ON RICCI H-PSEUDOSYMMETRIC H-HYPERSURFACES OF SOME ANTI-KÄHLER MANIFOLDS

R. DESZCZ, MILEVA PRVANOVIĆ

(Presented at the 1st Meeting, held on February 29, 2008)
Abstract. We adopt the notion of the pseudosymmetry and Ricci pseudosymmetry to the case of the anti-Kähler manifolds and then we extend the results of the paper [1] to the h-hypersurfaces of the anti-Kähler manifolds of the constant totally real sectional curvatures.

AMS Mathematics Subject Classification (2000): 53C56
Key Words: anti-Kähler manifold, h-hypersurface, h-pseudosymmetry, Ricci h-pseudosymmetry

1. The object of the paper

Let (M, g) be a semi-Riemannian manifold of dimension ≥ 3. The manifold (M, g) is locally symmetric if $\nabla R=0$, on M, where ∇ is its Levi-Civita connection and R the curvature tensor. The proper generalization of locally symmetric manifolds form semi-symmetric manifolds. They are characterized by the condition

$$
R \cdot R=0
$$

which holds on M, where R acts as a derivation. Some of the investigations of such manifolds gave rise to the next generalization, namely to the pseudosymmetric manifolds, i.e., manifolds satisfying on some set $\mathcal{U} \subset M$ the
condition

$$
\begin{equation*}
R \cdot R=\mathcal{L} Q(g, R) \tag{1.1}
\end{equation*}
$$

where \mathcal{L} is a function on U and Q is a special operator (see section 2).
A manifold $(M, g), \operatorname{dim} M \geq 3$, is said to be Ricci pseudosymmetric, resp. Ricci semi-symmetric, if

$$
\begin{equation*}
R \cdot \rho=\mathcal{L} Q(g, \rho), \quad \text { resp. } R \cdot \rho=0 \tag{1.2}
\end{equation*}
$$

holds on the appropiate set $\mathcal{U} \subset M$, and ρ is the Ricci tensor.
For a survey of results on different aspects of pseudosymmetric manifolds, we refer to [3]; see also [2], [10], [11], [14]. Among other problems there were studied the extrinsic characterizations of Ricci pseudosymmetric hypersurfaces of semi-Riemannian spaces of constant curvature in terms of the shape operator. Namely, in [1] (see Theorems 3.1 and 3.2) the following result is proved

Let M be a hypersurface of a semi-Reimannian space of constant curvature and dimension $n \geq 3$. Then M is Ricci pseudosymmetric if and only if at every point $p \in M$, the second fundamental form h satisfies one of the following conditions

$$
\begin{equation*}
h^{2}=\alpha h+\beta q, \quad \alpha, \beta \in R, \tag{1.3}
\end{equation*}
$$

or

$$
h^{3}=\operatorname{tr} h h^{2}+\lambda h, \quad \lambda \in R .
$$

In practicular, for semi-Euclidean space, the previous result imply
A hypersurface M of semi-Euclidean space of dimension $n \geq 3$ is Ricci pseudosymmetric if and only if for every point $p \in M$ the tensor $R \cdot \rho$ vanishes at p, or (1.3) holds.

In section 4 of the present paper, we adopt the notion of pseudosymmetry and Ricci pseudosymmetry to the complex structure of the anti-Kähler manifolds and then we extend the above theorems for the h-hypersurface of anti-Kähler manifold of constant totally real sectional curvature. To do this, we use two formulas proved in section 3, valid for h-hypersurface of the anti-Kähler manifold of constant totally real sectional curvature. In section 2 , we explain notations used in the paper.

2. Preliminaries

Let \widetilde{M} be a connected differentiable manifold endoved with pseudoRiemannian metric G and a $(1,1)$ tensor field F such that, with respect to the local coordinates, holds

$$
\begin{equation*}
F_{B}^{A} F_{C}^{B}=-\delta_{C}^{A}, \quad F_{A}^{E} F_{B}^{D} G_{E D}=-G_{A B}, \quad \tilde{\nabla}_{D} F_{B}^{A}=0 \tag{2.1}
\end{equation*}
$$

Here $\widetilde{\nabla}$ is the Levi-Civita connection of (\widetilde{M}, G) and $A, B, C, D \in\{1,2, \ldots, 2 m\}$, $2 m=\operatorname{dim} \widetilde{M}$. The manifold (\widetilde{M}, G, F) is said to be anti-Kähler manifold [12]. In some papers (\widetilde{M}, G, F) is named B-manifold ([6],[7],[13]) and in some others - the Kähler manifold with the Norden metric ([8],[9]).

The manifold ($\widetilde{M}, G, F)$ is orientable and evendimensional. The metric G of such a manifold is indefinite and the signature is (m, m). Also, tr $F=0$.

We denote by

$$
\begin{array}{ll}
\widetilde{R}_{A B C D} & \text { - the Riemannian curvature tensor, } \\
\widetilde{\rho}_{A B}=\widetilde{R}_{A B C}^{C} & \text { - the Ricci tensor, } \\
\widetilde{*}_{A B}=F_{A}^{D} \widetilde{\rho}_{D B} & \text { - the second Ricci tensor, } \\
\widetilde{\kappa}=G^{A B} \widetilde{\rho}_{A B} & \text { - the scalar curvature, } \\
\stackrel{*}{\kappa}=G^{A B} \stackrel{\widetilde{\mu}}{\rho}^{*} & \text { - the second scalar curvature. }
\end{array}
$$

Since $\widetilde{\nabla} F=0$, the curvature tensor and the Ricci tensors satisfy

$$
\left.\begin{array}{l}
F_{A}^{L} F_{B}^{M} \widetilde{R}_{L M C D}=-\widetilde{R}_{A B C D}, \tag{2.2}\\
F_{A}^{L} F_{B}^{M} \widetilde{\rho}_{L M}=-\widetilde{\rho}_{A B} \\
F_{A}^{L} F_{B}^{M} \stackrel{\widetilde{*}}{\rho}_{L M}=-\widetilde{\stackrel{ }{\rho}}_{A B} .
\end{array}\right\}
$$

