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The object of the paper. – M. Matsumoto examined in [10] the intrinsic
properties of minimal hypersurfaces in the flat space and showed that for
many of them the second fundamental form can be expressed in terms of
the curvature and Ricci tensors.

The aim of this paper is to generalize the investigation of Matsumoto to
the holomorphic hypersurface of the anti-Kähler manifold of constant totally
real sectional curvatures. This is done in the Section 2. The Section 3 is
devoted to special properties of HC-flat minimal holomorphic hypersurface.
In the Section 4 we examine holomorphically Einstein manifolds. Finally,
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in the Section 5 we give some remarks concerning complex hypersurfaces of
the Kähler manifold.

1. Anti-Kähler manifold and its holomorphic hypersurface

By an anti-Kähler manifold we mean a triple (M̃, G, F ), where M̃ is a
connected differentiable manifold of dimension 2m, F = (FA

B ) is a (1, 1)
tensor field and G = (GAB) is a pseudo-Riemannian metric on M̃ satisfying

F 2 = −Id., trF = 0, FC
A FD

B GCD = −GAB, ∇̃F = 0, (1.1)

where ∇̃ is the Levi-Civita connection with respect to G and A,B, C,D, . . . ∈
{1, 2, . . . , 2m}.

The manifold (M̃, G, F ) is orientable and evendimensional. The metric
G is indefinite and the signature is (m,m).

The anti-Kähler manifolds are investigated by many authors (for exam.
[1]-[9], [11]-[13], [15]).

Let TP (M) be the tangent vector space of M̃ at the point P ∈ M̃. We
denote by R̃(X, Y, Z, W ), X, Y, Z, W ∈ TP (M̃), the Riemannian curvature
tensor of M̃. Because of ∇̃F = 0, it satisfies the condition

FP
A FQ

B R̃PQCD = −R̃ABCD. (1.2)

The anti-Kähler manifold is of constant totally real sectional curvatures
if ([5],[6])

R̃ABCD = k1(GADGBC −GACGBD − FP
A GPDFQ

B GQC + FP
A GPCFQ

B GQD)

+k2(GADFP
B GPC + GBCFP

A GPD −GACFP
B GPD −GBDFP

A GPC).
(1.3)

If m ≥ 3, both functions k1 and k2 are constants.
Now we consider a differentiable submanifold M of M̃, dim M = 2n,

n = m− 1. Let the equation

xA = xA(ua)

be the local parametric expression of M in (M̃, G), where ua are the local
coordinates in M, a, b, c, . . . , i, j, k, . . . ∈ {1, 2, . . . , 2n}. A submanifold M is
said to be holomorphic hypersurface of M̃ if the restriction of G on M has
the maximal rank and FTp(M) = Tp(M), p ∈ M. We denote the restriction
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of G and F on M by g and f. Then it can be proved [9] that (M, g, f) is
itself an anti-Kähler manifold, i.e.

f2 = −Id., tr f = 0, fa
i f b

j gab = −gij , ∇f = 0 (1.4)

fa
i f b

j Rabkl = −Rijkl, (1.5)

where ∇ is the Levi-Civita connection and Rijkl are the local components
of the Riemannian curvature tensor with respect to g. It follows from (1.5)
that the Ricci tensor ρij satisfies

fa
i f b

j ρab = −ρij , (1.6)

and therefore
fa

i ρaj = fa
j ρia.

An anti-Kähler manifold (M, g, f) is holomorphically Einstein if its Ricci
tensor has the form

ρij =
κ

2n
gij − κ*

2n
fij (1.7)

(see, for ex. [15]), where κ and κ* are the first and the second scalar curva-
tures, and fij = fa

i gaj = fji.
Because F leaves invariant the tangent space of M, it leaves invariant

the normal space, too. There exist locally vector fields, N1| and N2| normal
to M such that [9]

GABNA
1|N

B
1| = −GABNA

2|N
B
2| = 1, GABNA

1|N
B
2| = 0,

FA
B NB

1| = −NA
2| , FA

B NB
2| = NA

1| .

Let hij be the components of the second fundamental form corresponding
to N1|. Then −fa

i haj are those corresponding to N2|, and

fa
i f b

j hab = −hij . (1.8)

The relation (1.8) implies

fa
j hai = fa

i haj and f i
ah

a
j = fa

j hi
a.

