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A b s t r a c t. Polysplines on strips of order p are natural generaliza-
tions of univariate splines. In [3] and [4] interpolation results for cardinal
polysplines on strips have been proven. In this paper the following problems
will be addressed: (i) positivity of the fundamental polyspline on the strip
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n, and (ii) uniqueness of interpolation for polynomially bounded
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and Δpf (x) = 0 for all x ∈ U, where Δp is the p-th iterate of the Laplace
operator Δ = ∂2

∂x2
1
+...+ ∂2

∂x2
n+1

. A famous example in the area of interpolation

with polyharmonic functions are the so-called thin–plate splines (and more
generally, polyharmonic splines) which are linear combinations of translates
of the function ϕ defined by

ϕ (x) = |x|2 log |x| ; (1)

it is well known that (1) is the fundamental solution of the biharmonic
operator Δ2 in R

2. Since the appearance of the fundamental work of Duchon
[8] such ”splines” have been used by numerous authors for interpolation
purposes in the multivariate case, see, for example, the papers of W. Madych
and S. Nelson [18], K. Jetter [10], and the recent monograph [5]. In all these
examples one interpolates data prescribed on a (finite or countable) set of
discrete points.

An alternative and completely different ”data concept” is provided by
the notion of polyspline, introduced by O. Kounchev in [11], and extensively
discussed in [12]. Polysplines distinguish from the widely spread data princi-
ple and allow to interpolate functions prescribed on surfaces of codimension
1; for a concrete application see [17]. As in [3],[4] and [15] we consider here
the case that data functions are prescribed on parallel equidistant hyper-
planes. Let us recall that a function S : R

n+1 → C is a cardinal polyspline of
order p on strips, when S is a 2p− 2 times continuously differentiable func-
tion on R

n+1 which is polyharmonic of order p on the strips (j, j + 1)× R
n,

j ∈ Z, where as usually (a, b) denotes the open interval in R with endpoints
a, b, and Z is the set of all integers. Note that for n = 0 (with the iden-
tification R

0 = {0} and R × {0} = R) a cardinal polyspline of order p on
strips is just a cardinal spline on the real line R of degree 2p − 1 (hence of
order 2p), as discussed by I. Schoenberg in his celebrated monograph [21]
(or [22]). In passing, let us remark that in the recent paper [15] it has been
proved that the cardinal polysplines on strips occur as a natural limit of
polyharmonic splines considered on the lattice Z × aZ

n when the positive
number a −→ 0, and an estimate of the rate of convergence has been given
in [16]. A discussion of wavelet analysis of cardinal polysplines can be found
in [12] and [13].

In the first section we recall briefly the main results about interpolation
with polysplines presented by A. Bejancu, O. Kounchev and the author in
[4] (for the case p = 2 see [3]). An important tool are so-called fundamental
cardinal polysplines which can be seen as the multivariate analog of the
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fundamental cardinal spline L0 : R → R which is by definition the unique
cardinal spline which has exponential decay and the interpolation property

L0 (0) = 1 and L0 (j) = 0 for j ∈ Z, j �= 0. (2)

We call a polyspline Lf a fundamental cardinal polyspline with respect to the
data function f : R

n → C if

Lf (0, y) = f (y) and Lf (j, y) = 0 for j ∈ Z \ {0} , y ∈ R
n (3)

and if there exists C > 0 and ε > 0 such that |Lf (t, y)| ≤ Ce−ε|t| for
all y ∈ R

n, t ∈ R. The existence of fundamental cardinal polysplines is
guaranteed by Theorem 2, and the reader may take formula (9) as a defining
formula.

It is a well-known fact that the fundamental cardinal spline L0 defined
in (2) is non-negative on the unit interval [−1, 1] , see [7]. One aim of this
paper is to discuss the question whether the fundamental cardinal polyspline
Lf : R

n+1 → C is non-negative on the strip [−1, 1]×R
n for any non-negative

integrable function f : R
n → [0,∞) . Unfortunately, we have not been able

to give a positive answer to this question, although numerical experiments
support this conjecture. However, in the second section we shall prove that
the non-negativity of Lf on [−1, 1] × R

n for any non-negative integrable
function f : R

n → [0,∞) is equivalent to the positive definiteness of a
certain family of functions ξ �−→ Lξ (t) where t ranges over [−1, 1] . Here
Lξ is the fundamental cardinal L-spline Lξ : R → R (cf. [19] and [3] for
definition and details) which can be written as

