NOTE ON LAPLACIAN ENERGY OF GRAPHS

G. H. FATH-TABAR, A. R. ASHRAFI, I. GUTMAN

(Presented at the 7th Meeting, held on October 26, 2007)
A bstract. Let G be an (n, m)-graph and $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ its Laplacian eigenvalues. The Laplacian energy $L E$ of G is defined as $\sum_{i=1}^{n}\left|\mu_{i}-2 m / n\right|$. Some new bounds for $L E$ are presented, and some results from the paper B. Zhou, I. Gutman, Bull. Acad. Serbe Sci. Arts (Cl. Math. Natur.) 134 (2007) 1-11 are improved and extended.

AMS Mathematics Subject Classification (2000): 05C50
Key Words: Laplacian spectrum (of graph), Laplacian energy (of graph)

1. Introduction

Throughout this paper we are concerned with finite graphs. Let G be a graph of order (= number of vertices) n and size (= number of edges) m. We say that G is an (n, m)-graph. In some cases, the number of vertices of the graph G will be denoted as $|G|$.

As usual, the vertex and edge sets of G are denoted by $V(G)$ and $E(G)$, respectively. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix $\mathbf{A}(G)=\left[a_{i j}\right]$ of G is a square matrix of order n whose (i, j)-entry is equal
to the number of edges between the vertices v_{i} and v_{j}. In this paper, we consider only simple graphs, i.e., graphs without multiple edges and loops. In this case, the adjacency matrix $\mathbf{A}(G)$ is a $(0,1)$-matrix. The spectrum of the graph G is the set of eigenvalues of $\mathbf{A}(G)$, together with their multiplicities [1]. The energy of G is defined as the sum of absolute values of the eigenvalues of G. This quantity, introduced long time ago by one of the present authors [4], has noteworthy chemical applications [6, 9] and interesting mathematical properties [5].

Let $\mathbf{D}(G)=\left[d_{i j}\right]$ be the diagonal matrix associated with the graph G, defined so that $d_{i i}$ is the degree of the vertex v_{i} and $d_{i j}=0$ if $i \neq j$. Then $\mathbf{L}(G)=\mathbf{D}(G)-\mathbf{A}(G)$ is the Laplacian matrix and its eigenvalues $\mu_{1}, \mu_{2} \ldots, \mu_{n}$ the Laplacian eigenvalues of the graph G, forming its Laplacian spectrum. For details of the theory of Laplacian spectra see [15, 16, 17].

The Laplacian polynomial $\psi(G, \lambda)$ of the graph G is the characteristic polynomial of its Laplacian matrix. Then the Laplacian eigenvalues are the zeros of $\psi(G, \lambda)$.

In what follows we assume that $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}$.
It is well known that for all graphs, $\mu_{n}=0$, and that the multiplicity of 0 in the Laplacian spectrum of G is equal to the number of (connected) components of G.

The Laplacian energy is a recently conceived graph invariant [10], defined as

$$
L E=L E(G)=\sum_{i=1}^{n}\left|\mu_{i}-\frac{2 m}{n}\right| .
$$

The Laplacian energy is a proper extension of the graph-energy concept. The few, hitherto communicated, results on $L E$ are found in the papers [2, 8, 10, 14, 20, 21].

The complement of the graph G is denoted by \bar{G}.
Suppose that G_{1} and G_{2} are two graphs with disjoint vertex and edge sets. Their disjoint union $G_{1} \cup G_{2}$ has the vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. Their Cartesian product $G_{1} \times G_{2}$ has the vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $(a, x)(b, y)$ is an edge of $G_{1} \times G_{2}$ if $a=b$ and $x y \in E(H)$, or $a b \in E(G)$ and $x=y$. The product $G_{1} \times G_{2} \times \cdots \times G_{k}$ is defined analogously and in what follows will be denoted by $\prod_{i=1}^{k} G_{i}$.