The manifold ($\widetilde{M}, G, F)$ is of pointwise constant totally real sectional curvature if at $p \in M,([6],[7])$:

$$
\begin{gather*}
\widetilde{R}_{A B C D}= \\
\frac{\widetilde{\kappa}(p)}{4 m(m-1)}\left(G_{A D} G_{B C}-G_{A C} G_{B D}-F_{A}^{L} G_{L D} F_{B}^{M} G_{M C}+F_{A}^{L} G_{L C} F_{B}^{M} G_{M D}\right) \\
-\frac{\widetilde{*}(p)}{4 m(m-1)}\left(G_{A D} F_{B}^{L} G_{L C}+G_{B C} F_{A}^{L} G_{L D}-G_{A C} F_{B}^{L} G_{L D}-G_{B D} F_{A}^{L} G_{L C}\right) . \tag{2.3}
\end{gather*}
$$

If $m \geq 3$, both functions $\widetilde{\kappa}$ and $\underset{\kappa}{\widetilde{*}}$ are constants.
Now, we consider a differentiable submanifold M of $\widetilde{M}, \operatorname{dim} M=2 n$, $n=m-1$. Suppose that M is expressed in each neighbourhood \widetilde{U} of \widetilde{M} by the equations

$$
x^{A}=x^{A}\left(u^{a}\right),
$$

where x^{A} are the local coordinates of \widetilde{M} in \widetilde{U} and u^{a} are the local coordinates in $U=\widetilde{U} \cap M$. Lowercase Latin indices $a, b, c, \ldots, i, j, k, \ldots$ run over the range $\{1,2, \ldots, 2 n\} . M$ is said to be a h-hypersurface (holomorphic hypersurface) of \widetilde{M} if the restriction g of $G \overline{\text { on } M \text { has the maximal rank and the }}$ complex structure F leaves invariant the tangent space of M at each point $p \in M$. F induces on M the complex structure f such that (M, g, f) itself is an anti-Kähler manifold [4]. Similarly to (2.1) and (2.2), we have

$$
\begin{align*}
& f_{i}^{a} f_{a}^{j}=-\delta_{i}^{j}, \quad f_{i}^{a} f_{j}^{b} g_{a b}=-g_{i j}, \quad \nabla_{i} f_{j}^{k}=0, \\
& \left.\begin{array}{ll}
f_{i}^{a} f_{j}^{b} R_{a b l m}=-R_{i j l m}, & \stackrel{*}{\rho} i j=f_{i}^{a} \rho_{a j}, \\
f_{i}^{a} f_{j}^{b} \rho_{a b}=-\rho_{i j}, & f_{i}^{a} f_{j}^{b} \stackrel{*}{\rho}_{a b}=-\stackrel{*}{\rho}_{i j},
\end{array}\right\} \tag{2.4}
\end{align*}
$$

where ∇ is the Levi-Civita connection with respect to the metric g, and $R_{i j l m}, \rho_{i j}$ and $\stackrel{*}{\rho}_{i j}$ denote the local components of the Riemannian curvature tensor, Ricci tensor and the second Ricci tensor, respectively. We denote by κ and $\stackrel{*}{\kappa}$ the scalar curvature and the second scalar curvature of (M, g, f).

Because F leaves invariant the tangent space of M, it leaves invariant the normal space, too. There exist locally vector fields $N_{1 \mid}$ and $N_{2 \mid}$ normal to M, such that ([4]):

$$
\begin{gathered}
G_{A B} N_{1 \mid}{ }^{A} N_{1 \mid}^{B}=-G_{A B} N_{2 \mid}{ }^{A} N_{2 \mid}^{B}=1, \quad G_{A B} N_{1 \mid}{ }^{A} N_{2 \mid}^{B}=0, \\
F_{B}^{A} N_{1 \mid}^{B}=-N_{2 \mid}{ }^{A}, \quad F_{B}^{A} N_{2 \mid}^{B}=N_{1 \mid}^{A} .
\end{gathered}
$$

Denoting by h and k the second fundamental forms corresponding to $N_{1 \mid}$ and $N_{2 \mid}$ respectively, we have

$$
\begin{equation*}
h_{i j}=f_{i}^{a} k_{a j}, \quad k_{i j}=-f_{i}^{a} h_{a j} . \tag{2.5}
\end{equation*}
$$

Also, we shall use

$$
h_{i j}^{2}=h_{i}{ }^{a} h_{a j}, \quad h_{i j}^{3}=h_{i}{ }^{a} h_{a j}^{2} .
$$

It is easy to see that the following conditions are satisfied

$$
\left.\begin{array}{l}
f_{i}^{a} f_{j}^{b} h_{a b}=-h_{i j}, \quad f_{i}^{a} f_{j}^{b} k_{a b}=-k_{i j} \tag{2.6}\\
f_{i}^{a} h_{a j}=f_{j}^{a} h_{a i}, \quad f_{i}^{a} k_{a j}=f_{j}^{a} k_{i a} \\
h_{i j}^{2}=h_{j i}^{2}, \quad f_{i}^{a} f_{j}^{b} h_{a b}^{2}=-h_{i j}^{2}, \quad f_{i}^{a} h_{a j}^{2}=f_{j}^{a} h_{i a}^{2} \\
h_{i j}^{3}=h_{j i}^{3}, \quad f_{i}^{a} f_{j}^{b} h_{a b}^{3}=-h_{i j}^{3}, \quad f_{i}^{a} h_{a j}^{3}=f_{j}^{a} h_{i a}^{3}
\end{array}\right\}
$$

Let at $p \in M, A$ and D be two symmetric $(0,2)$ tensors and B the curvature like tensor, satisfying

$$
\begin{gather*}
f_{i}^{a} f_{j}^{b} A_{a b}=-A_{i j}, \quad f_{i}^{a} f_{j}^{b} D_{a b}=-D_{i j} \tag{2.7}\\
f_{i}^{a} f_{j}^{b} B_{a b l m}=-B_{i j l m} \tag{2.8}
\end{gather*}
$$