Lξ (t) =
1
2π

∫ ∞

−∞
eits 1(

s2 + |ξ|2
)p

Sp (s, ξ)
ds, (4)

where
Sp (s, ξ) :=

∑
k∈Z

1(
(s + 2πk)2 + |ξ|2

)p . (5)

In the third section we shall show that for the special, and much simpler, case
p = 1 the fundamental cardinal polyspline Lf is non-negative on the strip
[−1, 1]×R

n for any non-negative integrable function f : R
n → [0,∞). More-

over we give a simplified formula for the fundamental cardinal polyspline Lf

in the case p = 1.
The last section is devoted to the question under which conditions in-

terpolation with cardinal polysplines on strips is unique. A simple example
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shows that even for the case p = 1 there is no uniqueness if we do not impose
some growth conditions. The author believes that for polynomially bounded
polysplines interpolation is unique; in the last section it is proved that this is
true for the case p = 1. It is hoped that the results presented here motivate
further research on the subject.

Let us recall some terminology and notation: the Fourier transform of
an integrable function f : R

n → C is defined by

f̂ (ξ) :=
∫

Rn
e−i〈y,ξ〉f (y) dy.

By Bs (Rn) we denote the set of all measurable functions f : R
n → C such

that the integral

‖f‖s :=
∫

Rn

∣∣∣f̂ (ξ)
∣∣∣ (1 + |ξ|s) dξ (6)

is finite (see Definition 10.1.6 in Hörmander [9], vol. 2). By S (Rn) we denote
the Schwartz space of rapidly decreasing functions on R

n, see [25, p. 19].
A function f : R

n → R is radially symmetric if f (x) depends only on the
Euclidean norm |x| =

√
x2

1 + ... + x2
n.

2. Interpolation with Polysplines

In this section we recall the interpolation theorem for cardinal polysplines
of order p proved by A. Bejancu, O. Kounchev and the present author. As
mentioned above, this result formally includes the theorem of I. Schoenberg
about cardinal spline interpolation by setting n = 0. But it should be
emphasized that the proof of Theorem 1 relys on results of Ch. Micchelli
in [19] about cardinal interpolation with so-called L-splines which itself is a
generalization of Schoenberg’s theorem.

Theorem 1. Let γ ≥ 0 be fixed. Let integrable functions fj : R
n → C

be given such that fj ∈ B2p−2 (Rn)∩L1 (Rn) , and assume that the following
growth condition holds

‖fj‖2p−2 ≤ C (1 + |j|γ) for all j ∈ Z. (7)

Then there exists a polyspline S of order p on strips satisfying

S (j, y) = fj (y) for y ∈ R
n, j ∈ Z, (8)

as well as the growth estimate

|S (t, y)| ≤ D (1 + |t|γ) for all y ∈ R
n.
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An important step in the proof of the last theorem is the following:

Theorem 2. Let f ∈ L1 (Rn)∩B2p−2 (Rn) and define Lξ as in (4). Then
the function Lf defined by

Lf (t, y) :=
1

(2π)n

∫
Rn

ei〈y,ξ〉f̂ (ξ)Lξ (t) dξ (9)

is a polyspline of order p such that{
Lf (0, y) = f (y) for y ∈ R

n,
Lf (j, y) = 0 for y ∈ R

n, for all j �= 0.

There exists a constant C > 0 and η > 0 such that for every multi-index
α ∈ N

n+1
0 with |α| ≤ 2 (p − 1) , the decay estimate∣∣∣∣ ∂α

∂xα
Lf (x)

∣∣∣∣ ≤ Ce−η|t| ‖f‖|α| (10)

holds for all x = (t, y) ∈ R
n+1.

Theorem 1 can be deduced from Theorem 2 by considering the Lagrange-
type representation

S (t, y) =
∞∑

j=−∞
Lfj (t − j, y) . (11)

Details and proofs can be found in [4] and [3]. In this paper we shall make
use only of formula (9) which can be taken as a definition for Lf . What
we need in this paper is the following fact which also shows that (9) is
well-defined.

Theorem 3. There exist constants C > 0 and η > 0, such that for all
t ∈ R, ξ ∈ R

n the following estimate holds:∣∣∣Lξ (t)
∣∣∣ ≤ Ce−η|t|. (12)

A proof for p = 2 can be found in [3], and for arbitrary p in [4].