Now, using the induction, it is easy to see that

(hr)ij = (hr)ji, fa
i f b

j (hr)ab = −(hr)ij , (1.9)
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where (hr) is the fundamental form of order r and is defined as follows [14]

(hr)ij = (hr−1)iah
a
j , (h1)ij = hij , r = 2, 3, . . . .

Let vi represent a principal direction of the holomorphic hypersurface M
at P ∈ M with respect to the normal N1|, i.e., an eigenvector of the matrix
(hij) so that

hijv
j = λgijv

j , (1.10)

where λ is the corresponding eigenvalue. Then

(hr)ijv
j = λrgijv

j ,

so that vi is also an eigenvector of (hr), but the corresponding eigenvalue is
λr. We associate to (1.10) the equation

det (hij − λgij) = 0 ,

and denote its 2n roots by λ1, λ2, . . . , λ2n.

On the other hand, if, at a fixed point P ∈ M, we choose the parameters
ui such that the tangents to the curves ui = const. at P coincide with the
principal directions of M at P, the components (hr)ij are given by

(hr)ij =

∣∣∣∣∣∣∣∣∣∣∣

λr
1 0 . . . 0
0 λr

2 . . . 0
. . .

0 0 . . . λr
2n

∣∣∣∣∣∣∣∣∣∣∣

. (1.11)

We denote by Hp the p-th elementary symmetric function of λ1, . . . , λ2n,
i.e.,

H1 =λ1 + λ2 + · · ·+ λ2n

H2 =λ1λ2 + λ1λ3 + · · ·+ λ2n−1λ2n

· · ·
H2n =λ1λ2 · · ·λ2n,

and put

Pp =
2n∑

a=1

(λa)p.



Minimal anti-Kähler holomorphic hypersurfaces 89

According to the theory of the symmetric polynomials, by means of the
Newton formula, we have

Pp +
p−1∑

q=1

(−1)qHqPp−q + (−1)ppHp = 0,

i.e.,
P1 −H1 = 0

P3 −H1P2 + H2P1 − 3H3 = 0,

P5 −H1P4 + H2P3 −H3P2 + H4P1 − 5H5 = 0,

and so on. This means that
If P1 = 0, then H1 = 0,

if P1 = P3 = 0, then H3 = 0,

..........

if P1 = P3 = · · · = P2p+1 = 0, then H2p+1 = 0.

But, in view of (1.11), Pr = tr (hr). On the other hand Hr = 0 for
r > 2n. Thus

if tr (h2p+1) 6= 0, then 2p + 1 < 2n. (1.12)

In view of (1.10), we have

fa
i hajv

j = λfijv
j = λfa

j vjgai,

and taking into account that −fa
i haj is the second fundamental form with

respect to the normal N2|, we see that if vi represents a principal direction
of M with respect to N1| then f i

av
a represents the principal direction with

respect to N2|, and the corresponding eigenvalue is −λ. Putting

(fh2p+1)ij = fa
i (h2p+1)aj ,

we conclude, in the similar way as above, that

if tr (fh2p+1) 6= 0, then 2p + 1 < 2n. (1.13)
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2. Minimal holomorphic hypersurface of an anti-Kähler manifold of
constant totally real sectional curvatures

The Gauss equation for the holomorphic hypersurface (M, g, f) is

R̃ABCD
∂xA

∂ui

∂xB

∂uj

∂xC

∂uk

∂xD

∂ul
=

Rijkl − (hilhjk − hikhjl) + (fa
i half

b
j hbk − fa

i hakf
b
j hbl).

Let us suppose that the ambient manifold (M̃, G, F ) is a manifold of con-
stant totally real sectional curvatures. Then, substituting (1.3) into above
Gauss equation, we get

Rijkl = k1Gijkl + k2f
a
i Gajkl + hilhjk − hikhjl − fa

i half
b
j hbk + fa

i hakf
b
j hbl,

where
Gijkl = gilgjk − gikgjl − filfjk + fikfjl.