Let T be a $(0,4)$ tensor. We define the tensors $B \cdot A, B \cdot T, Q(A, D)$, $Q(A, B)$ by the formulas

$$
\begin{gather*}
(B \cdot A)_{r s i j}=A_{a j} B_{i r s}^{a}+A_{i a} B_{j r s}^{a} \tag{2.9}\\
(B \cdot T)_{r s i j l m}=T_{a j l m} B_{i r s}^{a}+T_{i a l m} B_{j r s}^{a}+T_{i j a m} B_{l r s}^{a}+T_{i j l a} B_{m r s}^{a} \tag{2.10}\\
Q(A, D)_{r s i j}=A_{r i} D_{s j}+A_{r j} D_{s i}-A_{s i} D_{r j}-A_{s j} D_{r i} \tag{2.11}\\
-f_{r}^{a} f_{s}^{b}\left(A_{a i} D_{b j}+A_{a j} D_{b i}-A_{b i} D_{a j}-A_{b j} D_{a i}\right) \\
Q(A, B)_{r s i j l m}=A_{r i} B_{s j l m}+A_{r j} B_{i s l m}+A_{r l} B_{i j s m}+A_{r m} B_{i j l s} \\
-A_{s i} B_{r j l m}-A_{s j} B_{i r l m}-A_{s l} B_{i j r m}-A_{s m} B_{i j l r} \\
-f_{r}^{a} f_{s}^{b}\left(A_{a i} B_{b j l m}+A_{a j} B_{i b l m}+A_{a l} B_{i j b m}+A_{a m} B_{i j l b}\right. \tag{2.12}\\
\left.-A_{b i} B_{a j l m}-A_{b j} B_{i a l m}-A_{b l} B_{i j a m}-A_{b m} B_{i j l a}\right)
\end{gather*}
$$

Remark. The operator Q of a semi-Riemannian manifold (M, g) is defined in the following way (e.g. see [1],[2],[3]):

$$
\begin{aligned}
Q(A, D)_{r s i j}= & A_{r i} D_{s j}+A_{r j} D_{s i}-A_{s i} D_{r j}-A_{s j} D_{r i} \\
Q(A, B)_{r s i j l m}= & A_{r i} B_{s j l m}+A_{r j} B_{i s l m}+A_{r l} B_{i j s m}+A_{r m} B_{i j l s} \\
& -A_{s i} B_{r j l m}-A_{s j} B_{i r l m}-A_{s l} B_{i j r m}-A_{s m} B_{i j l r}
\end{aligned}
$$

Thus, (2.11) and (2.12) are the same operators, but adopted to the complex structure of the manifold.

We note that
$Q(A, D)=-Q(D, A) \quad$ and therefore $\quad Q(A, A)=0$,
$Q(f A, f D)=-Q(A, D) \quad$ and therefore $\quad Q(f A, D)=Q(A, f D)$,
$Q(A, f A)=0, \quad Q(f D, B)=Q(D, f B)$.
For the latter use, we present
Lemma 2.1 ([4]) Let as a point $p \in M, A$ and D be two symmetric $(0,2)$ tensors satisfying (2.7). If

$$
\begin{equation*}
Q(A, D)=0 \tag{2.14}
\end{equation*}
$$

then

$$
\begin{equation*}
D=\delta A+\bar{\delta} f A, \quad \delta, \bar{\delta} \in R \tag{2.15}
\end{equation*}
$$

Proof. Let X be a vector such that

$$
X^{a} X^{b} A_{a b}=\omega \neq 0, \quad X^{a} \bar{X}^{b} A_{a b}=\bar{\omega} \neq 0
$$

where $\bar{X}^{i}=f_{a}^{i} X^{a}$. We put

$$
\eta=X^{a} X^{b} D_{a b}, \quad \bar{\eta}=X^{a} \bar{X}^{b} D_{a b}
$$

Transvecting (2.14) with $X^{i} X^{r}$, and symmetrizing the resulting equality, we get

$$
\omega D_{s j}-\eta A_{s j}-\bar{\omega} f_{s}^{a} D_{a j}+\bar{\eta} f_{s}^{a} A_{a j}=0
$$

from which it follows that

$$
\omega f_{i}^{a} D_{a j}-\eta f_{i}^{a} A_{a j}+\bar{\omega} D_{i j}-\bar{\eta} A_{i j}=0
$$

These two relations imply

$$
D_{i j}=\frac{\omega \eta+\bar{\omega} \bar{\eta}}{\omega^{2}+\bar{\omega}^{2}} A_{i j}-\frac{\omega \bar{\eta}-\bar{\omega} \eta}{\omega^{2}+\bar{\omega}^{2}} f_{i}^{a} A_{a j}
$$

But this is just the relation (2.15).
3. H-hypersurface of an anti-Kähler manifold of constant totally real sectional curvatures

The Gauss equation for an h-hypersurface (M, g, f) reads

$$
\widetilde{R}_{A B C D} \frac{\partial x^{A}}{\partial u^{i}} \frac{\partial x^{B}}{\partial u^{j}} \frac{\partial x^{C}}{\partial u^{l}} \frac{\partial x^{D}}{\partial u^{m}}=R_{i j l m}-\left(h_{i m} h_{j l}-h_{i l} h_{j m}\right)+\left(k_{i m} k_{j l}-k_{i l} k_{j m}\right) .
$$