3. A conjecture about positivity of the fundamental spline

Recall that a function g : R
n → C is positive definite if for all y1, ..., yN ∈

R
n and for all complex numbers c1, ..., cN the inequality
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N∑
k,l=1

clckg (yk − yl) ≥ 0

holds; for properties of positive definite functions we refer to [23], cf. also
the nice introduction [24]. It is well-known that the product of two positive
definite functions is positive definite. Moreover it is elementary to see that
the Fourier transform ĝ of a non-negative function g ∈ L1 (Rn) is positive
definite. Conversely, if g ∈ L1 (Rn) is positive definite then the Fourier
transform is a non-negative function on R

n (Theorem of Mathias).
Properties of the fundamental cardinal spline L0 : R → R have been in-

vestigated by de Boor and Schoenberg in [7]. One particularly nice property
is that L0 has an alternating sign on the intervals (k, k + 1) for k ∈ N0, i.e.,
that

(−1)k L0 (x + k) ≥ 0

for all k ∈ N0, x ∈ (0, 1). Numerical experiments have lead us to formulate
the following conjecture:

Conjecture 4. Let f ∈ L1 (Rn)∩B2p−2 (Rn) . If f is non-negative then
the fundamental polyspline Lf has an alternating sign on the strips (k, k + 1)×
R

n for k ∈ N0, i.e., that

(−1)k Lf (t + k, y) ≥ 0

for all k ∈ N0, t ∈ (0, 1) and y ∈ R
n.

Note that for k = 0 the conjecture implies that Lf (t, y) ≥ 0 for all
(t, y) ∈ [−1, 1] × R

n. The following result shows that the latter property is
equivalent to the positive definiteness of the function ξ �−→ Lξ (t) for each
t ∈ [−1, 1] . Note that this formulation is independent of the data function
f .

Theorem 5. Let t ∈ R be fixed. Then the following statements are
equivalent

(i) The function ξ �−→ Lξ (t) is positive definite.
(ii) For each non-negative f ∈ L1 (Rn) such that f̂ ∈ L1 (Rn) the funda-

mental cardinal polyspline Lf is non-negative on {t} × R
n.

(iii) For each non-negative, radially symmetric function f ∈ S (Rn) the
function Lf is non-negative on {t} × R

n.
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P r o o f. For (i) → (ii) let f ∈ L1 (Rn) be non-negative, clearly then
f̂ is positive definite. By assumption, ξ �−→ Lξ (t) is positive definite. By
the above remarks the function ξ �−→ f̂ (ξ) Lξ (t) is positive definite. Since
by Theorem 3 the function ξ �−→ Lξ (t) is bounded, we know that ξ �−→
f̂ (ξ) Lξ (t) is integrable. By the theorem of Mathias (see [24, p. 412]) the
(inverse) Fourier transform is non-negative, i.e., that for all y ∈ R

n

Lf (t, y) =
1

(2π)n

∫
Rn

ei〈y,ξ〉f̂ (ξ) Lξ (t) dξ ≥ 0.

The implication (ii) → (iii) is trivial.
Let us show that (iii) → (i). We use arguments from the proof of

Bochner’s theorem in [1, p. 196]: Let us define fδ (y) := e−
1
2
δ|y|2 which

is radially symmetric and in the Schwartz class. By Theorem 3 the func-
tion ξ �−→ Lξ (t) is bounded. Hence gε defined by gε (ξ) := Lξ (t) e−ε|ξ|2 is
integrable for any ε > 0. Parseval’s identity yields∫

Rn
fδ (y) ĝε (y) dx =

∫
Rn

f̂δ (ξ) gε (ξ) dξ. (13)

On the other hand, assumption (iii) implies that

Lfε (t, y) =
1

(2π)n

∫
Rn

ei〈y,ξ〉e−ε|ξ|2Lξ (t) dξ ≥ 0.

