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A b s t r a c t. We present new types of regularity for Colombeau nonlin-
ear generalized functions, based on the notion of regular growth with respect
to the regularizing parameter of the simplified model. This generalizes the no-
tion of G∞-regularity introduced by M. Oberguggenberger. As a first applica-
tion, we show that these new spaces are useful in a problem of representation
of linear maps by integral operators, giving an analogon to Schwartz kernel
theorem in the framework of nonlinear generalized functions. Secondly, we
remark that these new regularities can be characterized, for compactly sup-
ported generalized functions, by a property of their Fourier transform. This
opens the door to microlocal analysis of singularities of generalized functions,
with respect to these regularities.
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1. Introduction

The various theories of nonlinear generalized functions are suitable frame-
works to set and solve mathematical problems with irregular operators or
data. We are going to follow the theory introduced by J.-F. Colombeau
[2, 3, 8, 14]. Throughout the paper, Ω will denote an open subset of R

d,
d ∈ N. The Colombeau simplified algebra G (Ω) is the space XM (Ω) /N (Ω)
with

XM (Ω) = {(fε) ∈ E (Ω) ∀K � Ω, ∀l ∈ N, ∃N = N(K, l) ∈ N

pK,l (fε) = O
(
ε−N(K,l)

)}
,

N (Ω) =
{
(fε) ∈ E (Ω)

∣∣∣ ∀K � Ω, ∀ (l, m) ∈ N
2 pK,l (fε) = O (εm)

}
, (1)

where E (Ω) = C∞ (Ω)(0,1], pK,l (f) = supx∈K,|α|≤l |∂αf (x)| and relations
O (·) are considered for ε → 0, this precision being omitted in the sequel.

Some subspaces of G (Ω) have been considered in which some conditions
of growth with respect to l are added for N(K, l). The most important
one is the space G∞ (Ω), for which N(K, l) only depends on K [15]. This
space plays a great part in the local and microlocal analysis of nonlinear
generalized functions. (See [9, 10, 11, 14] among other references.)

We include G∞ (Ω) and G (Ω) in a new framework of R-regular spaces of
nonlinear generalized functions, in which the growth bounds N(K, l) belong
to regular spaces of sequences, that is spaces satisfying natural conditions
of stability.

We illustrate the usefulness of these new spaces by two examples. First
application, developed in [4], is a problem of Schwartz kernel type theorem in
the framework of Colombeau generalized functions. We show that some nets
of linear maps (parametrized by ε ∈ (0, 1]) satisfying some growth conditions
similar to those introduced for R-regular spaces, give rise to linear maps
between spaces of generalized functions. Moreover, they can be represented
by integral kernel on regular subspaces of G (Ω) in which the growth of
N(K, l) is at most sublinear with respect to l. The second application,
developed in [5], is the introduction of the R-local and microlocal analysis.
This is possible since the R-regular elements with compact supports can be
characterized by a “R-property” of their Fourier transform. (This Fourier
Transform belongs to some regular subspaces of spaces of rapidly decreasing
generalized functions [6, 16].) Thus, the parallel is complete with the C∞-
regularity of compactly supported distributions and the G∞-regularity [7, 11]
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of nonlinear generalized functions appears to be one a remarkable particular
case of R-regularity.

2. The sheaf of Colombeau simplified algebras and R-regular subsheaves

Definition 1. A non empty subspace R of R
N

+ is regular if
(i) R is “overstable” by translations and by maximum

∀N ∈ R, ∀ (k, k′) ∈ N
2, ∃N ′ ∈ R, ∀n ∈ N N (n + k)+k′ ≤ N ′ (n) , (2)

∀N1 ∈ R, ∀N2 ∈ R, ∃N ∈ R, ∀n ∈ N max (N1 (n) , N2 (n)) ≤ N (n) ,
(3)

(ii) For all N1 and N2 in R, there exists N ∈ R such that

∀ (l1, l2) ∈ N
2 N1 (l1) + N2 (l2) ≤ N (l1 + l2) . (4)

Example 1. The set R
N

+ of all positive valued sequences and the set B
of bounded sequences are regular.

