Bulletin T.CXXXIII de l'Académie serbe des sciences et des arts - 2006
 Classe des Sciences mathématiques et naturelles Sciences mathématiques, № 31

ON POSITIVITY PROPERTIES OF FUNDAMENTAL CARDINAL POLYSPLINES ${ }^{1}$

H. RENDER ${ }^{2}$

(Presented at the 1st Meeting, held on February 24, 2006)
A bstract. Polysplines on strips of order p are natural generalizations of univariate splines. In [3] and [4] interpolation results for cardinal polysplines on strips have been proven. In this paper the following problems will be addressed: (i) positivity of the fundamental polyspline on the strip $[-1,1] \times \mathbb{R}^{n}$, and (ii) uniqueness of interpolation for polynomially bounded cardinal polysplines.

AMS Mathematics Subject Classification (2000): 41A82
Key Words: Cardinal splines, L-splines, fundamental spline, polyharmonic functions, polysplines

1. Introduction

A function $f: U \rightarrow \mathbb{C}$ defined on an open subset U of the euclidean space \mathbb{R}^{n+1} is polyharmonic of order p if it is $2 p$ times continuously differentiable

[^0]and $\Delta^{p} f(x)=0$ for all $x \in U$, where Δ^{p} is the p-th iterate of the Laplace operator $\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\ldots+\frac{\partial^{2}}{\partial x_{n+1}^{2}}$. A famous example in the area of interpolation with polyharmonic functions are the so-called thin-plate splines (and more generally, polyharmonic splines) which are linear combinations of translates of the function φ defined by
\[

$$
\begin{equation*}
\varphi(x)=|x|^{2} \log |x| ; \tag{1}
\end{equation*}
$$

\]

it is well known that (1) is the fundamental solution of the biharmonic operator Δ^{2} in \mathbb{R}^{2}. Since the appearance of the fundamental work of Duchon [8] such "splines" have been used by numerous authors for interpolation purposes in the multivariate case, see, for example, the papers of W. Madych and S. Nelson [18], K. Jetter [10], and the recent monograph [5]. In all these examples one interpolates data prescribed on a (finite or countable) set of discrete points.

An alternative and completely different "data concept" is provided by the notion of polyspline, introduced by O. Kounchev in [11], and extensively discussed in [12]. Polysplines distinguish from the widely spread data principle and allow to interpolate functions prescribed on surfaces of codimension 1 ; for a concrete application see [17]. As in [3],[4] and [15] we consider here the case that data functions are prescribed on parallel equidistant hyperplanes. Let us recall that a function $S: \mathbb{R}^{n+1} \rightarrow \mathbb{C}$ is a cardinal polyspline of order p on strips, when S is a $2 p-2$ times continuously differentiable function on \mathbb{R}^{n+1} which is polyharmonic of order p on the strips $(j, j+1) \times \mathbb{R}^{n}$, $j \in \mathbb{Z}$, where as usually (a, b) denotes the open interval in \mathbb{R} with endpoints a, b, and \mathbb{Z} is the set of all integers. Note that for $n=0$ (with the identification $\mathbb{R}^{0}=\{0\}$ and $\mathbb{R} \times\{0\}=\mathbb{R}$) a cardinal polyspline of order p on strips is just a cardinal spline on the real line \mathbb{R} of degree $2 p-1$ (hence of order $2 p$), as discussed by I. Schoenberg in his celebrated monograph [21] (or [22]). In passing, let us remark that in the recent paper [15] it has been proved that the cardinal polysplines on strips occur as a natural limit of polyharmonic splines considered on the lattice $\mathbb{Z} \times a \mathbb{Z}^{n}$ when the positive number $a \longrightarrow 0$, and an estimate of the rate of convergence has been given in [16]. A discussion of wavelet analysis of cardinal polysplines can be found in [12] and [13].

In the first section we recall briefly the main results about interpolation with polysplines presented by A. Bejancu, O. Kounchev and the author in [4] (for the case $p=2$ see [3]). An important tool are so-called fundamental cardinal polysplines which can be seen as the multivariate analog of the
fundamental cardinal spline $L^{0}: \mathbb{R} \rightarrow \mathbb{R}$ which is by definition the unique cardinal spline which has exponential decay and the interpolation property

$$
\begin{equation*}
L^{0}(0)=1 \text { and } L^{0}(j)=0 \text { for } j \in \mathbb{Z}, j \neq 0 . \tag{2}
\end{equation*}
$$

We call a polyspline L_{f} a fundamental cardinal polyspline with respect to the data function $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ if

$$
\begin{equation*}
L_{f}(0, y)=f(y) \text { and } L_{f}(j, y)=0 \text { for } j \in \mathbb{Z} \backslash\{0\}, y \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

and if there exists $C>0$ and $\varepsilon>0$ such that $\left|L_{f}(t, y)\right| \leq C e^{-\varepsilon|t|}$ for all $y \in \mathbb{R}^{n}, t \in \mathbb{R}$. The existence of fundamental cardinal polysplines is guaranteed by Theorem 2, and the reader may take formula (9) as a defining formula.