If we put
Tijkl = Rijkl − k1Gijkl − k2f

a
i Gajkl, (2.1)

the Gauss equation can be written in the form

Tijkl = hilhjk − hikhjl − fa
i half

b
j hbk + fa

i hakf
b
j hbl. (2.2)

Then, for
τij = Tiabjg

ab,

from (2.1), we have

τil = ρil − 2(n− 1)(k1gil + k2fil), (2.3)

while from (2.2), it follows

τil = trhhil − tr(fh)(fh)il − 2(h2)il. (2.4)

We note that the tensor T has all algebraic properties as the curvature
tensor of the anti-Kähler manifold. In particular

fa
i f b

j Tabkl = −Tijkl,

and therefore
fa

i Tajkl = f b
j Tibkl. (2.5)
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Now we suppose that M is the minimal holomorphic hypersurface, i.e.,
we suppose

tr h = tr (fh) = 0. (2.6)

Then (2.4) reduces to
τij = −2(h2)ij

because of which we have

(τp)ij = (−2)p(h2p)ij , (2.7)

where
(τp)ij = (τp−1)iaτ

a
j , p = 1, 2, . . . , (τ0)ij = gij .

Definition. Let (M, g, f) be a holomorphic hypersurface of an anti-
Kähler manifold of constant totally real sectional curvatures, satisfying (2.6).
(M, g, f) is said to be the minimal holomorphic hypersurface of type
p if

tr(h2p+1) 6= 0, tr(fh2p+1) 6= 0, (2.8)

while
tr(h2q+1) = 0, tr(fh2q+1) = 0, (2.9)

for all q < p, p = 1, 2, . . . .

According to (1.12) and (1.13), (M, g, f) can be of type 1, 2, . . . , p such
that 2p + 1 < 2n.

For (M, g, f) of type p, we can determine the second fundamental forms
hij and −(fh)ij . To do this, we use (2.2), (2.5) and (2.7), to get

Trsia(τp)a
j + Trsja(τp)a

i =

= (−2)p
[
hrahsi − hrihsa − f c

rhcaf
d
s hdi + f c

rhcif
d
s hda

]
(h2p)a

j

+(−2)p
[
hrahsj − hrjhsa − f c

rhcaf
d
s hdj + f c

rhcjf
d
s hda

]
(h2p)a

i,

from which, contracting with gsj and using (1.9) and (2.6), we find

tr (h2p+1)hri − tr (fh2p+1)(fh)ri =
1

(−2)p

[
Trabi(τp)ab − (τp+1)ri

]
. (2.10)

This relation, together with

tr (fh2p+1)hri+tr (h2p+1)(fh)ri =
1

(−2)p
f t

r

[
Ttabi(τp)ab − (τp+1)ti

]
, (2.11)
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implies
{[

tr (h2p+1)
]2

+
[
tr (fh2p+1)

]2
}

hij =
1

(−2)p
tr (h2p+1)

[
Tiabj(τp)ab − (τp+1)ij

]

+
1

(−2)p
tr (fh2p+1)f t

i

[
Ttabj(τp)ab − (τp+1)tj

]
.

Therefore

hij =
1
θp

{
tr (h2p+1)

[
Tiabj(τp)ab − (τp+1)ij

]

+tr (fh2p+1)f t
i

[
Ttabj(τp)ab − (τp+1)tj

]}
,

(2.12)

where
θp = (−2)p

[
(tr (h2p+1))2 + (tr (fh2p+1))2

]
.

For q < p, we have the equations similar to (2.11) and (2.12), but, in
view of (2.9), they now yield

Tiabj(τ q)ab − (τ q+1)ij = 0 , (2.13)

for all q < p.

Conversely, if (2.13) holds, then the corresponding equations (2.10) and
(2.11) imply

tr(h2q+1)hij − tr(fh2q+1)fa
i haj = 0,

tr(fh2q+1)hij + tr(h2q+1)fa
i haj = 0,

from which these follows

(tr (h2q+1))2 + (tr (fh2q+1))2 = 0,

and therefore

tr(h2q+1) = tr(fh2q+1) = 0 for all q < p.