Let R be a regular subset of R
N

+ and set

XR (Ω) =
{
(fε) ∈ E (Ω)

∣∣∣ ∀K � Ω, ∃N ∈ R, ∀l ∈ N pK,l (fε) = O
(
ε−N(l)

)}
,

NR (Ω)=
{
(fε) ∈ E (Ω)

∣∣∣ ∀K � Ω, ∀m ∈ R, ∀l ∈ N pK,l (fε) = O
(
εm(l)

)}
.

Proposition 1.
(i) For all regular subspace R of R

N

+, XR (·) is a sheaf of differential algebras
on the ring XM (C) with

XM (K) =
{
(rε) ∈ K

(0,1]
∣∣ ∃q ∈ N |rε| = O

(
ε−q)} , K = R or K = C.

(ii) NR (·) is equal to Colombeau’s sheaf of ideal N (·), defined by relation
(1).
(iii) For all regular subspaces R1 and R2 of R

N

+, with R1 ⊂ R2, XR1 (·) is
a subsheaf of XR2 (·).

P r o o f. We split the proof in two parts.
(a) Algebraical properties. Let us first show that for any open set Ω ⊂ R

d,
XR (Ω) is a subalgebra of C∞ (Ω)(0,1]. Take (fε)ε and (gε)ε in XR (Ω) and
K � Ω. There exist Nf ∈ R and Ng ∈ R such that

∀l ∈ N pK,l (hε) = O
(
ε−Nh(l)

)
, for hε = fε, gε.
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We get immediately that pK,l (fε + gε) = O
(
ε−max(Nf(l),Ng(l))

)
, with

max (Nf , Ng) ≤ N for some N ∈ R according to (3). Then, (fε + gε)ε

belongs to XR (Ω) .

For (cε)ε ∈ X (C), there exists qc such that |cε| = O (ε−qc). Then
pK,l (cεfε) = O

(
ε−Nf(l)−qc

)
. From (2), there exists N ∈ R such that Nf +

qc ≤ N . Thus, (cεfε)ε ∈ XR (Ω). It follows that XR (Ω) is a submodule of
C∞ (Ω)(0,1] over X (C).

Consider now l ∈ N and α ∈ N
d with |α| = l. By the Leibniz rule, we

have, for all ε ∈ (0, 1] and x ∈ K,

|∂α (fεgε) (x)| =
∑

γ≤α
Cγ

α

∣∣∂γfε (x) ∂α−γgε (x)
∣∣

≤
∑

γ≤α
Cγ

αpK,|γ| (fε) pK,|α−γ| (gε) ,

where Cγ
α is the generalized binomial coefficient. We have, for all γ ≤ α,

pK,|γ| (fε) pK,|α−γ| (gε) = O
(
ε−Nf(|γ|)−Ng(|α−γ|)) .

As γ ≤ α, we get |γ| + |α − γ| = |α| = l. According to (4), there exists
N ∈ R such that, for all k and k′ ≤ k in N, Nf (k′) + Ng (k − k′) ≤ N(k).
Then supx∈K |∂α (fεgε) (x)| = O

(
ε−N(l)

)
.Thus pK,l (fε gε) = O

(
ε−N(l)

)
,

and (fε gε)ε ∈ XR (Ω).

For the properties related to NR (Ω), take (fε)ε ∈ NR (Ω). For any
K � Ω, l ∈ N and m ∈ N, choose N ∈ R. According to (2) there exists
N ′ ∈ R such that N + m ≤ N ′. Thus, pK,l (fε) = O

(
εN′(l)

)
= O (εm)

and (fε)ε ∈ N (Ω). Conversely, given (fε)ε ∈ N (Ω) and N ∈ R, we have
pK,l (fε) = O

(
εN(l)

)
, since this estimates holds for all m ∈ N.