The join $G_{1}+G_{2}$ of the graphs G_{1} and G_{2} is obtained from $G_{1} \cup G_{2}$, by connecting all vertices of G_{1} with all vertices of G_{2}. If $G=G_{1}+G_{2}+\cdots+G_{k}$,
then we write $G=\sum_{i=1}^{k} G_{i}$. In the case that $G_{1} \cong G_{2} \cong \ldots \cong G_{k} \cong H$, we denote G by $k H$.

2. Bounds for the Laplacian energy

Proposition 1. If G is an (n, m)-graph and $\psi(G, \lambda)$ its Laplacian characteristic polynomial, then

$$
\begin{equation*}
L E(G) \geq n\left|\psi\left(G, \frac{2 m}{n}\right)\right|^{1 / n} \tag{1}
\end{equation*}
$$

with equality if and only if G is a disjoint union of the empty graph $\overline{K_{p}}$ and $(n-p) / 2$ copies of $K_{2}, \quad 0 \leq p \leq n$.

Proof. By the inequality between the geometric and arithmetic means,

$$
\frac{L E(G)}{n}=\frac{1}{n} \sum_{i=1}^{n}\left|\mu_{i}-\frac{2 m}{n}\right| \geq\left(\prod_{i=1}^{n}\left|\mu_{i}-\frac{2 m}{n}\right|\right)^{1 / n}=\left|\prod_{i=1}^{n}\left(\frac{2 m}{n}-\mu_{i}\right)\right|^{1 / n}
$$

and (1) follows from the fact that

$$
\psi(G, \lambda)=\prod_{i=1}^{n}\left(\lambda-\mu_{i}\right) .
$$

Equality in (1) occurs if and only if for every $i, j, 1 \leq i, j \leq n$, the equality $\left|\mu_{i}-2 m / n\right|=\left|\mu_{j}-2 m / n\right|$ is obeyed. This requires that either $\mu_{i}=0$ or $\mu_{i}=4 m / n$, which happens if and only if the degree of every vertex of G is not greater than unity.

Proposition 1 can be somewhat enhanced. Consider $L E(G)^{2}$:

$$
\begin{aligned}
L E(G)^{2} & =\sum_{i=1}^{n} \sum_{j=1}^{n}\left|\mu_{i}-\frac{2 m}{n}\right| \cdot\left|\mu_{j}-\frac{2 m}{n}\right| \\
& =\sum_{i=1}^{n}\left(\mu_{i}-\frac{2 m}{n}\right)^{2}+\sum_{i \neq j}\left|\mu_{i}-\frac{2 m}{n}\right| \cdot\left|\mu_{j}-\frac{2 m}{n}\right| .
\end{aligned}
$$

By direct calculation we obtain

$$
\sum_{i=1}^{n}\left(\mu_{i}-\frac{2 m}{n}\right)^{2}=Z g-2 m\left(\frac{2 m}{n}-1\right)
$$

where $Z g$ is the sum of squares of vertex degrees (often referred to as the Zagreb index [7, 18, 19]). By the geometric-arithmetic mean inequality,

$$
\begin{aligned}
& \sum_{i \neq j}\left|\mu_{i}-\frac{2 m}{n}\right| \cdot\left|\mu_{j}-\frac{2 m}{n}\right| \geq n(n-1)\left[\prod_{i \neq j}\left|\mu_{i}-\frac{2 m}{n}\right| \cdot\left|\mu_{j}-\frac{2 m}{n}\right|\right]^{1 / n(n-1)} \\
= & n(n-1)\left[\prod_{i=1}^{n}\left|\mu_{i}-\frac{2 m}{n}\right|^{2(n-1)}\right]^{1 / n(n-1)}=\left|\prod_{i=1}^{n}\left(\mu_{i}-\frac{2 m}{n}\right)\right|^{2 / n} \\
= & \left|\prod_{i=1}^{n}\left(\frac{2 m}{n}-\mu_{i}\right)\right|^{2 / n}=\left|\psi\left(G, \frac{2 m}{n}\right)\right|^{2 / n} .
\end{aligned}
$$