Now, we suppose that the ambient manifold (\widetilde{M}, G, F) is a manifold of constant totally real sectional curvatures. Then, substituting (2.3) into above Gauss equation, and taking into account that $m=n+1$, we get

$$
\begin{equation*}
R_{i j l m}=K G_{i j l m}+\stackrel{*}{K} f_{i}^{a} G_{a j l m}+E_{i j l m} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{align*}
& G_{i j l m}=g_{i m} g_{j l}-g_{i l} g_{j m}-f_{i m} f_{j l}+f_{i l} f_{j m}, \tag{3.2}\\
& E_{i j l m}=h_{i m} h_{j l}-h_{i l} h_{j m}-k_{i m} k_{j l}+k_{i l} k_{j m} \tag{3.3}\\
& K=\frac{\widetilde{\kappa}}{4 n(n+1)}, \quad \stackrel{*}{K}=-\frac{\widetilde{*}}{4 n(n+1)}, \tag{3.4}
\end{align*}
$$

and $f_{i j}=f_{i}^{a} g_{a j}$.
The relation (3.1) yields

$$
\left.\begin{array}{l}
\rho_{i m}=2(n-1)\left(K g_{i m}+\stackrel{*}{K} f_{i m}\right)+\operatorname{tr} h h_{i m}+\operatorname{tr} k f_{i}^{a} h_{a m}-2 h_{i m}^{2}, \tag{3.5}\\
\stackrel{*}{\rho}_{i m}=2(n-1)\left(K f_{i m}-\stackrel{*}{K} g_{i m}\right)+\operatorname{tr} h f_{i}^{a} h_{a m}-\operatorname{tr} k h_{i m}-2 f_{i}^{a} h_{a m}^{2},
\end{array}\right\}
$$

and therefore

$$
\left.\begin{array}{c}
\kappa=4 n(n-1) K+(\operatorname{tr} h)^{2}-(\operatorname{tr} k)^{2}-2 \operatorname{tr}\left(h^{2}\right), \tag{3.6}\\
\stackrel{*}{\kappa}=-4 n(n-1) \stackrel{*}{K}-2 \operatorname{tr} h \operatorname{tr} k-2 \operatorname{tr}\left(f h^{2}\right) .
\end{array}\right\}
$$

We note that, because of $k_{i j}=-f_{i}^{a} h_{a j}$, we have $\operatorname{tr} k=-\operatorname{tr}(f h)$. In view of (3.1), we have

$$
R \cdot R=K G \cdot R+\stackrel{*}{K}(f G) \cdot R+E \cdot R .
$$

Using (2.12), we can easy to see that

$$
G \cdot R=Q(g, R), \quad(f G) \cdot R=Q(f g, R) .
$$

Therefore

$$
\begin{equation*}
R \cdot R=K Q(g, R)+\stackrel{*}{K} Q(f g, R)+E \cdot R \tag{3.7}
\end{equation*}
$$

On the other hand

$$
E \cdot R=K(E \cdot G)+\stackrel{*}{K}(E \cdot f G)+E \cdot E
$$

But

$$
\begin{aligned}
&(E \cdot G)_{r s i j l m}= \\
&= G_{a j l m} E_{i r s}^{a}+G_{i a l m} E_{j r s}^{a}+G_{i j a m} E_{l r s}^{a}+G_{i j l a} E_{m r s}^{a} \\
&= g_{j l}\left(E_{m i r s}+E_{i m r s}\right)-g_{j m}\left(E_{l i r s}+E_{i l r s}\right) \\
&+g_{i m}\left(E_{l j r s}+E_{j l r s}\right)-g_{i l}\left(E_{m j r s}+E_{j m r s}\right) \\
&-f_{i m}\left(f_{l}^{a} E_{a j r s}+f_{j}^{a} E_{a l r s}\right)+f_{i l}\left(f_{m}^{a} E_{a j r s}+f_{j}^{a} E_{a m r s}\right) \\
&-f_{j l}\left(f_{m}^{a} E_{a i r s}+f_{i}^{a} E_{a m r s}\right)+f_{j m}\left(f_{l}^{a} E_{a i r s}+f_{i}^{a} E_{a l r s}\right)=0
\end{aligned}
$$

because of

$$
E_{m i r s}=-E_{m i r s} \quad \text { and } \quad f_{m}^{a} E_{a i r s}=-f_{i}^{a} E_{a m r s}
$$

Similary we have $E \cdot f G=0$, and therefore (3.7) reduces to

$$
R \cdot R=K Q(g, R)+\stackrel{*}{K} Q(f g, R)+E \cdot E .
$$

Finally

$$
\begin{aligned}
&(E \cdot E)_{r s i j l m}= \\
&=-\left[h_{r i}^{2} E_{s j l m}+h_{r j}^{2} E_{i s l m}+h_{r l}^{2} E_{i j s m}+h_{r m}^{2} E_{i j l s}\right. \\
&-h_{s i}^{2} E_{r j l m}-h_{s j}^{2} E_{i r l m}-h_{s l}^{2} E_{i j r m}-h_{s m}^{2} E_{i j l r} \\
&-f_{r}^{a} f_{s}^{b}\left(h_{a i}^{2} E_{b j l m}+h_{a j}^{2} E_{i b l m}+h_{a l}^{2} E_{i j b m}+h_{a m}^{2} E_{i j l b}\right. \\
&\left.\left.-h_{b i}^{2} E_{a j l m}-h_{b j}^{2} E_{i a l m}-h_{b l}^{2} E_{i j a m}-h_{b m}^{2} E_{i j l a}\right)\right] \\
&=-Q\left(h^{2}, E\right)_{r s i j l m} .
\end{aligned}
$$

Thus, we can state
Proposition 3.1. The relation

$$
\begin{equation*}
(R \cdot R)_{r s i j l m}=K Q(g, R)_{r s i j l m}+\stackrel{*}{K} Q(f g, R)_{r s i j l m}-Q\left(h^{2}, E\right)_{r s i j l m} \tag{3.8}
\end{equation*}
$$

holds good for any h-hypersurface of an anti-Kähler manifold of constant totally real sectional curvatures.

Transvecting (3.8) with $g^{j l}$ we get

$$
\begin{equation*}
R \cdot \rho=K Q(g, \rho)+\stackrel{*}{K}(f g, \rho)+Q\left(h, \operatorname{tr} h h^{2}+\operatorname{tr} k f h^{2}-2 h^{3}\right) . \tag{3.9}
\end{equation*}
$$

Thus, we have
Proposition 3.2. The relation (3.9) holds good for any h-hypersurface of an anti-Kähler manifold of constant totally real sectional curvatures.