Thus, for the minimal holomorphic hypersurface of type p, the conditions
(2.9) and (2.13) are equivalent. This means that (M, g, f) is minimal of type
p if and only if (2.13) holds for all q < p, and

Tiabj(τp)ab − (τp+1)ij 6= 0. (2.14)
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If the ambient manifold (M̃, G, F ) is flat, i.e. if k1 = k2 = 0, (2.1) and
(2.3) reduce to Tijkl = Rijkl and τij = ρij , while (2.14) and (2.13) became

Riabj(ρp)ab − (ρp+1)ij 6= 0

Riabj(ρq)ab − (ρq+1)ij = 0 for all q < p,

respectively. But these relations are the intrinsic conditions of (M, g, f).
Thus, if (M, g, f) is holomorphic hypersurface of a flat anti-Kähler manifold,
the property of (M, g, f) to be minimal of type p is its intrinsic characteris-
tic. Also, tr(h2p+1) and tr(fh2p+1) are the object of the inner geometry of
(M, g, f). To prove this, we note that now, (2.7) becomes

(ρp)ij = (−2)p(h2p)ij , (2.15)

because of which
(−2)p(h2p+1)ij = (−2)p(h2p)iah

a
j = (ρp)iah

a
j ,

(−2)p(fh2p+1)ij = (ρp)ia(fh)a
j .

Therefore
(−2)ptr(h2p+1) = hij(ρp)ij

(−2)ptr(fh2p+1) = (fh)ij(ρp)ij
(2.16)

On the other hand, (2.10) and (2.11) reduce to

tr(h2p+1)hij − tr(fh2p+1)(fh)ij =
1

(−2)p

[
Riabj(ρp)ab − (ρp+1)ij

]
,

tr(fh2p+1)hij + tr(h2p+1)(fh)ij =
1

(−2)p
f t

i

[
Rtabj(ρp)ab − (ρp+1)tj

]
,

from which, transverting with (ρp)ij and using (2.6) we get
[
tr(h2p+1)

]2 −
[
tr(fh2p+1)

]2
= γ,

tr(h2p+1) tr(fh2p+1) = δ,

where γ and δ are some functions of the inner geometry of (M, g, f). This
system of equations shows that tr(h2p+1) and tr(fh2p+1), and therefore θp

are the intrinsic properties of (M, g, f).
As for (2.12), it reduces to

hij = 1
θp

{
tr(h2p+1)

[
Riabj(ρp)ab − (ρp+1)ij

]

+ tr(fh2p+1)f t
i

[
Rtabj(ρp)ab − (ρp+1)tj

]}
.

(2.17)

From the above exposed, the following theorem holds.
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Theorem 1. Let (M, g, f) be a holomorphic hypersurface of an anti-
Kähler manifold of constant totally real sectional curvatures. If it is the
minimal hypersurface of type p, then:

1) Type p can be p = 1, 2, . . . , such that 2p + 1 < 2n, 2n = dimM.

2) The conditions (2.8) and (2.14) are equivalent, as well as the condi-
tions (2.9) and (2.13).

3) The second fundamental form is given by (2.12).

In particular, if (M, g, f) is a holomorphic hypersurface of the flat anti-
Kähler manifold, then

4) The property of (M, g, f) to be minimal of type p is its intrinsic char-
acteristic.

5) The second fundamental form is given by (2.17); it is the intrinsic
characteristic of (M, g, f), too.

6) Any fundamental form of even order satisfies (2.15).

3. Minimal HC-flat holomorphic hypersurface

We consider in [4] HC-flat (holomorphically conformally flat) hypersur-
face, (M, g, f), n > 3, dim M = 2n, of an anti-Kähler manifold of constant
totally real sectional curvatures and proved that for such (M, g, f) the fol-
lowing hold:

1. (M, g, f) is quasi-umbilical, i.e.

hij = ϕgij + ψfij + τVij + σV̄ij , (3.1)

where ϕ,ψ, τ and σ are some scalar functions,

Vij = ViVj − V̄iV̄j , V̄ij = fa
i Vaj = V̄iVj + ViV̄j ,

V is a vector field and V = fV ;
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2. (M, g, f) is of quasi-constant totally real sectional curvatures, i.e., its
curvature tensor has the form

Rijlm = λGijlm + µfa
i Gajlm

+ξ(gimVjl + gjlVim − gilVjm − gjmVil − fimV̄jl − fjlV̄im + filV̄jm + fjmV̄il)

+θ(gimV̄jl + gjlV̄im − gilV̄jm − gjmV̄il + fimVjl + fjlVim − filVjm − fjmVil),
(3.2)

where

λ =
κ̃

4n(n + 1)
+ ϕ2 − ψ2, µ = − κ̃*

4n(n + 1)
+ 2ϕψ,

ξ = τϕ− σψ, θ = σϕ + τψ

(3.3)

while κ̃ and κ̃* are the scalar curvatures of the ambient manifold.