(b) Sheaf properties. The proof follows the same lines as the one of Colombeau
simplified algebras. (See for example [8], theorem 1.2.4.) First, the definition
of restriction (by the mean of the restriction of representatives) is straight-
forward as in Colombeau’s case. For the sheaf properties, we have to replace
Colombeau’s usual estimates by XR-estimates. But, at each place this hap-
pens, we have only to consider a finite number of terms, by compactness
properties. Thus, the stability by maximum of R (property (3)) induces
the result. Finally, point (iii) of the proposition follows directly from the
obvious inclusion XR1 (Ω) ⊂ XR2 (Ω).
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The sheaf GR (·) = XR (·) /NR (·) = XR (·) /N (·) turns to be a sheaf
of differentiable algebras on the ring XM (C) /N (C) with

N (K) =
{
(rε) ∈ K

(0,1] | ∀q ∈ N |rε| = O (εq)
}

, K = R or K = C.

Definition 2. For all regular subset R of R
N

+, the sheaf of factor alge-
bras GR (·) is called the sheaf of R-regular algebras of nonlinear generalized
functions.

Example 2. Taking R = R
N

+, we recover the sheaf of Colombeau simpli-
fied algebras. Taking R = B, we obtain the sheaf of G∞-generalized functions
[15].

Notation 1. We shall write G (Ω) (resp. XM (Ω)) instead of GR
N

+ (Ω)
(resp. X R

N

+ (Ω)). For (fε) in XM (Ω) or in XR (Ω), [(fε)] will be its class in
G (Ω) or in GR (Ω), since these classes are obtained modulo the same ideal.
(We consider GR (Ω) as a subspace of G (Ω).)

As G is a sheaf, the notion of support of a section f ∈ G (Ω) makes sense.
Then, the support of a generalized function f ∈ G (Ω) is the complement in
Ω of the largest open subset of Ω where f is null. For a regular subset R of
R

N

+, we denote by GC (Ω) (resp. GR
C (Ω)) the subset of G (Ω) (resp. GR (Ω))

of elements with compact support. Let us remark that every f ∈ GR
C (Ω)

has a representative (fε) in XR (Ω) such that each fε has the same compact
support.

3. Application 1: Schwartz Kernel type theorem

Definition 3. Let H be in G(Rm ×R
n). The integral operator of kernel

H is the map H̃ defined by

H̃ : GC (Rn) → G (Rm) : f �→ H̃ (f) =
[(

x �→ ∫
supp fHε(x, y)fε(y) dy

)]
,

where (Hε) (resp. (fε)) is any representative of H (resp. f).

In the references [1] and [6], the generalized function H satisfies some
additive conditions such as being properly supported. This assumption is
not needed here, since we consider operators acting on compactly supported
generalized functions. For H in G(Rm×R

n), the operator H̃ defines a linear
map from GC (Rn) to G (Rm) continuous for the respective sharp topologies
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of GC (Rn) and G (Rm). Moreover the map˜: H �→ H̃ from G(Rm × R
n) to

L (GC (Rn) ,G (Rm)) is injective.

Take a in [0, +∞] and set La =
{
N ∈ R

N

+

∣∣ limsupn→+∞ (N(l)/l) < a
}
.

(For a = 0 the limsup is replaced by a simple limit which should be equal
to 0.) For all a in [0, +∞], La is a regular subset of R

N

+. The corresponding
sheaves GLa (·) = XLa (·) /N (·) are the sheaves of algebras of generalized
functions with slow growth introduced in [4]. The following lemma is crucial
for the proof of the main result (Theorem 4) and was the initial motivation
for the introduction of GLa (·) classes of spaces:

Lemma 2. Let a be a real in [0, 1], d be an integer and (θε) ∈ D
(
R

d
)(0,1]

a net of mollifiers satisfying, for all k ∈ N,∫
θε (x) dx = 1 + O

(
εk
)

, ∀m ∈ N
d\ {0} ∫

xmθε (x) dx = O
(
εk
)

. (5)

For any (gε) ∈ XLa

(
R

d
)
, we have (gε ∗ θε − gε)ε ∈ N

(
R

d
)

.