Combining these two results we get

$$
L E(G)^{2} \geq Z g-2 m\left(\frac{2 m}{n}-1\right)+\left|\psi\left(G, \frac{2 m}{n}\right)\right|^{2 / n}
$$

i.e.,

$$
L E(G) \geq \sqrt{Z g-2 m\left(\frac{2 m}{n}-1\right)+\left|\psi\left(G, \frac{2 m}{n}\right)\right|^{2 / n}}
$$

Proposition 2. If G is an (n, m)-graph, and \bar{G} is its complement, then

$$
\begin{equation*}
L E(G)-\frac{4 m}{n}<L E(\bar{G}) \leq L E(G)+2(n-1)-\frac{4 m}{n} \tag{2}
\end{equation*}
$$

Moreover, equality on the right-hand side of (2) is attained if and only if G is the empty graph.

P r o o f. Clearly, $\mathbf{L}(G)+\mathbf{L}(\bar{G})=n \mathbf{I}_{n}-\mathbf{J}_{n}$, where \mathbf{J}_{n} is the square matrix of order n whose all entries are equal to unity. Because $\mathbf{L}(G) \mathbf{J}_{n}=\mathbf{0}=$ $\mathbf{J}_{n} \mathbf{L}(G)$, the matrix $\mathbf{L}(G)$ commutes with $\mathbf{L}(\bar{G})$. It follows that if $\mu_{1}(G) \geq$ $\mu_{2}(G) \geq \cdots \geq \mu_{n}(G)$ then $\mu_{n}(\bar{G})=0$ and $\mu_{n-i}(\bar{G})=n-\mu_{i}(G), 1 \leq i \leq$ $n-1$. Thus $\bar{m}+m=n(n-1) / 2$ and so $2 \bar{m} / n=n-1-2 m / n$. Therefore,

$$
\begin{aligned}
L E(\bar{G}) & =\sum_{i=1}^{n}\left|\mu_{i}(\bar{G})-\frac{2 \bar{m}}{n}\right| \\
& =\sum_{i=1}^{n-1}\left|n-\mu_{i}(G)-\left(n-1-\frac{2 m}{n}\right)\right|+\left|0-\left(n-1-\frac{2 m}{n}\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n-1}\left|\mu_{i}(G)-\frac{2 m}{n}-1\right|+\left|n-1-\frac{2 m}{n}\right| \\
& \leq \sum_{i=1}^{n-1}\left(\left|\mu_{i}(G)-\frac{2 m}{n}\right|+1\right)+n-1-\frac{2 m}{n} \\
& =\sum_{i=1}^{n-1}\left|\mu_{i}(G)-\frac{2 m}{n}\right|+2(n-1)-\frac{2 m}{n} \\
& =L E(G)-\frac{2 m}{n}+2(n-1)-\frac{2 m}{n}
\end{aligned}
$$

which directly implies the right-hand side inequality in (2).
In order to prove the left-hand side inequality in (2), notice that

$$
\begin{aligned}
L E(\bar{G}) & =\sum_{i=1}^{n-1}\left|n-\mu_{i}(G)-\frac{2 \bar{m}}{n}\right|+\frac{2 \bar{m}}{n} \\
& =\sum_{i=1}^{n-1}\left|n-\mu_{i}(G)-n+1+\frac{2 m}{n}\right|+n-1-\frac{2 m}{n} \\
& =\sum_{i=1}^{n-1}\left|\mu_{i}(G)-\frac{2 m}{n}-1\right|+n-1-\frac{2 m}{n} \\
& \geq \sum_{i=1}^{n-1}\left(\left|\mu_{i}(G)-\frac{2 m}{n}\right|-1\right)+n-1-\frac{2 m}{n} \\
& =\sum_{i=1}^{n-1}\left|\mu_{i}(G)-\frac{2 m}{n}\right|-(n-1)+n-1-\frac{2 m}{n} \\
& =\sum_{i=1}^{n}\left|\mu_{i}(G)-\frac{2 m}{n}\right|-\frac{2 m}{n}-\frac{2 m}{n} \\
& =L E(G)-\frac{4 m}{n} .
\end{aligned}
$$

In order to complete the proof, assume that G is an empty graph. Then $L E(G)=0$ and so $L E(\bar{G})=2(n-1)=L E(G)+2(n-1)-4 m / n$.