Thus ĝε (y) = (2π)n Lfε (t,−y) ≥ 0 for all y ∈ R
n. So we obtain from (13)

that ∫
Rn

e−
1
2
δ|y|2 ĝε (y) dy =

∣∣∣∣∫
Rn

e−
1
2
δ|y|2 ĝε (y) dy

∣∣∣∣ ≤ M

∫
Rn

f̂δ (ξ) dξ, (14)

where M is a constant such that |gε (ξ)| ≤ M for all ξ ∈ R
n and for all

0 < ε ≤ 1. Since ∫
Rn

f̂δ (ξ) dξ = (2π)n fδ (0) ≤ (2π)n

we conclude from (14) and Fatou’s lemma that ĝε is integrable. Now the
inversion formula

gε (ξ) =
1

(2π)n

∫
Rn

ei〈y,ξ〉ĝε (y) dy. (15)
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shows that gε (ξ) := Lξ (t) e−ε|ξ|2 is positive definite. Then Lξ (t) = lim
ε→0

gε (ξ)

for each ξ ∈ R
n (and fixed t), and since the pointwise limit of positive definite

functions is again positive definite, it follows that ξ �−→ Lξ (t) is positive
definite. �

4. Positivity of fundamental cardinal polysplines on [−1, 1] × R
n for p = 1.

Recall that a function g : R
n → C vanishes at infinity if for each ε > 0

there exists a compact subset K of R
n such that |f (x)| < ε for all x ∈ R

n\K.
Now we want to prove

Theorem 6. Let p = 1. Let f ∈ L1 (Rn) such that f̂ ∈ L1 (Rn). If f is
non-negative then Lf defined in (9) is a non-negative function on R

n+1.

P r o o f. From the definition of Lf and Lξ it follows that

Lf (t, y) =
1

(2π)n+1

∫
Rn

∫ ∞

−∞
ei〈y,ξ〉eits f̂ (ξ)(

s2 + |ξ|2
)

S1 (s, ξ)
dsdξ.

Further it can be shown that (ξ, s) �−→ f̂ (ξ) /
(
s2 + |ξ|2

)
S1 (s, ξ) is in-

tegrable. The Lemma of Riemann-Lebesgue (see [25, p. 2]) shows that
Lf : R

n+1 → C vanishes at infinity. Now the next theorem applied to Lf

and j ∈ Z, shows that Lf is a non-negative function. �

Theorem 7. Let S : R
n+1 → C be a cardinal polyspline of order 1 on

strips which vanishes at infinity and let j ∈ Z. If

S (j, y) ≥ 0 and S (j + 1, y) ≥ 0 for all y ∈ R
n

then S is non-negative on [j, j + 1] × R
n.

P r o o f. Let ε > 0 be arbitrary. Since S vanishes at infinity we can find
R > 0 such that |S (t, y)| < ε if |t| > R or |y| > R. Define GR = [j, j + 1] ×
{y ∈ R

n : |y| ≤ R + 1} . Then S (t, y) ≥ −ε for (t, y) in the boundary of GR.
Since S is a harmonic function in the interior of GR and continuous on GR

the minimum principle yields that S (t, y) ≥ −ε for all (t, y) ∈ GR. Hence
S (t, y) ≥ −ε for given (t, y) ∈ GR. Since ε > 0 is arbitrary we obtain
S (t, y) ≥ 0 and the proof is accomplished. �
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In the rest of this section we want to give an explicit formula for Lξ

in the case that p = 1 (see (16)) which clearly leads to a simpler formula
for fundamental cardinal polysplines, see formula (17). From formula (16)
one can see that ξ �−→ Lξ (t) is positive definite for each t ∈ [−1, 1] , so
one obtains with Theorem 5 a second proof that Lf is non-negative on
[−1, 1] × R

n for a non-negative data function f ∈ L1 (Rn) such that f̂ ∈
L1 (Rn) . Unfortunately, for p ≥ 2 we do not have simple formulas for Lξ.

Let us compute Sp (s, ξ) defined in (5) for p = 1. An application of
Poisson’s summation formula (see [6, p. 204]) shows that

2
∑
k∈Z

y

y2 + (x + 2πk)2
=

∑
k∈Z

e−|k|yeikx =
1 − e−2y

1 − 2e−y cos x + e−2y
.

We apply this to x := s and y := |ξ| > 0 and obtain for Sp defined in (5)
with p = 1

S1 (s, ξ) =
1 − e−2|ξ|

2 |ξ| (1 − 2e−|ξ| cos s + e−2|ξ|) .

Hence we obtain

Lξ (t) =
1
π

|ξ|
1 − e−2|ξ|

∫ ∞

−∞
eits 1 − 2e−|ξ| cos s + e−2|ξ|

s2 + |ξ|2 ds.

Since 2eits cos s = eits
(
eis + e−is

)
= ei(t+1)s + eis(t−1) we see that Lξ (t) is

equal to

|ξ|
π

1 + e−2|ξ|

1 − e−2|ξ|

∫ ∞

−∞
eits

s2 + |ξ|2 ds − |ξ|
π

e−|ξ|

1 − e−2|ξ|

∫ ∞

−∞
ei(t+1)s + eis(t−1)

s2 + |ξ|2 ds.