We turn to the definition and the properties of the nets of linear maps
used in the main theorem. Fix (Lε) ∈ (L (D (Rn) , C∞ (Rm)))(0,1].

Definition 4.
(i) We say that (Lε) is continuously moderate (resp. negligible) if

∀j ∈ N, ∀K � R
m, ∀l ∈ N, ∃ (Cε) ∈ XM (R+) (resp. N (R+) )

∃l′ ∈ N, ∀f ∈ Dj (Rn) pK,l (Lε (f)) ≤ Cε pj,l′ (f) .
(6)

(ii) Let (b, c) be in (R+ ∪ {+∞}) × R
+. We say that (Lε) is Lb,c-strongly

continuously moderate if: ∀j ∈ N, ∀K � R
m,

∃λ ∈ N
N with lim

l→+∞
sup (λ(l)/l) < b, ∃r ∈ R

N

+ with lim
l→+∞

sup (r(l)/l) < c,

∀l ∈ N, ∃C ∈ R+, ∀f ∈ Dj (Rn) pK,l (Lε (f)) ≤ Cε−r(l)pj,λ(l) (f) .

Proposition 3. [4]
(i) Any continuously moderate net (Lε) ∈ (L (D (Rn) , C∞ (Rm)))(0,1] can be
extended in a map L ∈ L (GC (Rn) ,G (Rm)) defined by L (f) = [(Lε (fε))]
where (fε) is any representative of f .
(ii) The extension L depends only on the family (Lε) in the following sense:
If (Nε) is a net of negligible maps, then the extensions of (Lε) and (Lε + Nε)
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are equal.
(iii) Let (a, b, c) be in (R+)3. If the net (Lε) is Lb,c-strongly continuously
moderate, then L

(
GLa

C (Rn)
)

is included in GLab+c (Rm).

Moreover, L
(
GL0

C (Rn)
)

is included in GLc (Rm) even if b = +∞.

Theorem 4. [4] Schwartz kernel type theorem. Fix (a, b, c) ∈ R
3
+

such that a ≤ 1 and ab+c ≤ 1. Let (Lε) ∈ (L (D(Rn), C∞(Rm)))(0,1] be a net
of Lb,c-strongly continuously moderate linear maps and L ∈ L (GC(Rn),G(Rm))
its canonical extension. There exists HL ∈ G (Rm × R

n) such that

∀f ∈ GLa
C (Rn) L (f) =H̃L(f) =

[(
x �−→

∫
suppf

HL,ε(x, y)fε(y) dy

)]
, (7)

where (HL,ε) (resp. (fε)) is any representative of HL (resp. f).

The principal significance of the parameters a, b and c is the following:
More irregular the net (Lε) is (that is: b big and c close to 1), smaller the
space on which (7) holds is. The limiting conditions a ≤ 1 and ab+c ≤ 1 are
induced by Lemma 2 and Proposition 3. We can give a version of Theorem
4 valid for more irregular nets of maps. If the family (Lε) is moderate, with
the assumption that the net of constants (Cε) in (6) satisfies Cε = O

(
ε−r(l)

)
with lim

l→+∞
sup (r(l)/l) < c, then the extension L satisfies L (G∞

C (Rn)) ⊂
GLc (Rm) and the conclusion of Theorem 4 holds on G∞

C (Rn). We refer the
reader to [4] for further comments on these results and discussions about
the question of uniqueness.