4. H-pseudosymmetry

In the case of anti-Kähler manifolds, we adopt the conditions (1.1) and (1.2) to the complex structure of the manifold introducing the following

Definition. The anti-Kähler manifold (M, g, f) is said to be $\underline{h-p s e u d o-~}$ symmetric if the condition

$$
\begin{equation*}
R \cdot R=\mathcal{L}_{1} Q(g, R)+\mathcal{L}_{2} Q(f g, R) \tag{4.1}
\end{equation*}
$$

is satisfied on some set $U \subset M$, where \mathcal{L}_{1} and \mathcal{L}_{2} are some scalar function on U.

The manifold (M, g, f) is said to be Ricci h-pseudosymmetric if the condition

$$
\begin{equation*}
R \cdot \rho=\mathcal{L}_{1} Q(g, \rho)+\mathcal{L}_{2} Q(f g, \rho) \tag{4.2}
\end{equation*}
$$

is satisfied on U.
Now, we consider h-hypersurface (M, g, f) of the anti-Kähler manifold of constant totally real sectional curvatures. Then, according to the Proposition 3.2, the relation (3.9) holds good. Thus, if (M, g, f) is also Ricci h -pseudosymmetric, then we have

$$
\begin{equation*}
\left(\mathcal{L}_{1}-K\right) Q(g, \rho)+\left(\mathcal{L}_{2}-\stackrel{*}{K}\right) Q(f g, \rho)=Q\left(h, \operatorname{tr} h h^{2}+\operatorname{tr} k f h^{2}-2 h^{3}\right) . \tag{4.3}
\end{equation*}
$$

We shall examine two cases.
Case (1). If

$$
\begin{equation*}
\mathcal{L}_{1}=K \quad \text { and } \quad \mathcal{L}_{2}=\stackrel{*}{K} \tag{4.4}
\end{equation*}
$$

then (4.3) reduces to

$$
Q\left(h, \operatorname{tr} h h^{2}+\operatorname{tr} k f h^{2}-2 h^{3}\right)=0
$$

and, in view of Lemma 2.1, we have

$$
\begin{equation*}
h^{3}=\frac{1}{2} \operatorname{tr} h h^{2}+\frac{1}{2} \operatorname{tr} k f h^{2}+\delta h+\bar{\delta} f h \tag{4.5}
\end{equation*}
$$

Conversely, if (4.5) holds, then

$$
\begin{aligned}
Q\left(h, \operatorname{tr} h h^{2}\right. & \left.+\operatorname{tr} k f h^{2}-2 h^{3}\right)= \\
& =-2 \delta Q(h, h)-2 \bar{\delta} Q(h, f h)=0
\end{aligned}
$$

and (3.9) reduces to

$$
R \cdot \rho=K Q(g, \rho)+\stackrel{*}{K} Q(f g, \rho)
$$

i.e., (4.4) holds.

Thus, we can state
Theorem 4.1. Let (M, g, f) be h-hypersurface of the anti-Kähler manifold (M, G, F) of constant totally real sectional curvatures. Then (4.5) is the necessary and the sufficient condition for (M, g, f) to be Ricci h pseudosymmetric on the appropriate set $U \subset M$ such that (4.4) holds.

Remark. According to (3.4), (4.4) turns into

$$
\mathcal{L}_{1}=\frac{\widetilde{\kappa}}{4 n(n+1)}, \quad \mathcal{L}_{2}=-\frac{\stackrel{\widetilde{\kappa}}{\kappa}}{4 n(n+1)},
$$

where $\widetilde{\kappa}$ and $\stackrel{\widetilde{*}}{\kappa}$ are the first and the second scalar curvatures of \widetilde{M} and $\operatorname{dim} M=2 n$.

Corollary. Let (M, g, f) be h-hypersurface of the flat anti-Kähler manifold. Then (4.5) is the necessary and the sufficient condition for (M, g, f) to be Ricci semisymmetric.

Case (2) If

$$
\lambda_{1}=\mathcal{L}_{1}-\frac{\widetilde{\kappa}}{4 n(n+1)} \neq 0 \quad \text { and } \quad \lambda_{2}=\mathcal{L}_{2}+\frac{\widetilde{\widetilde{\kappa}}}{4 n(n+1)} \neq 0
$$

then (4.3) gives

$$
\begin{equation*}
\lambda_{1} Q(g, \rho)+\lambda_{2} Q(f g, \rho)=Q\left(h, \operatorname{tr} h h^{2}+\operatorname{tr} k f h^{2}-2 h^{3}\right), \tag{4.6}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\lambda_{1} Q(f g, \rho)-\lambda_{2} Q(g, \rho)=-Q\left(h, \operatorname{tr} k h^{2}-\operatorname{tr} h f h^{2}+2 f h^{3}\right) . \tag{4.7}
\end{equation*}
$$

In the local coordinates, the left hand side of (4.6) is the following

$$
\begin{aligned}
& \lambda_{1}\left(g_{r i} \rho_{s j}+g_{r j} \rho_{s i}-g_{s i} \rho_{r j}-g_{s j} \rho_{r i}-f_{r i} \stackrel{*}{\rho_{s j}}-f_{r j} \stackrel{*}{\rho} s i+f_{s i} \stackrel{*}{\rho_{r j}}+f_{s j} \stackrel{*}{\rho}{ }_{r i}\right) \\
& +\lambda_{2}\left(f_{r i} \rho_{s j}+f_{r j} \rho_{s i}-f_{s i} \rho_{r j}-f_{s j} \rho_{r i}+g_{r i} \stackrel{*}{\rho} s j+g_{r j} \stackrel{*}{\rho_{s i}}-g_{s i} \stackrel{*}{\rho} r r j-g_{s j} \stackrel{*}{\rho} r i\right),
\end{aligned}
$$

from which, by transvection with $g^{r i}$ we get

$$
\lambda_{1}(2 n \rho-\kappa g+\stackrel{*}{\kappa} f g)+\lambda_{2}(2 n \stackrel{*}{\rho}-\kappa f g-\stackrel{*}{\kappa} g) .
$$