It is a well-known fact that the fundamental cardinal spline L^{0} defined in (2) is non-negative on the unit interval $[-1,1]$, see $[7]$. One aim of this paper is to discuss the question whether the fundamental cardinal polyspline $L_{f}: \mathbb{R}^{n+1} \rightarrow \mathbb{C}$ is non-negative on the strip $[-1,1] \times \mathbb{R}^{n}$ for any non-negative integrable function $f: \mathbb{R}^{n} \rightarrow[0, \infty)$. Unfortunately, we have not been able to give a positive answer to this question, although numerical experiments support this conjecture. However, in the second section we shall prove that the non-negativity of L_{f} on $[-1,1] \times \mathbb{R}^{n}$ for any non-negative integrable function $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ is equivalent to the positive definiteness of a certain family of functions $\xi \longmapsto L^{\xi}(t)$ where t ranges over $[-1,1]$. Here L^{ξ} is the fundamental cardinal L-spline $L^{\xi}: \mathbb{R} \rightarrow \mathbb{R}$ (cf. [19] and [3] for definition and details) which can be written as

$$
\begin{equation*}
L^{\xi}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i t s} \frac{1}{\left(s^{2}+|\xi|^{2}\right)^{p} S_{p}(s, \xi)} d s \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{p}(s, \xi):=\sum_{k \in \mathbb{Z}} \frac{1}{\left((s+2 \pi k)^{2}+|\xi|^{2}\right)^{p}} . \tag{5}
\end{equation*}
$$

In the third section we shall show that for the special, and much simpler, case $p=1$ the fundamental cardinal polyspline L_{f} is non-negative on the strip $[-1,1] \times \mathbb{R}^{n}$ for any non-negative integrable function $f: \mathbb{R}^{n} \rightarrow[0, \infty)$. Moreover we give a simplified formula for the fundamental cardinal polyspline L_{f} in the case $p=1$.

The last section is devoted to the question under which conditions interpolation with cardinal polysplines on strips is unique. A simple example
shows that even for the case $p=1$ there is no uniqueness if we do not impose some growth conditions. The author believes that for polynomially bounded polysplines interpolation is unique; in the last section it is proved that this is true for the case $p=1$. It is hoped that the results presented here motivate further research on the subject.

Let us recall some terminology and notation: the Fourier transform of an integrable function $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is defined by

$$
\widehat{f}(\xi):=\int_{\mathbb{R}^{n}} e^{-i\langle y, \xi\rangle} f(y) d y
$$

By $B_{s}\left(\mathbb{R}^{n}\right)$ we denote the set of all measurable functions $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ such that the integral

$$
\begin{equation*}
\|f\|_{s}:=\int_{\mathbb{R}^{n}}|\widehat{f}(\xi)|\left(1+|\xi|^{s}\right) d \xi \tag{6}
\end{equation*}
$$

is finite (see Definition 10.1.6 in Hörmander [9], vol. 2). By $S\left(\mathbb{R}^{n}\right)$ we denote the Schwartz space of rapidly decreasing functions on \mathbb{R}^{n}, see [25, p. 19]. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is radially symmetric if $f(x)$ depends only on the Euclidean norm $|x|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}$.

2. Interpolation with Polysplines

In this section we recall the interpolation theorem for cardinal polysplines of order p proved by A. Bejancu, O. Kounchev and the present author. As mentioned above, this result formally includes the theorem of I. Schoenberg about cardinal spline interpolation by setting $n=0$. But it should be emphasized that the proof of Theorem 1 relys on results of Ch. Micchelli in [19] about cardinal interpolation with so-called L-splines which itself is a generalization of Schoenberg's theorem.

Theorem 1. Let $\gamma \geq 0$ be fixed. Let integrable functions $f_{j}: \mathbb{R}^{n} \rightarrow \mathbb{C}$ be given such that $f_{j} \in B_{2 p-2}\left(\mathbb{R}^{n}\right) \cap L^{1}\left(\mathbb{R}^{n}\right)$, and assume that the following growth condition holds

$$
\begin{equation*}
\left\|f_{j}\right\|_{2 p-2} \leq C\left(1+|j|^{\gamma}\right) \quad \text { for all } j \in \mathbb{Z} \tag{7}
\end{equation*}
$$

Then there exists a polyspline S of order p on strips satisfying

$$
\begin{equation*}
S(j, y)=f_{j}(y) \quad \text { for } y \in \mathbb{R}^{n}, \quad j \in \mathbb{Z} \tag{8}
\end{equation*}
$$

as well as the growth estimate

$$
|S(t, y)| \leq D\left(1+|t|^{\gamma}\right) \quad \text { for all } y \in \mathbb{R}^{n}
$$

An important step in the proof of the last theorem is the following:
Theorem 2. Let $f \in L_{1}\left(\mathbb{R}^{n}\right) \cap B_{2 p-2}\left(\mathbb{R}^{n}\right)$ and define L^{ξ} as in (4). Then the function L_{f} defined by

$$
\begin{equation*}
L_{f}(t, y):=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i\langle y, \xi\rangle} \widehat{f}(\xi) L^{\xi}(t) d \xi \tag{9}
\end{equation*}
$$

is a polyspline of order p such that

$$
\begin{cases}L_{f}(0, y)=f(y) & \text { for } y \in \mathbb{R}^{n}, \\ L_{f}(j, y)=0 & \text { for } y \in \mathbb{R}^{n}, \quad \text { for all } j \neq 0 .\end{cases}
$$