We get from (3.1)

trh = 2nϕ + 2τVaV
a + 2σVaV̄

a ,

tr(fh) = −2nψ + 2τVaV̄
a − 2σVaV

a .

Thus, if (M, g, f) is minimal, we have

nϕ + τVaV
a + σVaV̄

a = 0 ,

nψ − τVaV̄
a + σVaV

a = 0 .
(3.4)

The relation (3.1) implies

(h2)ij = (ϕ2 − ψ2)gij + 2ϕψfij

+Vij

[
2(τϕ− σψ) + (τ2 − σ2)VaV

a + 2τσVaV̄
a
]

+V̄ij

[
2(σϕ + τψ)− (τ2 − σ2)VaV̄

a + 2τσVaV
a
]

.

(3.5)

On the other hand, (3.4) yields

n(τϕ− σψ) + (τ2 − σ2)VaV
a + 2τσVaV̄

a = 0,

n(σϕ + τψ)− (τ2 − σ2)VaV̄
a + 2τσVaV

a = 0.
(3.6)
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Substituting this into (3.5), we get

(h2)ij = (ϕ2 − ψ2)gij + 2ϕψfij

−(n− 2)(τϕ− σψ)Vij − (n− 2)(σϕ + τψ)V̄ij .
(3.7)

Next, we calculate (h3)ij and, using (3.6), we find

(h3)ij = ϕ(ϕ2 − 3ψ2)gij − ψ(ψ2 − 3ϕ2)fij

+(n2 − 3n + 3)[τ(ϕ2 − ψ2)− 2σϕψ]Vij

+(n2 − 3n + 3)[σ(ϕ2 − ψ2) + 2τϕψ]V̄ij .

(3.8)

This relation implies

(fh3)ij = ψ(ψ2 − 3ϕ2)gij + ϕ(ϕ2 − 3ψ2)fij

−(n2 − 3n + 3)
[
σ(ϕ2 − ψ2) + 2τϕψ

]
Vij

+(n2 − 3n + 3)
[
τ(ϕ2 − ψ2)− 2σϕψ

]
V̄ij .

Now, we have

tr(h3) = −2n(n− 1)(n− 2)ϕ(ϕ2 − 3ψ2),

tr(fh3) = −2n(n− 1)(n− 2)ψ(ψ2 − 3ϕ2).
(3.9)

If tr(h3) 6= 0 and tr(fh3) 6= 0, (M, g, f)is the minimal hypersurface of
type 1.

Let us examine the case

tr(h3) = tr(fh3) = 0.

Then, if n > 2, (3.9) gives

ϕ(ϕ2 − 3ψ2) = 0, ψ(ψ2 − 3ϕ2) = 0,

which holds if and only if ϕ = ψ = 0. But then (3.3) reduces to

λ =
κ̃

4n(n + 1)
, µ = − κ̃*

4n(n + 1)
, ξ = 0, θ = 0,

while (3.2) becomes

Rijlm =
κ̃

4n(n + 1)
Gijlm − κ̃*

4n(n + 1)
fa

i Gajlm.
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This mean that (M, g, f) is of constant totally real sectional curvatures too,
and its scalar curvatures are related to the scalar curvatures of the ambient
manifold in the following way:

κ =
n− 1
n + 1

κ̃, κ* =
n− 1
n + 1

κ̃*. (3.10)

Also, in view of (3.7), we have

(h2)ij = (fh2)ij = 0 .

Therefore
(hr)ij = (fhr)ij = 0 for all r ≥ 2

and
tr(hr) = tr(fhr) = 0 for all r.

But then, according to the discussion in the section 2, (2.13) holds for all q.