Since
∫ ∞
−∞ eits 1

s2+|ξ|2 ds = π
|ξ|e

−|t|·|ξ| a straightforward computation shows
that

Lξ (t) =
1

e|ξ| − e|−ξ|
[(

e|ξ| + e−|ξ|) e−|t|·|ξ| − e−|t+1|·|ξ| − e−|t−1|·|ξ|] .

If t ≥ 1 one obtains easily Lξ (t) = 0. For 0 ≤ t ≤ 1 one has

Lξ (t) =
e|ξ|(1−t) − e−(1−t)·|ξ|

e|ξ| − e−|ξ| =
sinh (|ξ| (1 − t))

sinh |ξ| .

We now summarize the result:
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Corollary 8. Let p = 1. For |t| ≥ 1 the function Lξ vanishes and for
0 ≤ t ≤ 1

Lξ (t) =
sinh (|ξ| (1 − t))

sinh |ξ| . (16)

In case ξ = 0 the function t �−→ L0 (t) is a linear spline and L0 (t) = 1 − t
for 0 ≤ t ≤ 1.

Now Theorem 2 for p = 1 can be read as follows:

Theorem 9. Let f ∈ L1 (Rn) such that f̂ ∈ L1 (Rn) . Then there exists
a continuous function Lf : R

n+1 → C which is harmonic in (−1, 0)×R
n and

(0, 1) × R
n such that

Lf (0, y) = f (y)

for y ∈ R
n, and it vanishes for all (t, y) ∈ R

n+1 with |t| ≥ 1. Further for
0 ≤ t ≤ 1

Lf (t, y) =
1

(2π)n

∫
Rn

ei〈y,ξ〉f̂ (ξ)
sinh (|ξ| (1 − t))

sinh |ξ| dξ. (17)

The fundamental linear interpolation spline has nice symmetry prop-
erties around x = 1

2 . In the following we want to formulate a symmetry
property for cardinal polysplines of order 1. Formula (17) suggests that we
have to use the addition theorem for sinhx = 1

2 (ex − e−x):

sinh x − sinh y = 2 cosh
x + y

2
sinh

x − y

2
. (18)

Proposition 10. For 0 ≤ s ≤ t ≤ 1 the following relation holds

Lξ (s) = Lξ (t) + 2Lξ
(

1 − t − s

2

)
cosh

(2 − s − t) |ξ|
2

. (19)

P r o o f. Put x = (1 − s) |ξ| and y = (1 − t) |ξ| in (18): then x + y =
(2 − s − t) |ξ| and x − y = (t − s) |ξ| and we have

sinh [(1 − s) |ξ|] − sinh [(1 − t) |ξ|] = 2 cosh
(2 − s − t) |ξ|

2
sinh

(t − s) |ξ|
2

.

(20)
Now divide (20) by sinh |ξ| and use formula (16). �

As an illustration put s = 1
2 − δ and t = 1

2 + δ in (19). Then

Lξ
(

1
2
− δ

)
− Lξ

(
1
2

+ δ

)
= 2 cosh

(
1
2
|ξ|

)
· Lξ (1 − δ)
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Multiply (19) with f̂ (ξ) ei〈y,ξ〉 and integrate with respect to dξ. Then (17)
implies that for an integrable function f the following formula holds:

Lf (
1
2
− δ, y) − Lf (

1
2

+ δ, y) =
2

(2π)n

∫
Rn

ei〈y,ξ〉f̂ (ξ) cosh(
1
2
|ξ|)Lξ (1 − δ) dξ.

5. Uniqueness of interpolation for polynomially bounded polysplines
for p = 1

In this section we want to prove uniqueness results for interpolation:
suppose that S1 and S2 are two polysplines interpolating the same data. It
is clear that S2 − S1 vanishes on {j} × R

n for all j ∈ Z. We would like to
conclude that S2 − S1 = 0. The following simple example shows that we
have to impose some conditions on the interpolation polysplines even in the
case p = 1 in order to obtain uniqueness:

Example 11. There exists a harmonic function f on R
2 which vanishes

on all hyperplanes {j} × R, j ∈ Z without being identically zero, namely

f (t, y) = sin πt · eπy.