There exists a constant $C>0$ and $\eta>0$ such that for every multi-index $\alpha \in \mathbb{N}_{0}^{n+1}$ with $|\alpha| \leq 2(p-1)$, the decay estimate

$$
\begin{equation*}
\left|\frac{\partial^{\alpha}}{\partial x^{\alpha}} L_{f}(x)\right| \leq C e^{-\eta|t|}\|f\|_{|\alpha|} \tag{10}
\end{equation*}
$$

holds for all $x=(t, y) \in \mathbb{R}^{n+1}$.
Theorem 1 can be deduced from Theorem 2 by considering the Lagrangetype representation

$$
\begin{equation*}
S(t, y)=\sum_{j=-\infty}^{\infty} L_{f_{j}}(t-j, y) \tag{11}
\end{equation*}
$$

Details and proofs can be found in [4] and [3]. In this paper we shall make use only of formula (9) which can be taken as a definition for L_{f}. What we need in this paper is the following fact which also shows that (9) is well-defined.

Theorem 3. There exist constants $C>0$ and $\eta>0$, such that for all $t \in \mathbb{R}, \xi \in \mathbb{R}^{n}$ the following estimate holds:

$$
\begin{equation*}
\left|L^{\xi}(t)\right| \leq C e^{-\eta|t|} \tag{12}
\end{equation*}
$$

A proof for $p=2$ can be found in [3], and for arbitrary p in [4].
3. A conjecture about positivity of the fundamental spline

Recall that a function $g: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is positive definite if for all $y_{1}, \ldots, y_{N} \in$ \mathbb{R}^{n} and for all complex numbers c_{1}, \ldots, c_{N} the inequality

$$
\sum_{k, l=1}^{N} c_{l} \overline{c_{k}} g\left(y_{k}-y_{l}\right) \geq 0
$$

holds; for properties of positive definite functions we refer to [23], cf. also the nice introduction [24]. It is well-known that the product of two positive definite functions is positive definite. Moreover it is elementary to see that the Fourier transform \widehat{g} of a non-negative function $g \in L_{1}\left(\mathbb{R}^{n}\right)$ is positive definite. Conversely, if $g \in L_{1}\left(\mathbb{R}^{n}\right)$ is positive definite then the Fourier transform is a non-negative function on \mathbb{R}^{n} (Theorem of Mathias).

Properties of the fundamental cardinal spline $L^{0}: \mathbb{R} \rightarrow \mathbb{R}$ have been investigated by de Boor and Schoenberg in [7]. One particularly nice property is that L^{0} has an alternating sign on the intervals $(k, k+1)$ for $k \in \mathbb{N}_{0}$, i.e., that

$$
(-1)^{k} L^{0}(x+k) \geq 0
$$

for all $k \in \mathbb{N}_{0}, x \in(0,1)$. Numerical experiments have lead us to formulate the following conjecture:

Conjecture 4. Let $f \in L_{1}\left(\mathbb{R}^{n}\right) \cap B_{2 p-2}\left(\mathbb{R}^{n}\right)$. If f is non-negative then the fundamental polyspline L_{f} has an alternating sign on the strips $(k, k+1) \times$ \mathbb{R}^{n} for $k \in \mathbb{N}_{0}$, i.e., that

$$
(-1)^{k} L_{f}(t+k, y) \geq 0
$$

for all $k \in \mathbb{N}_{0}, t \in(0,1)$ and $y \in \mathbb{R}^{n}$.
Note that for $k=0$ the conjecture implies that $L_{f}(t, y) \geq 0$ for all $(t, y) \in[-1,1] \times \mathbb{R}^{n}$. The following result shows that the latter property is equivalent to the positive definiteness of the function $\xi \longmapsto L^{\xi}(t)$ for each $t \in[-1,1]$. Note that this formulation is independent of the data function f.

Theorem 5. Let $t \in \mathbb{R}$ be fixed. Then the following statements are equivalent
(i) The function $\xi \longmapsto L^{\xi}(t)$ is positive definite.
(ii) For each non-negative $f \in L_{1}\left(\mathbb{R}^{n}\right)$ such that $\widehat{f} \in L_{1}\left(\mathbb{R}^{n}\right)$ the fundamental cardinal polyspline L_{f} is non-negative on $\{t\} \times \mathbb{R}^{n}$.
(iii) For each non-negative, radially symmetric function $f \in S\left(\mathbb{R}^{n}\right)$ the function L_{f} is non-negative on $\{t\} \times \mathbb{R}^{n}$.