Finally, (3.4) reduce to

τVaV
a + σVaV̄

a = 0 ,

τVaV̄
a − σVaV

a = 0 .

These equations imply VaV
a = VaV̄

a = 0 or τ = σ = 0. The first case
means that V is a null vector and is orthogonal to fV. In the second case
(3.1) reduces to hij = 0, that is (M, g, f) is totally geodesic.

Thus, we can state

Theorem 2. Let (M, g, f) be the holomorphically conformally flat holo-
morphic hypersurface of an anti-Kähler manifold of constant totally real
sectional curvatures, and n > 3, 2n = dim M.

If (M, g, f) is minimal, then
it is minimal of type 1,

or
it is itself a manifold of constant totally real sectional curvatures. In this

case its scalar curvatures are related to the scalar curvatures of the ambient
manifold according to (3.10), and (3.13) holds for all q = 1, 2 . . . . The
vector V is a null vector and is orthogonal to fV, or (M, g, f) is totally
geodesic.
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4. Holomorphically Einstein hypersurface

First we shall prove that for any anti-Kähler holomorphically Einstein
hypersurface, (2.13) is satisfied for all q = 1, 2, . . . . Namely, substituting
(1.7) into (2.3), we find

τij = αgij − βfij , (4.1)

where

α =
κ

2n
− 2(n− 1)k1, β =

κ*

2n
+ 2(n− 1)k2 . (4.2)

Then
(τp)ij = α1gij − β1fij (4.3)

where α1 and β1 are some scalar functions. Therefore

(τp+1)ij = (αα1 − ββ1)gij − (αβ1 + α1β)fij .

Using (1.5) and (4.3), we obtain

Riabj(τp)ab = α1ρij − β1f
a
i ρaj

=

[
α1

κ

2n
− β1

κ*

2n

]
gij −

[
α1

κ*

2n
+ β1

κ

2n

]
fij ,

and therefore

Tiabj(τp)ab − (τp+1)ij =

(Riabj − k1Giabj − k2f
t
i Gtabj)(τp)ab − (τp+1)ij =

=

{
α1

[
κ

2n
− 2(n− 1)k1 − α

]
− β1

[
κ*

2n
+ 2(n− 1)k2 − β

]}
gij

−
{

α1

[
κ*

2n
+ 2(n− 1)k2 − β

]
+ β1

[
κ

2n
− 2(n− 1)k1 − α

]}
fij = 0

because of (4.2).
We note that for any holomorphically Einstein anti-Kähler manifold,

being it holomorphic hypersurface or not, we have

Riabj(ρp)ab − (ρp+1)ij = 0 .

So, if (M, g, f) is minimal holomorphic hypersurface and, at the same
time, holomorphically Einstein, besides (2.6) the conditions (2.13) are sat-
isfied for all q = 1, 2, . . . , and we can not determine the second fundamental
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form using the method described in the Section 2. But, holomorphically
Einstein hypersurface may not be minimal and in that case the second fun-
damental form can be determined.

From now on in this section we suppose that (M, g, f) is a holomor-
phically Einstein holomorphic non-minimal hypersurface of an anti-Kähler
manifold of constant totally real sectional curvatures. Thus (2.2) and (2.4)
hold, as well as (4.1) and (4.2).

Using (2.2) we can calculate

(TabhjTstik − 2ThaibTjskt)gatgbs =−4(h2)ih(h2)jk + 4hih(h3)jk + 4(h3)ihhjk

+4(fh2)ih(fh2)jk − 4(fh)ih(fh3)jk − 4(fh3)ih(fh)jk

−2tr(h2)
[
hihhjk − fa

i hahf b
j hbk

]
+ 2tr(fh2)

[
hihfa

j hak + fa
i hahhjk

]
.

(4.4)
In view of (4.1), (2.4) becomes

(h2)ij =
1
2

[−αgij + βfij + trhhij − tr(fh)fa
i haj ] , (4.5)

from which we obtain

(fh2)ij =
1
2

[−βgij − αfij + tr(fh)hij + trhfa
i haj ] , (4.6)

(h3)ij =
1
4

[−αtrh + β tr(fh)] gij +
1
4

[αtr(fh) + β trh] fij

+
1
4

[
−2α + (trh)2 − (tr(fh))2

]
hij +

1
2

[β − trhtr(fh)] fa
i haj ,

(fh3)ij = −1
4

[αtr(fh) + βtrh] gij +
1
4

[−αtrh + βtr(fh)] fij

−1
2

[β − (trh)(tr(fh))]hij +
1
4

[
−2α + (trh)2 − (tr(fh))2

]
fa

i haj .