As mentioned in the introduction we believe that interpolation is unique
if we assume that S is polynomially bounded, i.e., that there exists a poly-
nomial p (x) such that

|S (x)| ≤ |p (x)|
for all x ∈ R

n+1.

In the following we shall prove this for p = 1. In the case that S1 and S2

vanish at infinity we could use Theorem 7 applied to S2 − S1 and S1 − S2:
then S2 − S1 and S1 − S2 are non-negative functions on the whole space,
hence S2 − S1 = 0.

Instead of the minimum principle we will use the Schwarz reflection prin-
ciple for harmonic functions (see e.g., [2, p. 66]) in order to prove uniqueness.
Reflection principles for polyharmonic functions have been investigated by
several authors and we refer to [20] for a nice introduction. However, it
seems that the latter results can not be used for a proof of uniqueness of
interpolation for polysplines of order p > 1.

Proposition 12. Suppose that S : R
n+1 → C is a cardinal polyspline

of order 1 on strips with S (j, y) = 0 for all j ∈ Z and y ∈ R
n. Then there
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exists a harmonic function h : R
n+1 → C such that

h (t, y) = S (t, y) for t ∈ (0, 1) and y ∈ R
n, (21)

h (j, y) = 0 for j ∈ Z and y ∈ R
n, (22)

and for each natural number N

max
|y|≤N,t∈R

|h (t, y)| ≤ max
|y|≤N,0≤t≤1

|S (t, y)| . (23)

P r o o f. Clearly S is a harmonic function on the strip (0, 1)×R
n, and it

is continuous on the closure of the strip. By the Schwarz reflection principle,
S can be extended to a continuous function S1 on [−1, 1] × R

n by defining

S1 (−t, y) = −S (t,−y) for t ∈ [−1, 0]

which is harmonic on (−1, 1)× R
n. Further S1 (−1, y) = −S (1,−y) = 0 for

all y ∈ R
n, so S1 vanishes on the boundary of the new strip [−1, 0]×R

n and
clearly the maximum of |h| on {(t, y) : |y| ≤ N,−1 ≤ t ≤ 0} can be estimated
by

max
|y|≤N,−1≤t≤0

|S1 (t, y)| ≤ max
|y|≤N,0≤t≤1

|S (t, y)| .

Now apply the same procedure to S1 : [−1, 0]×R
n at the hyperplane {−1}×

R
n, obtaining an extension S2 on [−2, 0] × R

n of S1 with

max
|y|≤N,−2≤t≤−1

|S2 (t, y)| ≤ max
|y|≤N,−1≤t≤0

|S1 (t, y)| ≤ max
|y|≤N,0≤t≤1

|S (t, y)| .

Proceed in this way for negative j ∈ Z, then for positive j ∈ Z and we arrive
at a harmonic function h : R

n+1 → C with the desired properties. �

Theorem 13. Let S : R
n+1 → C be a cardinal polyspline of order 1 on

strips vanishing on the affine hyperplanes {j}×R
n, j ∈ Z. If S is polynomi-

ally bounded then S is identically zero.

P r o o f. By Proposition 12 there exists a harmonic function h : R
n+1 →

C with (21), (22) and (23). Since S is polynomially bounded, (23) implies
that h is polynomially bounded. It follows that h is a harmonic polynomial,
see [2, p. 41]. A polynomial h (t, y) which vanishes on the hyperplanes
{j} × R

n+1 for all j ∈ Z is identically zero: the equation h (0, y) = 0 for all
y ∈ R

n implies that the (finite) Taylor expansion of h (t, y) contains only non-
trivial summands where the variable t occurs. Hence h (t, y) = t · h1 (t, y)
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with a polynomial h1. Similarly, h1 (1, y) = 0 for all y ∈ R
n implies that

h1 (t, y) = (t − 1)h2 (t, y) . Hence we can write

h (t, y) = t (t − 1) .... (t − m) hm (t, y) .

If m is bigger than the total degree of h we obtain a contradiction, showing
that h must be zero. By (21) we conclude that S must be zero on (0, 1)×R

n.
In order to show that S is zero on R

n+1 consider the polyspline Sj defined
by Sj (t, y) = S (t − j, y) for (t, y) ∈ R

n+1, j ∈ Z. By the above, Sj is zero
in (0, 1) × R

n. Hence S must be zero on (j, j + 1) × R
n. �

Corollary 14. Interpolation with polynomially bounded cardinal poly-
splines of order 1 on strips is unique.
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