Proof. For (i) \rightarrow (ii) let $f \in L_{1}\left(\mathbb{R}^{n}\right)$ be non-negative, clearly then \widehat{f} is positive definite. By assumption, $\xi \longmapsto L^{\xi}(t)$ is positive definite. By the above remarks the function $\xi \longmapsto \widehat{f}(\xi) L^{\xi}(t)$ is positive definite. Since by Theorem 3 the function $\xi \longmapsto L^{\xi}(t)$ is bounded, we know that $\xi \longmapsto$ $\widehat{f}(\xi) L^{\xi}(t)$ is integrable. By the theorem of Mathias (see [24, p. 412]) the (inverse) Fourier transform is non-negative, i.e., that for all $y \in \mathbb{R}^{n}$

$$
L_{f}(t, y)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i\langle y, \xi\rangle} \widehat{f}(\xi) L^{\xi}(t) d \xi \geq 0
$$

The implication (ii) \rightarrow (iii) is trivial.
Let us show that (iii) \rightarrow (i). We use arguments from the proof of Bochner's theorem in [1, p. 196]: Let us define $f_{\delta}(y):=e^{-\frac{1}{2} \delta|y|^{2}}$ which is radially symmetric and in the Schwartz class. By Theorem 3 the function $\xi \longmapsto L^{\xi}(t)$ is bounded. Hence g_{ε} defined by $g_{\varepsilon}(\xi):=L^{\xi}(t) e^{-\varepsilon|\xi|^{2}}$ is integrable for any $\varepsilon>0$. Parseval's identity yields

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f_{\delta}(y) \widehat{g_{\varepsilon}}(y) d x=\int_{\mathbb{R}^{n}} \widehat{f}_{\delta}(\xi) g_{\varepsilon}(\xi) d \xi \tag{13}
\end{equation*}
$$

On the other hand, assumption (iii) implies that

$$
L_{f_{\varepsilon}}(t, y)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i\langle y, \xi\rangle} e^{-\varepsilon|\xi|^{2}} L^{\xi}(t) d \xi \geq 0 .
$$

Thus $\widehat{g_{\varepsilon}}(y)=(2 \pi)^{n} L_{f_{\varepsilon}}(t,-y) \geq 0$ for all $y \in \mathbb{R}^{n}$. So we obtain from (13) that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{-\frac{1}{2} \delta|y|^{2}} \widehat{g_{\varepsilon}}(y) d y=\left|\int_{\mathbb{R}^{n}} e^{-\frac{1}{2} \delta|y|^{2}} \widehat{g_{\varepsilon}}(y) d y\right| \leq M \int_{\mathbb{R}^{n}} \widehat{f}_{\delta}(\xi) d \xi \tag{14}
\end{equation*}
$$

where M is a constant such that $\left|g_{\varepsilon}(\xi)\right| \leq M$ for all $\xi \in \mathbb{R}^{n}$ and for all $0<\varepsilon \leq 1$. Since

$$
\int_{\mathbb{R}^{n}} \widehat{f}_{\delta}(\xi) d \xi=(2 \pi)^{n} f_{\delta}(0) \leq(2 \pi)^{n}
$$

we conclude from (14) and Fatou's lemma that $\widehat{g_{\varepsilon}}$ is integrable. Now the inversion formula

$$
\begin{equation*}
g_{\varepsilon}(\xi)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i\langle y, \xi\rangle} \widehat{g}_{\varepsilon}(y) d y \tag{15}
\end{equation*}
$$

shows that $g_{\varepsilon}(\xi):=L^{\xi}(t) e^{-\varepsilon|\xi|^{2}}$ is positive definite. Then $L^{\xi}(t)=\lim _{\varepsilon \rightarrow 0} g_{\varepsilon}(\xi)$ for each $\xi \in \mathbb{R}^{n}$ (and fixed t), and since the pointwise limit of positive definite functions is again positive definite, it follows that $\xi \longmapsto L^{\xi}(t)$ is positive definite.
4. Positivity of fundamental cardinal polysplines on $[-1,1] \times \mathbb{R}^{n}$ for $p=1$.

Recall that a function $g: \mathbb{R}^{n} \rightarrow \mathbb{C}$ vanishes at infinity if for each $\varepsilon>0$ there exists a compact subset K of \mathbb{R}^{n} such that $|f(x)|<\varepsilon$ for all $x \in \mathbb{R}^{n} \backslash K$. Now we want to prove

Theorem 6. Let $p=1$. Let $f \in L_{1}\left(\mathbb{R}^{n}\right)$ such that $\widehat{f} \in L_{1}\left(\mathbb{R}^{n}\right)$. If f is non-negative then L_{f} defined in (9) is a non-negative function on \mathbb{R}^{n+1}.

Proof. From the definition of L_{f} and L^{ξ} it follows that

$$
L_{f}(t, y)=\frac{1}{(2 \pi)^{n+1}} \int_{\mathbb{R}^{n}} \int_{-\infty}^{\infty} e^{i\langle y, \xi\rangle} e^{i t s} \frac{\hat{f}(\xi)}{\left(s^{2}+|\xi|^{2}\right) S_{1}(s, \xi)} d s d \xi
$$

Further it can be shown that $(\xi, s) \longmapsto \widehat{f}(\xi) /\left(s^{2}+|\xi|^{2}\right) S_{1}(s, \xi)$ is integrable. The Lemma of Riemann-Lebesgue (see [25, p. 2]) shows that $L_{f}: \mathbb{R}^{n+1} \rightarrow \mathbb{C}$ vanishes at infinity. Now the next theorem applied to L_{f} and $j \in \mathbb{Z}$, shows that L_{f} is a non-negative function.