Substituting this into (4.4), we get

(TabhjTstik − 2ThaibTjskt)gatgbs+

+(α2 − β2)(gihgjk − fihfjk)− 2αβ(gihfjk + gjkfih) =

=
[
−4α + (trh)2 − (trfh)2 − 2tr(h2)

] [
hihhjk − fa

i hahf b
j hbk

]

+
[
4β − 2trhtr(fh) + 2tr(fh2)

] [
fa

i hahhjk + hihf b
j hbk

]
(4.7)
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According to (4.5) and (4.6)

(trh)2 − (trfh)2 − 2tr(h2) = 2nα

−2trhtr(fh) + 2tr(fh2) = −2nβ,

because of which (4.7) reduces to

2(n− 2)α
[
hihhjk − fa

i hahf b
j hbk

]
− 2(n− 2)β

[
fa

i hahhjk + hihf b
j hbk

]

= (TabhjTstik − 2ThaibTjskt)gatgbs + (α2 − β2)(gihgjk − fihfjk)

−2αβ(gihfjk + gjkfih).

Transecting this relation with gih, we get

2(n− 2) [αtrh− β tr(fh)]hjk − 2(n− 2) [αtr(fh) + β trh] fa
j hak =

= −T abc
jTabck − 2Tjabkτ

ab + 2n
[
(α2 − β2)gjk − 2αβfjk

]
.

(4.8)

Putting
2(n− 2) [αtrh− β tr(fh)] = p ,

2(n− 2) [αtr(fh) + β trh] = q ,

and using the condition (2.13), we rewrite (4.8) in the form

phij − qfa
i haj = −

[
T abc

iTabcj + 2(τ2)ij

]

+2n
[
(α2 − β2)gij − 2αβfij

]
.

This relation, together with

qhij + pfa
i haj = −f t

i

[
T abc

tTabcj + 2(τ2)tj

]

+2n
[
2αβgij + (α2 − β2)fij

]

implies

(p2 + q2)hij = p
{
−

[
T abc

iTabcj + 2(τ2)ij

]
+ 2n

[
(α2 − β2)gij − 2αβfij

]}

+q
{
−f t

i

[
T abc

tTabcj + 2(τ2)tj

]
+ 2n

[
2αβgij + (α2 − β2)fij

]}
.

(4.9)
But if trh = tr(fh) = 0, (4.8) yields

T abc
iTabcj + 2(τ2)ij = 2n

[
(α2 − β2)gij − 2αβfij

]
. (4.10)

Thus, we can state
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Theorem 3. Let (M, g, f) be the holomorphically Einstein hypersur-
face of an anti-Kähler manifold of constant totally real sectional curvatures.
Then, if it is not minimal, the second fundamental form is given by (4.9).
But if trh = tr(fh) = 0, then (4.10) holds.

5. Remarks on complex hypersurfaces of Kähler manifold

A differentiable manifold M̃, dim M̃ = 2m is a Kähler manifold if it is
endowed with metric G and complex structure J̃ such that

J̃2 = −Id., J̃C
A J̃D

B GCD = GAB, ∇̃J̃ = 0 .

A differentiable submanifold M of M̃, dimM = 2n, m = n+1, is said to be
complex hypersurface of M̃, if the complex structure J̃ of M̃ leaves invariant
the tangent space of M at each point P ∈ M. In this case, G and J̃ induce
on M the metric g and the complex structure J such that (M, g, J) is itself
a Kählar manifold [16], i.e.

J2 = −Id., Ja
i Jb

j gab = gij , ∇J = 0 .

If we put
Fij = Ja

i gaj , then Fij = −Fji .