In the similar way, we obtain from

$$
Q\left(h, \operatorname{tr} h h^{2}+\operatorname{tr} k f h^{2}-2 h^{3}\right)
$$

the following expression

$$
\begin{aligned}
& -\left[\operatorname{tr} h \operatorname{tr} h^{2}+\operatorname{tr} k \operatorname{tr}\left(f h^{2}\right)-2 \operatorname{tr} h^{3}\right] h+\left[\operatorname{tr} h \operatorname{tr}\left(f h^{2}\right)-\operatorname{tr} k \operatorname{tr} h^{2}-2 \operatorname{tr}\left(f h^{3}\right)\right] f h \\
& +\left[(\operatorname{tr} h)^{2}-(\operatorname{tr} k)^{2}\right] h^{2}+2 \operatorname{tr} h \operatorname{tr} k f h^{2}-2 \operatorname{tr} h h^{3}-2 \operatorname{tr} k f h^{3} .
\end{aligned}
$$

Thus, as a consequence of (4.6), we have

$$
\begin{gather*}
\lambda_{1} Q(2 n \rho-\kappa g+\stackrel{*}{\kappa} f g, h)+\lambda_{2} Q(2 n \stackrel{*}{\rho}-\kappa f g-\stackrel{*}{\kappa} g, h) \\
=-\left[(\operatorname{tr} h)^{2}-(\operatorname{tr} k)^{2}\right] Q\left(h, h^{2}\right)-2 \operatorname{tr} h \operatorname{tr} k Q\left(h, f h^{2}\right) \tag{4.8}\\
+2 \operatorname{tr} h Q\left(h, h^{3}\right)+2 \operatorname{tr} k Q\left(h, f h^{3}\right) .
\end{gather*}
$$

But, the right hand side of (4.8) can be written in the form

$$
\begin{aligned}
& {\left[-(\operatorname{tr} h)^{2}+(\right.}\left.\operatorname{tr} k)^{2}\right] Q\left(h, h^{2}\right)-2 \operatorname{tr} h \operatorname{tr} k Q\left(h, f h^{2}\right) \\
& \quad+2 \operatorname{tr} h Q\left(h, h^{3}\right)+2 \operatorname{tr} k Q\left(h, f h^{3}\right) \\
&=-\operatorname{tr} h[\left.\operatorname{tr} h Q\left(h, h^{2}\right)+\operatorname{tr} k Q\left(h, f h^{2}\right)-2 Q\left(h, h^{3}\right)\right] \\
&+ \operatorname{tr} k\left[\operatorname{tr} k Q\left(h, h^{2}\right)-\operatorname{tr} h Q\left(h, f h^{2}\right)+2 Q\left(h, f h^{3}\right)\right] \\
&=-\operatorname{tr} h Q\left(h, \operatorname{tr} h h^{2}+\operatorname{tr} k f h^{2}-2 h^{3}\right)+\operatorname{tr} k Q\left(h, \operatorname{tr} k h^{2}-\operatorname{tr} h f h^{2}+2 f h^{3}\right) \\
&=-\operatorname{tr} h[\left.\lambda_{1} Q(g, \rho)+\lambda_{2} Q(f g, \rho)\right]+\operatorname{tr} k\left[-\lambda_{1} Q(f g, \rho)+\lambda_{2} Q(g, \rho)\right],
\end{aligned}
$$

because of (4.6) and (4.7). Thus, (4.8) is of the form

$$
\begin{align*}
& \lambda_{1} Q(2 n \rho-\kappa g+\stackrel{*}{\kappa} f g, h)+\lambda_{2} Q(2 n \stackrel{*}{\rho}-\kappa f g-\stackrel{*}{\kappa} g, h) \tag{4.9}\\
& =-\lambda_{1}[\operatorname{tr} h Q(g, \rho)+\operatorname{tr} k Q(f g, \rho)]+\lambda_{2}[\operatorname{tr} k Q(g, \rho)-\operatorname{tr} h Q(f g, \rho)]
\end{align*}
$$

On the other hand, using (3.5), we have

$$
\begin{gathered}
Q(2 n \rho-\kappa g+\stackrel{*}{\kappa} f g, h) \\
=[4 n(n-1) K-\kappa] Q(g, h)+[4 n(n-1) \stackrel{*}{K}+\stackrel{*}{\kappa}] Q(f g, h)+4 n Q\left(h, h^{2}\right) .
\end{gathered}
$$

Similarly

$$
\begin{gathered}
Q(2 n \stackrel{*}{\rho}-\kappa f g-\stackrel{*}{\kappa} g, h) \\
=[4 n(n-1) K-\kappa] Q(f g, h)-[4 n(n-1) \stackrel{*}{K}+\stackrel{*}{\kappa}] Q(g, h)+4 n Q\left(h, f h^{2}\right),
\end{gathered}
$$

such that (4.9) becomes

$$
\begin{align*}
\lambda_{1}\{ & {[4 n(n-1) K-\kappa] Q(g, h)+[4 n(n-1) \stackrel{*}{K}+\stackrel{*}{\kappa}] Q(f g, h) } \\
& \left.+4 n Q\left(h, h^{2}\right)+\operatorname{tr} h Q(g, \rho)+\operatorname{tr} k Q(f g, \rho)\right\} \\
+\lambda_{2}\{ & {[4 n(n-1) K-\kappa] Q(f g, h)-[4 n(n-1) \stackrel{*}{K}+\stackrel{*}{\kappa}] Q(g, h) } \tag{4.10}\\
& \left.+4 n Q\left(h, f h^{2}\right)-\operatorname{tr} k Q(g, \rho)+\operatorname{tr} h Q(f g, \rho)\right\}=0
\end{align*}
$$

If we set

$$
\begin{aligned}
P= & {[4 n(n-1) K-\kappa] Q(g, h)+[4 n(n-1) \stackrel{*}{K}+\stackrel{*}{\kappa}] Q(f g, h) } \\
& +4 n Q\left(h, h^{2}\right)+\operatorname{tr} h Q(g, \rho)+\operatorname{tr} k Q(f g, \rho)
\end{aligned}
$$

then

$$
\begin{aligned}
f P= & {[4 n(n-1) K-\kappa] Q(f g, h)-[4 n(n-1) \stackrel{*}{K}-\stackrel{*}{\kappa}] Q(g, h) } \\
& +4 n Q\left(f h, h^{2}\right)+\operatorname{tr} h Q(f g, \rho)-\operatorname{tr} k Q(g, \rho)
\end{aligned}
$$