We now suppose that $L E(\bar{G})=L E(G)+2(n-1)-4 m / n$. Then in the inequality (2) it must be
$\sum_{i=1}^{n-1}\left|\mu_{i}(G)-\frac{2 m}{n}-1\right|+\left|n-1-\frac{2 m}{n}\right|=\sum_{i=1}^{n-1}\left(\left|\mu_{i}(G)-\frac{2 m}{n}\right|+1\right)+n-1-\frac{2 m}{n}$.
Hence,

$$
\sum_{i=1}^{n-1}\left|\mu_{i}(G)-\frac{2 m}{n}-1\right|=\sum_{i=1}^{n-1}\left(\left|\mu_{i}(G)-\frac{2 m}{n}\right|+1\right)
$$

which implies that

$$
\left|\mu_{i}(G)-\frac{2 m}{n}-1\right|=\left|\mu_{i}(G)-\frac{2 m}{n}\right|+1
$$

holds for every i. Therefore $\mu_{i}(G) \leq 2 m / n$ and so G is an empty graph.
The inequalities (2) can be written also as

$$
\frac{4 m}{n}-2(n-1) \leq L E(G)-L E(\bar{G})<\frac{4 m}{n}
$$

which should be compared with the inequalities obtained in [21]:

$$
2(n-1) \leq L E(G)+L E(\bar{G})<n \sqrt{n^{2}-1} .
$$

By Proposition 2, one can see that

$$
\left|L E(\bar{G})-\frac{2 \bar{m}}{n}\right|-\left|L E(G)-\frac{2 m}{n}\right| \leq n-1 .
$$

Proposition 3. Let G be a regular (n, m)-graph of degree $r, r \geq 2$, and $L(G)$ its line graph. Then $L E(G) \leq L E(L(G))<L E(G)+2 n(r-2)$.

Proof. By a result of Kel'mans [13], $\psi(L(G), x)=(x-2 r)^{m-n} \psi(G, x)$. Therefore the Laplacian eigenvalues of $L(G)$ are $2 r \quad(m-n$ times $)$ and $\mu_{i}(G), 1,2, \ldots, n$. Clearly, $\left|\mu_{i}(G)-(2 r-2)\right| \leq\left|\mu_{i}(G)-r\right|+|r-2|$ and so $L E(G) \leq L E(L(G)) \leq L E(G)+2 n(r-2)$. In order to complete the proof, we must show that $L E(L(G)) \neq L E(G)+2 n(r-2)$. Otherwise, $\left|\mu_{i}-(2 r-2)\right|=\left|\mu_{i}-r-(r-2)\right|=\left|\mu_{i}-r\right|+|r-2|$ and so $\mu_{i} \leq r$, which is impossible.

In the case $r=2$, Proposition 3 yields $L E(L(G))=L E(G)$, which is trivially true since then $L(G) \cong G$.

3. Laplacian energy of graph products

In [21] it was shown that for the Cartesian product $G_{1} \times G_{2}$ of two graphs G_{1} and G_{2} of the same size n,

$$
L E\left(G_{1} \times G_{2}\right) \leq n L E\left(G_{1}\right)+n L E\left(G_{2}\right)
$$