These results are strongly related to Schwartz Kernel theorem in the fol-
lowing sense. We can associate to each linear operator Λ : D (Rn) → D′ (Rm),
continuous for the strong topology of D′ (Rm), a strongly moderate map LΛ

and consequently a kernel HLΛ
∈ G (Rm × R

n) with the following equality
property: For all f in D (Rn), Λ (f) and H̃LΛ

(f) are equal in the generalized
distribution sense [14] that is, for all k ∈ N and

(
HLΛ,ε

)
representative of

HLΛ
,

∀Ψ ∈ D (Rm) , 〈Λ (f) , Ψ〉 − ∫ (∫HLΛ,ε
(x, y) f (y) dy

)
Ψ (x) dx = O

(
εk
)

.
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4. Application 2: Microlocal analysis

A well known result asserts that a compactly supported distribution is
C∞ iff its Fourier transform, which is a priori a slowly increasing function,
israpidly decreasing. This result can be refined by the following equivalences,
which hold for u ∈ E ′

(
R

d
)
,

u ∈ C∞ (
R

d
)
⇔ F (u) ∈ S∗

(
R

d
)
⇔ F (u) ∈ O′

M

(
R

d
)
⇔ F (u) ∈ O′

C

(
R

d
)

,

with S∗ (Ω) = {f ∈ C∞ (Ω) | ∀q ∈ N μq,0 (f) < +∞} and

μq,l (f) = supx∈Ω,|α|≤l (1 + |x|)q |∂αf (x)| for all (q, l) ∈ N
2.

In the framework of generalized functions, an analogue results hold. More
precisely, for the characterization of regular elements, there is no need to
consider a space of generalized functions based on S, that is on a space of
functions with all the derivatives rapidly decreasing. It suffices to consider
a space of generalized functions based on S∗, the above introduced space of
rapidly decreasing functions, with no further hypothesis on the derivatives.
Set, for any regular set R ⊂ R

N

+,

XR
S∗ (Ω) =

{
(fε) ∈ E (Ω)

∣∣∣ ∃N ∈ R, ∀q ∈ N μq,0 (fε) = O
(
ε−N(q)

)}
,

NS∗ (Ω) =
{
(fε) ∈ E (Ω)

∣∣∣ ∀ (q, m) ∈ N
2 μq,0 (fε) = O (εm)

}
,

XR
B (Ω) =

{
(fε) ∈ E (Ω)

∣∣∣ ∃N ∈ R, ∀l ∈ N μ0,l (fε) = O
(
ε−N(l)

)}
,

NB (Ω) =
{
(fε) ∈ E (Ω)

∣∣∣ ∀ (l, m) ∈ N
2 μ0,l (fε) = O

(
εm)

)}
.

The space XR
S∗ (Ω) (resp. XR

B (Ω)) is a subalgebra of S∗ (Ω)(0,1] (resp. E (Ω))
and NS∗ (Ω) (resp. NB (Ω)) an ideal of XR

S∗ (Ω) (resp. XR
B (Ω)). (The proof

of these results follows the same line as that of Proposition 1).

Definition 5. The factor space GR
S∗ (Ω) = XR

S∗ (Ω) /NS∗ (Ω) (resp. GR
B (Ω) =

XR
B (Ω) /NB (Ω)) is called the algebra of R-regular rough rapidly decreasing

(resp. R-regular bounded) generalized functions.

In particular, we set XS∗ (Ω) = X R
N

+

S∗ (Ω) (resp. XB (Ω) = X R
N

+

B (Ω)) and

GS∗ (Ω) = GR
N

+

S∗ (Ω) (resp. GB (Ω) = GR
N

+

B (Ω)) which is called the space of
rough rapidly decreasing (resp. bounded) generalized functions.
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Lemma 5. For all u ∈ GS∗

(
R

d
)

and (uε) ∈ XS∗

(
R

d
)

any representa-
tive of u, the formula

F∗ (u) = û :
[
ûε =

(
ξ �→ ∫

e−ixξuε (x) dx
)]

GB
(8)

defines an element û of GB (Ω) depending only on u.
Moreover, for any regular subspace R of R

N

+ and (uε) ∈ XR
S∗ (Ω), we have

(ûε) ∈ XR
B (Ω).