But

$$
Q\left(h, f h^{2}\right)=Q\left(f h, h^{2}\right)
$$

This means that (4.10) can be expressed in the form

$$
\lambda_{1} P+\lambda_{2} f P=0
$$

This relation, together with

$$
-\lambda_{2} P+\lambda_{1} f P=0
$$

yields

$$
\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right) P=0
$$

and $P=0$ if at last one of the conditions $\lambda_{1} \neq 0$ and $\lambda_{2} \neq 0$ is satisfied. Thus we have

$$
\begin{aligned}
& {[4 n(n-1) K-\kappa] Q(g, h)+[4 n(n-1) \stackrel{*}{K}+\stackrel{*}{\kappa}] Q(f g, h)} \\
& +4 n Q\left(h, h^{2}\right)+\operatorname{tr} h Q(g, \rho)+\operatorname{tr} k Q(f g, \rho)=0
\end{aligned}
$$

or

$$
\begin{align*}
& {\left[4 n(n-1) K-\kappa+(\operatorname{tr} h)^{2}-(\operatorname{tr} k)^{2}\right] Q(g, h) } \\
+ & {[4 n(n-1) \stackrel{*}{K}+\stackrel{*}{\kappa}+2 \operatorname{tr} h \operatorname{tr} k] Q(f g, h) } \tag{4.11}\\
- & 2 \operatorname{tr} h Q\left(g, h^{2}\right)-2 \operatorname{tr} k Q\left(g, f h^{2}\right)+4 n Q\left(h, h^{2}\right)=0,
\end{align*}
$$

because of

$$
\begin{aligned}
& Q(g, \rho)=\operatorname{tr} h Q(g, h)+\operatorname{tr} k Q(g, f h)-2 Q\left(g, h^{2}\right) \\
& Q(f g, \rho)=\operatorname{tr} h Q(f g, h)+\operatorname{tr} k Q(g, h)-2 Q\left(g, f h^{2}\right)
\end{aligned}
$$

Finally, according to (3.6),

$$
\begin{aligned}
& 4 n(n-1) K-\kappa+(\operatorname{tr} h)^{2}-(\operatorname{tr} k)^{2}=2 \operatorname{tr}\left(h^{2}\right) \\
& 4 n(n-1) \stackrel{*}{K}+\stackrel{*}{\kappa}+2 \operatorname{tr} h \operatorname{tr} k=-2 \operatorname{tr}\left(f h^{2}\right)
\end{aligned}
$$

and (4.11) becomes

$$
\begin{align*}
& \operatorname{tr} h^{2} Q(g, h)-\operatorname{tr}\left(f h^{2}\right) Q(f g, h) \\
& -\operatorname{tr} h Q\left(g, h^{2}\right)-\operatorname{tr} k Q\left(g, f h^{2}\right)+2 n Q\left(h, h^{2}\right)=0 \tag{4.12}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
& Q\left(h-\frac{\operatorname{tr} h}{2 n} g+\frac{\operatorname{tr}(f h)}{2 n} f g, h^{2}-\frac{\operatorname{tr} h^{2}}{2 n} g+\frac{\operatorname{tr}\left(f h^{2}\right)}{2 n} f g\right) \\
& =Q\left(h, h^{2}\right)+Q\left(g, \frac{\operatorname{tr} h^{2}}{2 n} h\right)-Q\left(g, \frac{\operatorname{tr}\left(f h^{2}\right)}{2 n} f h\right) \\
& \quad-Q\left(g, \frac{\operatorname{tr} h}{2 n} h^{2}\right)+Q\left(g, \frac{\operatorname{tr} f h}{2 n} f h^{2}\right) .
\end{aligned}
$$

This, in view of (4.12), means that

$$
Q\left(h-\frac{\operatorname{tr} h}{2 n} g+\frac{\operatorname{tr}(f h)}{2 n} f g, h^{2}-\frac{\operatorname{tr} h^{2}}{2 n} g+\frac{\operatorname{tr}\left(f h^{2}\right)}{2 n} f g\right)=0
$$

from which, applying Lemma 2.1, we get

$$
\begin{aligned}
h^{2}-\frac{\operatorname{tr} h^{2}}{2 n} g & +\frac{\operatorname{tr}\left(f h^{2}\right)}{2 n} f g=\delta\left(h-\frac{\operatorname{tr} h}{2 n} g+\frac{\operatorname{tr}(f h)}{2 n} f g\right) \\
& +\bar{\delta}\left(f h-\frac{\operatorname{tr} h}{2 n} f g-\frac{\operatorname{tr}(f h)}{2 n} g\right)
\end{aligned}
$$

or

$$
\begin{equation*}
h^{2}=\delta h+\bar{\delta} f h+\mu g+\bar{\mu} f g \tag{4.13}
\end{equation*}
$$

where

$$
\begin{aligned}
\mu & =\frac{\operatorname{tr} h^{2}}{2 n}-\delta \frac{\operatorname{tr} h}{2 n}-\bar{\delta} \frac{\operatorname{tr}(f h)}{2 n} \\
\bar{\mu} & =-\frac{\operatorname{tr}\left(f h^{2}\right)}{2 n}+\delta \frac{\operatorname{tr}(f h)}{2 n}-\bar{\delta} \frac{\operatorname{tr} h}{2 n}
\end{aligned}
$$

Conversely, if (4.13) holds, then

$$
\begin{aligned}
Q\left(h^{2}, E\right) & =Q(\delta h+\bar{\delta} f h+\mu g+\bar{\mu} f g, E) \\
& =\delta Q(h, E)+\bar{\delta} Q(f h, E)+\mu Q(g, E)+\bar{\mu} Q(f g, E)
\end{aligned}
$$

But

$$
Q(h, E)=Q(f h, E)=0
$$

and therefore

$$
\begin{equation*}
Q\left(h^{2}, E\right)=\mu Q(g, E)+\bar{\mu} Q(f g, E) \tag{4.14}
\end{equation*}
$$