Theorem 7. Let $S: \mathbb{R}^{n+1} \rightarrow \mathbb{C}$ be a cardinal polyspline of order 1 on strips which vanishes at infinity and let $j \in \mathbb{Z}$. If

$$
S(j, y) \geq 0 \text { and } S(j+1, y) \geq 0 \text { for all } y \in \mathbb{R}^{n}
$$

then S is non-negative on $[j, j+1] \times \mathbb{R}^{n}$.
Proof. Let $\varepsilon>0$ be arbitrary. Since S vanishes at infinity we can find $R>0$ such that $|S(t, y)|<\varepsilon$ if $|t|>R$ or $|y|>R$. Define $G_{R}=[j, j+1] \times$ $\left\{y \in \mathbb{R}^{n}:|y| \leq R+1\right\}$. Then $S(t, y) \geq-\varepsilon$ for (t, y) in the boundary of G_{R}. Since S is a harmonic function in the interior of G_{R} and continuous on G_{R} the minimum principle yields that $S(t, y) \geq-\varepsilon$ for all $(t, y) \in G_{R}$. Hence $S(t, y) \geq-\varepsilon$ for given $(t, y) \in G_{R}$. Since $\varepsilon>0$ is arbitrary we obtain $S(t, y) \geq 0$ and the proof is accomplished.

In the rest of this section we want to give an explicit formula for L^{ξ} in the case that $p=1$ (see (16)) which clearly leads to a simpler formula for fundamental cardinal polysplines, see formula (17). From formula (16) one can see that $\xi \longmapsto L^{\xi}(t)$ is positive definite for each $t \in[-1,1]$, so one obtains with Theorem 5 a second proof that L_{f} is non-negative on $[-1,1] \times \mathbb{R}^{n}$ for a non-negative data function $f \in L^{1}\left(\mathbb{R}^{n}\right)$ such that $\widehat{f} \in$ $L^{1}\left(\mathbb{R}^{n}\right)$. Unfortunately, for $p \geq 2$ we do not have simple formulas for L^{ξ}.

Let us compute $S_{p}(s, \xi)$ defined in (5) for $p=1$. An application of Poisson's summation formula (see [6, p. 204]) shows that

$$
2 \sum_{k \in \mathbb{Z}} \frac{y}{y^{2}+(x+2 \pi k)^{2}}=\sum_{k \in \mathbb{Z}} e^{-|k| y} e^{i k x}=\frac{1-e^{-2 y}}{1-2 e^{-y} \cos x+e^{-2 y}} .
$$

We apply this to $x:=s$ and $y:=|\xi|>0$ and obtain for S_{p} defined in (5) with $p=1$

$$
S_{1}(s, \xi)=\frac{1-e^{-2|\xi|}}{2|\xi|\left(1-2 e^{-|\xi|} \cos s+e^{-2|\xi|}\right)} .
$$

Hence we obtain

$$
L^{\xi}(t)=\frac{1}{\pi} \frac{|\xi|}{1-e^{-2|\xi|}} \int_{-\infty}^{\infty} e^{i t s} \frac{1-2 e^{-|\xi|} \cos s+e^{-2|\xi|}}{s^{2}+|\xi|^{2}} d s
$$

Since $2 e^{i t s} \cos s=e^{i t s}\left(e^{i s}+e^{-i s}\right)=e^{i(t+1) s}+e^{i s(t-1)}$ we see that $L^{\xi}(t)$ is equal to

$$
\frac{|\xi|}{\pi} \frac{1+e^{-2|\xi|}}{1-e^{-2|\xi|}} \int_{-\infty}^{\infty} \frac{e^{i t s}}{s^{2}+|\xi|^{2}} d s-\frac{|\xi|}{\pi} \frac{e^{-|\xi|}}{1-e^{-2|\xi|}} \int_{-\infty}^{\infty} \frac{e^{i(t+1) s}+e^{i s(t-1)}}{s^{2}+|\xi|^{2}} d s .
$$

Since $\int_{-\infty}^{\infty} e^{i t s} \frac{1}{s^{2}+|\xi|^{2}} d s=\frac{\pi}{|\xi|} e^{-|t| \cdot|\xi|}$ a straightforward computation shows that

$$
L^{\xi}(t)=\frac{1}{e^{|\xi|}-e^{--\xi \mid}}\left[\left(e^{|\xi|}+e^{-|\xi|}\right) e^{-|t| \cdot|\xi|}-e^{-|t+1| \cdot|\xi|}-e^{-|t-1| \cdot|\xi|}\right] .
$$

If $t \geq 1$ one obtains easily $L^{\xi}(t)=0$. For $0 \leq t \leq 1$ one has

$$
L^{\xi}(t)=\frac{e^{|\xi|(1-t)}-e^{-(1-t) \cdot|\xi|}}{e^{|\xi|}-e^{-|\xi|}}=\frac{\sinh (|\xi|(1-t))}{\sinh |\xi|} .
$$

We now summarize the result:

Corollary 8. Let $p=1$. For $|t| \geq 1$ the function L^{ξ} vanishes and for $0 \leq t \leq 1$

$$
\begin{equation*}
L^{\xi}(t)=\frac{\sinh (|\xi|(1-t))}{\sinh |\xi|} \tag{16}
\end{equation*}
$$

In case $\xi=0$ the function $t \longmapsto L^{0}(t)$ is a linear spline and $L^{0}(t)=1-t$ for $0 \leq t \leq 1$.