Also, the complex structure J̃ leaves invariant the normal plane to M
at each point P ∈ M. Thus, there exist, in each neighborhood U of P ∈ M,
two local unit vector fields, N and J̃N, mutually orthogonal and normal to
M. If h and k are second fundamental forms corresponding to N and JN,
and hij and kij are their local components, than [16]

hij = hji, kij = kji ,

hij = Ja
i kaj , kij = −Ja

i haj ,

Ja
i Jb

j hab = −hij , Ja
i Jb

j kab = −kij

Thus
trh = trk = 0 ,

and therefore any complex hypersurface of any Kähler manifold is minimal.
If (hr) is fundamental form of order r, then

Ja
i Jb

j (h
2p)ab = (h2p)ij , Ja

i Jb
j (h

2p+1)ab = −(h2p+1)ij . (5.1)
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The second relation (5.1) shows that

tr(h2p+1) = 0 for all p = 1, 2, . . . . (5.2)

Similarly,
tr(Jh2p+1) = 0 for all p = 0, 1, 2, . . . . (5.3)

Now, let us suppose that the ambient (M̃,G, J̃) is a manifold of constant
holomorphic sectional curvature c. Then the Gauss equation for (M, g, J) is

Rijlm − c

4
(gimgjl − gilgjm + FimFjl − FilFjm − 2FijFlm) =

= himhjl − hilhjm + kimkjl − kilkjm ,

where Rijlm is the Riemannian curvature tensor of M.

If we put

Tijlm = Rijlm − c

4
(gimgjl − gilgjm + FimFjl − FilFjm − 2FijFlm) , (5.4)

the Gauss equation becomes

Tijlm = himhjl − hilhjm + kimkjl − kilkjm . (5.5)

We remark that the tensor (5.4) has all algebraic properties as the Rie-
mannian curvature tensor of a Kähler manifold. In particular

Ja
i Jb

j Tabkl = Tijkl . (5.6)

If
τim = Tijlmgjl ,

and if we denote by ρij the Ricci tensor of M, from (5.4) we have

τij = ρij − n + 1
2

cgij (5.7)

On the other hand, (5.5) yields

τij = trh hij + trk kij − (h)2ij − (k2)ij .

But trh = trk = 0, (k2)ij = (h2)ij . Therefore

τij = −2(h2)ij ,
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from which there follows

(τp)ij = (−2)p(h2p)ij . (5.8)

Now, using (5.5) and (5.8), we find

Trsia(τp)a
j + Trsja(τp)a

i =

= (−2)p
[
(h2p+1)rjhsi − hri(h2p+1)sj + (h2p+1)tjJ

t
rhqiJ

q
s − htiJ

t
r(h

2p+1)qjJ
q
s

+ (h2p+1)rihsj − hrj(h2p+1)si + (h2p+1)tiJ
t
rhqjJ

q
s − htjJ

t
r(h

2p+1)qiJ
q
s

]
,

from which, transvectin with gsj and using (5.2) and (5.3), we get

−Trabi(τp)ab + (τp+1)ri =

= (−2)p
[
(h2p+1)tjJ

t
rhqiJ

q
s gsj − htjJ

t
r(h

2p+1)qiJ
q
s gsj

]
.

But, according to the second relation (5.1)

Ja
i (h2p+1)ak = Ja

k (h2p+1)ia ,

because of which

(h2p+1)tjJ
t
rhqiJ

q
s gsj = (h2p+1)trJ

t
jhqiJ

q
s qsj = (h2p+1)trhqig

tq = (h2p+2)ri ,

and
−htjJ

t
r(h

2p+1)qiJ
q
s gsj = −(h2p+2)ri .

Therefore
Tiabj(τp)ab − (τp+1)ij = 0 . (5.9)

Thus, we can state

Theorem 4. Let (M, g, J) be a complex hypersurface of a Kähler man-
ifold of constant holomorphic sectional curvature. Then the relation (5.9) is
valid for all integers p = 1, 2, . . . .

In the case c = 0, i.e. for a complex hypersurface of the flat Kähler
space, (5.9) reduces to

Riabj(ρp)ab − (ρp+1)ij = 0 ,

and is the intrinsic property of (M, g, J).
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Semin. Reports, 20, 1, (1968), 29-53.

Mathematical Institute SANU
Knez Mihailo 35
11001 Belgrade
Serbia