Lemma 5 is mainly a consequence of a classical estimate which links
μ0,l (û) and μl+d+1,0 (u), for all u ∈ S∗

(
R

d
)

and l ∈ N. We define the

Fourier transform F∗ : GS∗

(
R

d
)

→ GB
(
R

d
)

by the equality (8). (The

inverse Fourier on GS∗

(
R

d
)

is defined analogously.) Lemma 5 implies

Proposition 6. [5] Regularity theorem. We have F∗
(
GR
S∗

)
⊂ GR

B
(
R

d
)
.

This proposition is the main tool for the proof of the:

Theorem 7. [5] Characterization of regular compactly supported

elements. An element u of GC

(
R

d
)

belongs to GR
(
R

d
)

iff F∗ (u) belongs

to GR
S∗

(
R

d
)

.

With this material, we can turn to local and microlocal analysis. We fol-
low the presentation of [12] showing that the GR-wavefront of a generalized
function can be defined exactly like the C∞-wavefront of a distribution.

Notation 2. For (x, ξ) ∈ Ω ×
(
R

d\ {0}
)
, we shall note

(i) Vx (resp. VΓ
ξ ) the set of all open neighborhoods (resp. open convex conic

neighborhoods) of x (resp. ξ),
(ii) Dx (Ω) the set of elements D (Ω) non vanishing at x.

As GR (·) is a subsheaf of G (·), we can define the singular GR-support
of u ∈ (Ω) by

singsuppRu = Ω\
{
x ∈ Ω | ∃V ∈ Vx u ∈ GR (V )

}
.

For a fixed regular subset R of R
N

+, we set

OR (u) =
{
ξ ∈ R

d\ {0}
∣∣∣ ∃Γ ∈ VΓ

ξ (û)|Γ ∈ GR
S∗ (Γ)

}
.
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This definition makes sense since the functor GS∗ : Ω → GS∗ (Ω) defines a
presheaf (It allows restrictions.). From this property, the following definition
also makes sense: An element u ∈ G (Ω) is said to be R-microregular on
(x, ξ) ∈ R

d ×
(
R

d\ {0}
)

if there exists ϕ ∈ Dx (Ω), Γ ∈ VΓ
ξ , such that

(ϕ̂u)|Γ ∈ GR
S∗ (Γ).

Set, for u ∈ G (Ω),

OR
x (u) = ∪ϕ∈DxOR (ϕu) =

{
ξ ∈ R

d\ {0} |u is R-microregular on (x, ξ)
}

,

WFR(u) =
{
(x, ξ) ∈ R

d ×
(
R

d\ {0}
) ∣∣∣ ξ /∈ OR

x (u)
}

.

This last set is called the R-wavefront set of u. The interest of this definition
comes from the following

Proposition 8. For u ∈ G (Ω), the projection on the first component of
WFRu is equal to singsuppRu.

The proof of this proposition lies on the fundamental following property,
equivalent in the setting of R-microregularity to Lemma 8.1.1. in [12] for the
D′-microregularity: For u ∈ GC

(
R

d
)

and ϕ ∈ D
(
R

d
)

, OR (u) ⊂ OR (ϕu).
In fact, from this property, the proof of Proposition 8 - or of the similar
proposition for the case of the D′-wavefront - follows from topological con-
siderations, which are independent of the particular context of regularity.

Example 3. Taking R = B, the set of bounded sequence, we recover the
G∞-wavefront, which has here a definition independent of representatives.
Taking

R =
{
N ∈ R

N

+ | ∃b ∈ R+,∀l ∈ R N(l) ≤ l + b
}

,

we get a wavefront which “contains” the distributional microlocal singular-
ities of a generalized function, since D′ (·) is embedded in G(1) (·) [5].

In [13], it is shown that an analogon of this theory holds for the ana-
lytic singularities of a generalized function giving rise to the corresponding
wavefront set. We also refer the reader to [7, 9, 10, 11, 14] and the lit-
erature therein for other presentations of the G∞-wavefront and for some
applications.
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