We now obtain a generalization of this result:
Proposition 4. Let $G_{1}, G_{2}, \ldots, G_{k}$ be graphs with disjoint vertex sets. Then

$$
\begin{equation*}
L E\left(\prod_{i=1}^{k} G_{i}\right) \leq\left(\prod_{i=1}^{k}\left|G_{i}\right|\right) \sum_{i=1}^{k} \frac{L E\left(G_{i}\right)}{\left|G_{i}\right|} \tag{3}
\end{equation*}
$$

with equality if and only if at most one of the graphs G_{i} is non-empty.
Pr o of. Suppose that G_{i} is an $\left(n_{i}, m_{i}\right)$-graph, $i=1,2, \ldots, k$, and that $G=\prod_{i=1}^{k} G_{i}=G_{1} \times G_{2} \times \cdots \times G_{k}$ is an (n, m)-graph. Then it is easy to see that $2 m / n=\sum_{i=1}^{k} 2 m_{i} / n_{i}$. On the other hand, by a result of Fiedler [3], the Laplacian eigenvalues of $\prod_{i=1}^{k} G_{i}$ are of the form $\sum_{i=1}^{k} \mu_{j_{i}}\left(G_{i}\right), 1 \leq j_{i} \leq n_{i}$. Therefore,

$$
\begin{aligned}
L E(G) & =\sum_{j_{1}, j_{2}, \ldots, j_{k}}\left|\sum_{i=1}^{k} \mu_{j_{i}}\left(G_{i}\right)-\frac{2 m}{n}\right|=\sum_{j_{1}, j_{2}, \ldots, j_{k}}\left|\sum_{i=1}^{k} \mu_{j_{i}}\left(G_{i}\right)-\sum_{i=1}^{k} \frac{2 m_{i}}{n_{i}}\right| \\
& =\sum_{j_{1}, j_{2}, \ldots, j_{k}}\left|\sum_{i=1}^{k}\left(\mu_{j_{i}}\left(G_{i}\right)-\frac{2 m_{i}}{n_{i}}\right)\right| \leq \sum_{j_{1}, j_{2}, \ldots, j_{k}} \sum_{i=1}^{k}\left|\mu_{j_{i}}\left(G_{i}\right)-\frac{2 m_{i}}{n_{i}}\right| \\
& =\sum_{i=1}^{k}\left(\prod_{j=1, j \neq i}^{k}\left|G_{j}\right|\right) L E\left(G_{i}\right) .
\end{aligned}
$$

This implies (3).
For the second part of the proposition, we notice that $L E=0$ for an empty graph, and so if all G_{i} 's are empty, then the equality in (3) holds. On the other hand, if one of the graphs G_{i} is non-empty and all other graphs
are empty, then

$$
\operatorname{LE}\left(\prod_{j=1}^{n} G_{j}\right)=\operatorname{LE}\left(G_{i} \times \prod_{j \neq i} G_{j}\right)=\frac{n}{n_{i}} L E\left(G_{i}\right)=\left(\prod_{i=1}^{k} n_{i}\right) \sum_{i=1}^{k} \frac{L E\left(G_{i}\right)}{n_{i}}
$$

and (3) holds again.
We now assume that the equality is satisfied. If so, then

$$
\left|\sum_{i=1}^{k} \mu_{j_{i}}-\frac{2 m_{i}}{n_{i}}\right|=\sum_{i=1}^{k}\left|\mu_{j_{i}}-\frac{2 m_{i}}{n_{i}}\right|
$$

and if $\mu_{j_{t}}=0$, then $\mu_{j_{i}}-2 m_{i} / n_{i} \leq 0$ for $i \neq t$. Therefore, $\mu_{j_{i}} \leq 2 m_{i} / n_{i} \leq 0$ and G_{i} is an empty graph for $i \neq t$.

By this the proof has been completed.
In [21] it was shown that if G_{1} and G_{2} are both (n, m)-graphs, and $G_{1}+G_{2}$ is their joint, then

$$
L E\left(G_{1}+G_{2}\right)=L E\left(G_{1}\right)+L E\left(G_{2}\right)+2 n-\frac{4 m}{n}
$$

In what follows we state, without proof, the straightforward extension of this result:

Proposition 5.If all the graphs $G_{1}, G_{2}, \ldots, G_{k}$ are (n, m)-graphs, then

$$
L E\left(\sum_{i=1}^{k} G_{i}\right)=\sum_{i=1}^{k} L E\left(G_{i}\right)+2(k-1)\left(n-\frac{2 m}{n}\right) .
$$