On the other hand, in view of $Q(g, G)=Q(f g, G)=0$, we have

$$
\mu Q(g, K G+\stackrel{*}{K} f G)=0, \quad \bar{\mu} Q(f g, K G+\stackrel{*}{K} f G)=0
$$

that is, the relation (4.14) is equivalent to

$$
Q\left(h^{2}, E\right)=\mu Q(g, K G+\stackrel{*}{K} f G+E)+\bar{\mu} Q(f g, K G+\stackrel{*}{K} f G+E)
$$

In the other words

$$
\begin{equation*}
Q\left(h^{2}, E\right)=\mu Q(g, R)+\bar{\mu} Q(f g, R) . \tag{4.15}
\end{equation*}
$$

According to the Proposition 3.1, for any h-hypersurface of the antiKähler manifold of constant totally real sectional curvatures, the relation (3.8) holds, which, in view of (4.15) becomes

$$
R \cdot R=(K-\mu) Q(G, R)+(\stackrel{*}{K}-\bar{\mu}) Q(f g, R) .
$$

This means that if (4.15) holds, then (M, g, f) is h-pseudosymmetric. But h-pseudosymmetric manifold is Ricci h-pseudosymmetric, too. Thus, we can state

Theorem 4.2. Let (M, g, f), $\operatorname{dim} M=2 n$, be a h-hypersurface of the anti-Kähler manifold ($\widetilde{M}, G, F)$ of constant totally real sectional curvatures. Let $\widetilde{\kappa}$ and $\widetilde{\mathcal{K}_{\kappa}^{\kappa}}$ be the first and the second scalar curvatures of (\widetilde{M}, G, F). Then (4.13) is the necessary and the sufficient condition for (M, g, f) to be, on the appropriate set $U \subset M$, Ricci h-pseudosymmetric such that at least one of the relations

$$
\mathcal{L}_{1} \neq \frac{\widetilde{\kappa}}{4 n(n+1)}, \quad \mathcal{L}_{2} \neq \frac{\widetilde{*}}{4 n(n+1)}
$$

is satisfied.
5. Remark. H-pseudosymmetry is also considered in [5]. In that paper it is proved that every anti-Kähler manifold satisfying the Roter type equation

$$
\begin{aligned}
R(X, Y, Z, W)= & N_{1} \Gamma(X, Y, Z, W)+N_{2} \Gamma(f X, Y, Z, W) \\
& +N_{3} G(X, Y, Z, W)+N_{4} G(f X, Y, Z, W)
\end{aligned}
$$

on some set $U \subset M$, is h-pseudosymmetric, where

$$
\begin{aligned}
\Gamma(X, Y, Z, W)= & \rho(X, W) \rho(Y, Z)-\rho(X, Z) \rho(Y, W) \\
& -\stackrel{*}{\rho}(X, W) \stackrel{*}{\rho}(Y, Z)+\stackrel{*}{\rho}(X, Z) \stackrel{*}{\rho}(Y, W)
\end{aligned}
$$

and N_{1}, \ldots, N_{4} are some scalar functions on U.

REFERENCES

[1] F. Defever, R. Deszciz, P. Dhooghe, L. Verstraelen, S. Y a pr a k, On Ricci pseudosymmetric hypersurfaces in space of constant curvature, Results in Math., 27 (1995), 227-236.
[2] M. B elkhelfa, R. Deszcz, M. Glogow ska, D. K o walczyk and L. V e r str a e le n, A review on pseudosymmetry type manifolds, in: Banach Center Publ. 57, Inst. Math. Polish Acad. Sci., 2002, 179-194.
[3] R. D es z c z, On pseudosymmetric spaces, Bull. Soc. Math. Belg., Ser. A, 44 (1992), $1-34$.
[4] R. D e s z c z, M. P r v a n o v i ć, Holomorphic hypersurfaces of a holomorphically conformally flat anti-Kähler manifold, Analele Stiint. Univ. "Al.I.Cuzo", Iaşi, Math., T. LIII, 2007, Supliment, 123-143.
[5] R. D e s z c z, M. P r v a n o v i ć, Roter type equations for a class of anti-Kähler manifold, to appear
[6] G. D. D j e le p o v, On some sectional curvatures in generalized B-manifolds, in: Mathematics and Mathematical Education, Sunny Beach 1986, Bulgar. Acad. Sci. Sofia, 1986, 216-222.
[7] G. D. D j e le p o v, A class of generalized B-manifold of constant totally real sectional curvature, C. R. Acad. Bulg. Sci. 40 (1987), No. 7, 29-31.
[8] G. G a n c hev, K. Gribachev, V. M i hova, Holomorphic hypersurfaces of Kähler manifolds with Norden metric (preprint)
[9] G. G a n c hev, D. V. B o r i s o v, Note on the almost complex manifolds with Norden metric, C. R. Acad. Bulg. Sci. 39 (1986), 31-34.
[10] B. J a h a n ar a, S. H e a s en, Z. S entürk, L. V er straten, On the parallel transport of the Ricci curvatures, J. Geom. Phys. 57 (2007), 1771-1777.
[11] S. H a e s e n, L. V e r stratar a e n, Properties of a scalar curvature invariant depending on two planes, Manuscripta math. 122 (2007), 59-72.
[12] V. O p r o i u, N. P a p a g h i u c, Some classes of almost anti-Hermitian structures on the tangent bundle, Mediteranean J. Math. 1 (2004), 269-282.
[13] E. P a v l o v, Conformally equivalent generalized B-manifolds, C. R. Acad. Bulg. Sci. 38 (1985), 1315-1317.
[14] L. V e r strael en, Comments on pseudosymmetry in the sense of Ryszard Deszcz, Geometry and Topology of Submanifolds 6(1994), 199-209, World Sci. Publ. Singapure

Department of Mathematics
Wroclaw University of Environmental
and Life Sciences
Grundwaldzka 53
50-357 Wroclaw, Poland
e-mail: rysz@ozi.ar.wroc.pl

Mathematical Institute SANU
Kneza Mihaila 35
11001 Belgrade
Serbia

