ, t)),
L∇f (u), and L∇h(v), respectively. On the account of (5) and (6), it suffices
to prove the moderate estimates for p1,m(ϕε) and p2,m(ϕε) for all m ∈ N0.

From the condition (a) and the description of P2,0 given in Lemma 4 it
follows that [(p2,0(ϕ))ϕ∈A0(R)] is a Colombeau generalized number and hence
has the moderateness property. This means that there exists N1 ≤ N such
that for all ϕ ∈ AN1(R) there is 0 < η(ϕ) < ε(ϕ) with

|p2,0(ϕε)| ≤ ε−N1 , 0 < ε < η(ϕ). (7)

Note that any U ∈ G(Π) has the following property: there exists N2 ∈ N
such that for all ϕ ∈ AN1+N2(R) there is ε0(ϕ) ≤ η(ϕ), where the value of
η(ϕ) is the same as in (7), with

sup
Π

T

|u(φε, x, t)| ≤ ε−N1−N2 , 0 < ε < ε0(ϕ), (8)

with the constant N1 being the same as in (7). Obviously, any increase of
N2 and any decrease of ε0(ϕ) will keep this property true. This will allow
us to adjust the values of N2 and ε0(ϕ) according to our purposes.

Set uε(x, t) = u(φε, x, t) and vε(t) = (u1,ε(0, t), . . . , uk,ε(0, t), uk+1,ε(l, t),
. . . , un,ε(l, t)). Given ϕ ∈ AN1+N2(R), let us consider the estimates (5)
and (6) with p1,m(ϕε) and p2,m(ϕε) in place of P1,m and P2,m, respectively,
where 0 < ε < η(ϕ) and the value of η(ϕ) is the same as in (7). On the
account of these estimates, we will obtain the existence once we prove the
following assertion:

(ι) given m ∈ N0, a positive integer N(m), where N(0) = N2, can be
chosen so that for all ϕ ∈ AN1+N2(R) there exists εm(ϕ) such that
[
2n(1+L∇hε(vε))

]6T (1+L∇hε (vε))(L∇fε (uε)+mEλε (1,0;T ))+2T/lEλε (0,0;T )+1≤ε−N(m)

(9)
for all 0 < ε < εm(ϕ), provided u(φ, x, t) ∈ E(ΠT ) satisfies the inequality (8).

Indeed, take tm(ϕε) = 1/2min{L/Eλε(0, 0;T ), 1/qm(ϕε)}. When the
assertion (ι) is fulfilled, then the moderate estimates for p1,m(ϕε) follow
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from the fact that the left-hand side of (9) is an upper bound for p1,m(ϕε).
By (5), (7), and (9) for m = 0, we have the zero-order moderate estimate (8)
for uε(x, t). Moderate estimates of order m ≥ 1 for uε(x, t) are easy to ob-
tain, using induction on m, estimates (6) and (9), assumptions imposed on
the initial data, and the fact that p1,m(ϕε) are polynomials whose degree do
not depend on ε (see Lemma 4).

Let us prove Assertion (ι) under Assumption 8. Recall that at this point
N2 is a constant whose exact value will be fixed below. Fix ϕ ∈ AN1+N2(R).
By (8) and Assumption 8, there exists N3 ∈ N for which the estimate

L∇fε(uε) ≤ CF log log d(φε, x, t, uε) ≤ CF log log ε−N3 , 0 < ε < ε0(ϕ),

is true. Furthermore, there exist constants C > 0 and ki(m) ∈ N such that
the left hand side of (9) is bounded from above by

Ck1(m)(log log ε−N3+γN+1(ε)) ≤ ek2(m) log log ε−N3
γ(ε)k1(m)γN+1(ε)

≤ elog(log ε−N3 )k2(m)
ε−k3(m) ≤ (log ε−N3)k2(m)ε−k3(m) ≤ N

k2(m)
3 ε−k2(m)−k3(m),

where 0 < ε < εm(ϕ). Set N(m) = 2k2(m) + k3(m) and εm(ϕ) = min{η(ϕ),
N
−k2(m)
3 }. It is important to note that the k2(0) and k3(0) can be fixed so

that the estimates with m = 0 hold for all N2 and all ϕ. This makes the
values N2 = N(0) and ε0(ϕ), which we just fixed, well defined. Assertion
(ι) now follows from the fact that ϕ is an arbitrary function in AN1+N2(R).

Let us now prove Assertion (ι) under Assumption 9. Following the same
scheme as above, fix ϕ ∈ AN1+N2(R), where N2 will be specified below.
By (8) and Assumption 9, there exist N3, N4 ∈ N such that the following
estimates are true:

L∇fε(uε) ≤ CF log log d(φε, x, t, uε) ≤ CF log log(ε−N3), 0 < ε < ε0(ϕ),

L∇hε(vε) ≤ CH log log b(ϕε, t, vε) ≤ CH log log(ε−N4), 0 < ε < ε0(ϕ).

Furthermore, there exist C > 0 and k(m) ∈ N such that the left hand side
of (9) is bounded from above by

[
C log log(ε−N4)

]1/2k(m)(log log ε−N3−N4 )1/2

≤ exp
{
k(m) log(log(log(ε−N4))C)1/2(log log ε−N3−N4)1/2

}

≤ exp
{
k(m) log(log ε−N3−N4)C

}
= (log ε−N3−N4)Ck(m)
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=
(
(N3 + N4) log ε−1

)Ck(m) ≤ (N3 + N4)dCk(m)eε−dCk(m)e,

where 0 < ε < εm(ϕ). We now set N2 = 2dCk(m)e and εm(ϕ) = min{η(ϕ),
(N3+N4)−dCk(m)e}. Note that C and k(0) can be fixed so that the estimates
with m = 0 hold for all N2 and all ϕ. This makes the values N2 = N(0)
and ε0(ϕ) well defined. Assertion (ι) now follows from the fact that ϕ is an
arbitrary function in AN1+N2(R).

Since T > 0 is arbitrary, the existence part of the proof is complete.
The proof of the uniqueness part follows the same scheme. The only

difference is that now we consider the problem with respect to the differ-
ence U − W of two Colombeau solutions U and W . We hence have the
problem (1)–(3) with the right hand sides M2,

1∫

0

∇UF (x, t, σU + (1− σ)W ) dσ · (U −W ) + M1,

and
1∫

0

∇V H(t, σV + (1− σ)VW ) dσ · (V − VW ) + M3,

in (2), (1), (3), respectively. Here Mi ∈ N and VW are equal to V if we
replace U by W . We apply the estimate (5) to the difference U −W . From
the existence part of the proof we see that the first factor in the right-
hand side of (5) has the moderateness property. Since the second factor is
negligible, the uniqueness follows. 2

Example 5. Let n = 1 and

F (x, t, U) = (1+A2(x, t)+B2(x, t)U2)1/2 log log (1 + C2(x, t) + D2(x, t)U2)1/2
,

where A,B,C, D ∈ G(Π). Then

∂UF (x, t, U) =
1 + B2U

(1 + A2 + B2U2)1/2
log log (1 + C2 + D2U2)1/2

+
D2U(1 + A2 + B2U2)1/2

log (1 + C2 + D2U2)1/2(1 + C2 + D2U2)
.

The function F (x, t, U) is non-Lipschitz and satisfies Assumption 8(b).
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Remark 6. Theorem 3 shows that, whatsoever singularity of the ini-
tial data of our problem and whatsoever nonlinearities of F and H allowed
by Assumption 8 (or 9), the problem (1)–(3) has a unique solution in the
Colombeau algebra G(Π).
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