Now Theorem 2 for $p=1$ can be read as follows:
Theorem 9. Let $f \in L_{1}\left(\mathbb{R}^{n}\right)$ such that $\widehat{f} \in L_{1}\left(\mathbb{R}^{n}\right)$. Then there exists a continuous function $L_{f}: \mathbb{R}^{n+1} \rightarrow \mathbb{C}$ which is harmonic in $(-1,0) \times \mathbb{R}^{n}$ and $(0,1) \times \mathbb{R}^{n}$ such that

$$
L_{f}(0, y)=f(y)
$$

for $y \in \mathbb{R}^{n}$, and it vanishes for all $(t, y) \in \mathbb{R}^{n+1}$ with $|t| \geq 1$. Further for $0 \leq t \leq 1$

$$
\begin{equation*}
L_{f}(t, y)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i\langle y, \xi\rangle} \widehat{f}(\xi) \frac{\sinh (|\xi|(1-t))}{\sinh |\xi|} d \xi \tag{17}
\end{equation*}
$$

The fundamental linear interpolation spline has nice symmetry properties around $x=\frac{1}{2}$. In the following we want to formulate a symmetry property for cardinal polysplines of order 1. Formula (17) suggests that we have to use the addition theorem for $\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)$:

$$
\begin{equation*}
\sinh x-\sinh y=2 \cosh \frac{x+y}{2} \sinh \frac{x-y}{2} . \tag{18}
\end{equation*}
$$

Proposition 10. For $0 \leq s \leq t \leq 1$ the following relation holds

$$
\begin{equation*}
L^{\xi}(s)=L^{\xi}(t)+2 L^{\xi}\left(1-\frac{t-s}{2}\right) \cosh \frac{(2-s-t)|\xi|}{2} . \tag{19}
\end{equation*}
$$

Proof. Put $x=(1-s)|\xi|$ and $y=(1-t)|\xi|$ in (18): then $x+y=$ $(2-s-t)|\xi|$ and $x-y=(t-s)|\xi|$ and we have

$$
\begin{equation*}
\sinh [(1-s)|\xi|]-\sinh [(1-t)|\xi|]=2 \cosh \frac{(2-s-t)|\xi|}{2} \sinh \frac{(t-s)|\xi|}{2} \tag{20}
\end{equation*}
$$

Now divide (20) by $\sinh |\xi|$ and use formula (16).
As an illustration put $s=\frac{1}{2}-\delta$ and $t=\frac{1}{2}+\delta$ in (19). Then

$$
L^{\xi}\left(\frac{1}{2}-\delta\right)-L^{\xi}\left(\frac{1}{2}+\delta\right)=2 \cosh \left(\frac{1}{2}|\xi|\right) \cdot L^{\xi}(1-\delta)
$$

Multiply (19) with $\widehat{f}(\xi) e^{i\langle y, \xi\rangle}$ and integrate with respect to $d \xi$. Then (17) implies that for an integrable function f the following formula holds:

$$
L_{f}\left(\frac{1}{2}-\delta, y\right)-L_{f}\left(\frac{1}{2}+\delta, y\right)=\frac{2}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i\langle y, \xi\rangle} \widehat{f}(\xi) \cosh \left(\frac{1}{2}|\xi|\right) L^{\xi}(1-\delta) d \xi .
$$

5. Uniqueness of interpolation for polynomially bounded polysplines

$$
\text { for } p=1
$$

In this section we want to prove uniqueness results for interpolation: suppose that S_{1} and S_{2} are two polysplines interpolating the same data. It is clear that $S_{2}-S_{1}$ vanishes on $\{j\} \times \mathbb{R}^{n}$ for all $j \in \mathbb{Z}$. We would like to conclude that $S_{2}-S_{1}=0$. The following simple example shows that we have to impose some conditions on the interpolation polysplines even in the case $p=1$ in order to obtain uniqueness:

Example 11. There exists a harmonic function f on \mathbb{R}^{2} which vanishes on all hyperplanes $\{j\} \times \mathbb{R}, j \in \mathbb{Z}$ without being identically zero, namely

$$
f(t, y)=\sin \pi t \cdot e^{\pi y} .
$$

As mentioned in the introduction we believe that interpolation is unique if we assume that S is polynomially bounded, i.e., that there exists a polynomial $p(x)$ such that

$$
|S(x)| \leq|p(x)|
$$

for all $x \in \mathbb{R}^{n+1}$.
In the following we shall prove this for $p=1$. In the case that S_{1} and S_{2} vanish at infinity we could use Theorem 7 applied to $S_{2}-S_{1}$ and $S_{1}-S_{2}$: then $S_{2}-S_{1}$ and $S_{1}-S_{2}$ are non-negative functions on the whole space, hence $S_{2}-S_{1}=0$.