Corollary 5.1. $L E(k G)=k L E(G)+2(k-1)(n-2 m / n)$.
Corollary 5.2. $L E\left(K_{n}\right)=2(n-1)$ and $L E(\underbrace{n, n, \ldots, n}_{k \text { times }})=2 n(k-1)$.
Acknowledgment. One of us (A. R. A.) was partially supported by a grant from IUT (CEAMA). This work was also partially supported by the Serbian Ministry of Science and Environmental Protection through Grant no. 144015G.

REFERENCES

[1] D. C v e t k o v i ć, M. D o o b, H. S a c h s, Spectra of Graphs - Theory and Application, Barth, Heidelberg, 1995.
[2] N. M. M. d e A breu, C. T. M. Vinagre, A. S. B on if á cio, I. Gut man, The Laplacian energy of some Laplacian integral graphs, MATCH Commun. Math. Comput. Chem. 60 (2008), 447-460.
[3] M. F i e d le r, Algebraic connectivity of graphs, Czech. Math. J. 23 (1973), 298-305.
[4] I. G u t m a n, The energy of a graph, Ber. Math.-Statist. Sekt. Forschungsz. Graz. 103 (1978), 1-22.
[5] I. G u t m a n, The energy of a graph: old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 2001, pp. 196-211.
[6] I. G u t m a n, Topology and stability of conjugated hydrocarbons. The dependence of total π-electron energy on molecular topology, J. Serb. Chem. Soc. 70 (2005), 441-456.
[7] I. Gutm a n, K. C. D a s, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92.
[8] I. Gutm a n, N. M. M. d e A bre u, C. T. M. V in a g re, A. S. B o n if á c i o, S. R a d enković, Relation between energy and Laplacian energy, MATCH Commun. Math. Comput. Chem. 59 (2008), 343-354.
[9] I. Gutman, O. E. P ol a n s k y, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986, chapter 8.
[10] I. G u t m a n, B. Z h o u, Laplacian energy of a graph, Lin. Algebra Appl. 414 (2006), 29-37.
[11] A. K. K e l' m a n s, The number of trees in a graph I, Automat. Remote Control 26 (1965), 2118-2129.
[12] A. K. K e l' m a n s, The number of trees in a graph II, Automat. Remote Control 27 (1966), 233-241.
[13] A. K. K e l' m an s, Properties of the characteristic polynomial of a graph, Kibernetiky na sluzhbu komunizmu 4 (1967) 27-41 (in Russian).
[14] J. L i u, B. L i u, A Laplacian-energy-like invariant of a graph, MATCH Commun. Math. Comput. Chem. 59 (2008), 355-372.
[15] R. M e r r i s, Laplacian matrices of graphs: A survey, Lin. Algebra Appl. 197-198 (1994), 143-176.
[16] R. M e r r i s, A survey of graph Laplacians, Lin. Multilin. Algebra 39 (1995), 19-31.
[17] B. M o h a r, The Laplacian spectrum of graphs, in: Y. Alavi, G. Chartrand, O. R. Oellermann, A. J. Schwenk (Eds.), Graph Theory, Combinatorics, and Applications, Wiley, New York, 1991, pp. 871-898.
[18] S. N i k olić, G. K o v a č e vić, A. M ili č e vić, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003), 113-124.
[19] B. Z h o u, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52 (2004), 113-118.
[20] B. Z hou, I. Gutman, On Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 57 (2007), 211-220.
[21] B. Z h o u, I. G u t m a n, Nordhaus-Gaddum-type relations for the energy and Laplacian energy of graphs, Bull. Acad. Serbe Sci. Arts (Cl. Math. Natur.) 134 (2007), 1-11.

Department of Mathematics	Faculty of Science
Faculty of Science	University of Kragujevac
University of Kashan	P. O. Box 60
Kashan $87317-51167$	34000 Kragujevac
I. R. Iran	Serbia