Instead of the minimum principle we will use the Schwarz reflection principle for harmonic functions (see e.g., [2, p. 66]) in order to prove uniqueness. Reflection principles for polyharmonic functions have been investigated by several authors and we refer to [20] for a nice introduction. However, it seems that the latter results can not be used for a proof of uniqueness of interpolation for polysplines of order $p>1$.

Proposition 12. Suppose that $S: \mathbb{R}^{n+1} \rightarrow \mathbb{C}$ is a cardinal polyspline of order 1 on strips with $S(j, y)=0$ for all $j \in \mathbb{Z}$ and $y \in \mathbb{R}^{n}$. Then there
exists a harmonic function $h: \mathbb{R}^{n+1} \rightarrow \mathbb{C}$ such that

$$
\begin{align*}
h(t, y) & =S(t, y) \text { for } t \in(0,1) \text { and } y \in \mathbb{R}^{n} \tag{21}\\
h(j, y) & =0 \text { for } j \in \mathbb{Z} \text { and } y \in \mathbb{R}^{n} \tag{22}
\end{align*}
$$

and for each natural number N

$$
\begin{equation*}
\max _{|y| \leq N, t \in \mathbb{R}}|h(t, y)| \leq \max _{|y| \leq N, 0 \leq t \leq 1}|S(t, y)| \tag{23}
\end{equation*}
$$

Pr o of. Clearly S is a harmonic function on the strip $(0,1) \times \mathbb{R}^{n}$, and it is continuous on the closure of the strip. By the Schwarz reflection principle, S can be extended to a continuous function S_{1} on $[-1,1] \times \mathbb{R}^{n}$ by defining

$$
S_{1}(-t, y)=-S(t,-y) \text { for } t \in[-1,0]
$$

which is harmonic on $(-1,1) \times \mathbb{R}^{n}$. Further $S_{1}(-1, y)=-S(1,-y)=0$ for all $y \in \mathbb{R}^{n}$, so S_{1} vanishes on the boundary of the new strip $[-1,0] \times \mathbb{R}^{n}$ and clearly the maximum of $|h|$ on $\{(t, y):|y| \leq N,-1 \leq t \leq 0\}$ can be estimated by

$$
\max _{|y| \leq N,-1 \leq t \leq 0}\left|S_{1}(t, y)\right| \leq \max _{|y| \leq N, 0 \leq t \leq 1}|S(t, y)|
$$

Now apply the same procedure to $S_{1}:[-1,0] \times \mathbb{R}^{n}$ at the hyperplane $\{-1\} \times$ \mathbb{R}^{n}, obtaining an extension S_{2} on $[-2,0] \times \mathbb{R}^{n}$ of S_{1} with

$$
\max _{|y| \leq N,-2 \leq t \leq-1}\left|S_{2}(t, y)\right| \leq \max _{|y| \leq N,-1 \leq t \leq 0}\left|S_{1}(t, y)\right| \leq \max _{|y| \leq N, 0 \leq t \leq 1}|S(t, y)|
$$

Proceed in this way for negative $j \in \mathbb{Z}$, then for positive $j \in \mathbb{Z}$ and we arrive at a harmonic function $h: \mathbb{R}^{n+1} \rightarrow \mathbb{C}$ with the desired properties.

Theorem 13. Let $S: \mathbb{R}^{n+1} \rightarrow \mathbb{C}$ be a cardinal polyspline of order 1 on strips vanishing on the affine hyperplanes $\{j\} \times \mathbb{R}^{n}, j \in \mathbb{Z}$. If S is polynomially bounded then S is identically zero.

Pr o of. By Proposition 12 there exists a harmonic function $h: \mathbb{R}^{n+1} \rightarrow$ \mathbb{C} with (21), (22) and (23). Since S is polynomially bounded, (23) implies that h is polynomially bounded. It follows that h is a harmonic polynomial, see [2, p. 41]. A polynomial $h(t, y)$ which vanishes on the hyperplanes $\{j\} \times \mathbb{R}^{n+1}$ for all $j \in \mathbb{Z}$ is identically zero: the equation $h(0, y)=0$ for all $y \in \mathbb{R}^{n}$ implies that the (finite) Taylor expansion of $h(t, y)$ contains only nontrivial summands where the variable t occurs. Hence $h(t, y)=t \cdot h_{1}(t, y)$
with a polynomial h_{1}. Similarly, $h_{1}(1, y)=0$ for all $y \in \mathbb{R}^{n}$ implies that $h_{1}(t, y)=(t-1) h_{2}(t, y)$. Hence we can write

$$
h(t, y)=t(t-1) \ldots(t-m) h_{m}(t, y)
$$

If m is bigger than the total degree of h we obtain a contradiction, showing that h must be zero. By (21) we conclude that S must be zero on $(0,1) \times \mathbb{R}^{n}$. In order to show that S is zero on \mathbb{R}^{n+1} consider the polyspline S_{j} defined by $S_{j}(t, y)=S(t-j, y)$ for $(t, y) \in \mathbb{R}^{n+1}, j \in \mathbb{Z}$. By the above, S_{j} is zero in $(0,1) \times \mathbb{R}^{n}$. Hence S must be zero on $(j, j+1) \times \mathbb{R}^{n}$.

Corollary 14. Interpolation with polynomially bounded cardinal polysplines of order 1 on strips is unique.

REFERENCES

[1] N. I. A khiezer, The problem of moments and some related questions in analysis, Oliver \& Boyd, Edinburgh, 1965.(Transl. from Russian ed. Moscow 1961).
[2] S. A xle r, P. Bourdon, W. R a m e y, Harmonic Function Theory, Springer, New York 1992.
[3] A. Be jancu, O. K o unchev, H. R ender, Cardinal Interpolation with Biharmonic Polysplines on Strips, Curve and Surface Fitting (Saint Malo 2002), 4158, Mod. Methods Math., Nashboro Press, Brentwood, TN, 2003.
[4] A. B e janc u, O. K o unchev, H. R ender, Cardinal Interpolation on hyperplanes with polysplines, submitted.
[5] M. B u h m an n, Radial Basis Functions: Theory and Implementations, Cambridge University Press, 2003.
[6] P. Butze r, R. Nes sel, Fourier Analysis and Approximation, Volume1: onedimensional theory. Pure and Applied Mathematics, Vol. 40. Academic Press, New York 1971.
[7] C. de B o or, I. S choen berg, Cardinal Interpolation and spline functions. VIII. The Budan-Fourier theorem for splines and applications. Spline functions (Proc. Internat. Sympos., Karlsruhe, 1975), pp. 1-79. Lecture Notes in Math., Vol. 501, Springer, Berlin 1976.
[8] J. D u chon, Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces, R.A.I.R.O. Analyse numerique, vol. 10, no. 12 (1976), 5-12.
[9] L. H ö r m a n d e r, The Analysis of Linear Partial Differential Operators II. Pseudo-Differential Operators, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.
[10] K. J e t t e r, Multivariate Approximation from the Cardinal Interpolation Point of View. Approximation Theory VII (Austin, TX, 1992), E.W. Cheney, C.K. Chui and L.L. Schumaker (eds.), pp. 131-161.
[11] O. K o unchev, Definition and basic properties of polysplines, I and II. C. R. Acad. bulg. sci., 44 (1991), No. 7 and 8, pp. 9-11, pp.13-16.
[12] O. K o u n chev, Multivariate Polysplines. Applications to Numerical and Wavelet Analysis, Academic Press, London-San Diego, 2001.
[13] O. Kounchev, H. Render, Wavelet Analysis of Cardinal L-splines and Construction of multivariate Prewavelets, In: Proceedings "Tenth International Conference on Approximation Theory", St. Louis, Missouri, March 26-29, 2001.
[14] O. K ounchev, H. R ender, The Approximation order of Polysplines, Proc. Amer. Math. Soc. 132 (2004), 455-461.
[15] O. Kounchev, H. Render, Polyharmonic splines on grids $\mathbb{Z} \times a \mathbb{Z}^{n}$ and their limits for $a \rightarrow 0$, Math. Comput. 74 (2005), 1831-1841
[16] O. K o unchev, H. R ender, Rate of convergence of polyharmonic splines to polysplines, submitted.
[17] O. K ounchev, M. Wils on, Application of PDE methods to visualization of heart data. In: Michael J. Wilson, Ralph R. Martin (Eds.): Mathematics of Surfaces, Lecture Notes in Computer Science 2768, Springer-Verlag, 2003; pp. 377-391.
[18] W. R. M a d y c h, S. A. N e l s o n, Polyharmonic Cardinal Splines, J. Approx. Theory 60 (1990), 141-156.
[19] Ch. M i c c h e 11 i, Cardinal L-splines, In: Studies in Spline Functions and Approximation Theory, Eds. S. Karlin et al., Academic Press, NY, 1976, pp. 203250.
[20] L. N y stedt, On polyharmonic continuation by reflection formulas, Ark. Mat. 20 (1982), 201-247.
[21] I. J. S c h o e n b e r g, Cardinal Spline Interpolation, SIAM, Philadelphia, Pennsylvania, 1973.
[22] I. J. S c h o e n berg, Cardinal interpolation and spline functions, J. Approx. Theory 2 (1969), 167-206.
[23] Z. S as vár i, Positive Definite and Definitizable Functions, Akademie-Verlag, Berlin 1994.
[24] J. S t e w a r t, Positive definite functions and generalizations, a historical survey, Rocky Mountain Journal of Mathematics, 6 (1976), 409-434.
[25] E. M. S t e i n, G. W e i s s, Introduction to Fourier Analysis on Euclidean spaces, Princeton University Press, 1971.

Departamento de Matématicas y Computación
Universidad de La Rioja
Edificio Vives
Luis de Ulloa s/n.
26004 Logroño
España

[^0]: ${ }^{1}$ This paper was presented at the Conference GENERALIZED FUNCTIONS 2004, Topics in PDE, Harmonic Analysis and Mathematical Physics, Novi Sad, September 2228, 2004
 ${ }^{2}$ The research of the author is partially supported by Dirección General de Investigación (Spain) under grant BFM2003-06335-C03-03.

