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1. Introduction

Equations with the left and right fractional derivatives have many appli-
cations and have been elaborated in many papers and books (cf. for example
the books: [4], [5], [2]). In the book [3] articles from different part of physics
have been collected in which fractional derivatives have an important role.

The equation with left and right fractional derivatives, we consider on
a bounded interval, has many applications. It is in direct connection with
the generalized Abel equation (cf. [6], §30.3). In [6]. p. 689 one can find a
list of papers treating problems from physics which can be connected with
equation (3.1). But there are only a few papers with equations containing
the both kinds of fractional derivatives, left and right.
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We consider equation

Dβ
0+f + ADβ

b−f = C, β = k + α, k ∈ N0, α ∈ (0, 1)

in the subspace D′b, of the space of distributions D′(−∞, b) which is large
enough to contain ”singular solutions” which can appear in mathematical
models of mechanics. Such ”singular” solutions have been given many times
by distributions which are locally regular except in some points of [0, b], i.e.,
which are locally classic.

Let us remark that: a) Solutions of the quoted equation give the pos-
sibility to compare the two fractional derivatives, left and right ones (cf.
Remark after Theorem 1). b) Lemma 2 asserts that the left (and the
right) fractional derivative on D′b is a generalization of the classical one.

2. Preliminaries

We recall some definitions and results: S ′ ≡ S ′(R) is the space of tem-
pered distributions, S ′+ = {T ∈ S ′, suppT ⊂ [0,∞)}. S ′+ is a convolution
algebra which is commutative and associative. (cf. for example [10] and [7]),
D′([0, b)) = {T ∈ D′(−∞, b), suppT ⊂ [0, b)}.

OM denotes the space of multipliers of S. Then, if F ∈ OM and g ∈
S ′, Fg ∈ S ′, as well. (cf. [10], p.14).

{fβ;β ∈ R} is a class of distributions

fβ(t) =

{
H(t)tβ−1/Γ(β), β > 0,

f
(m)
β+m(t), β ≤ 0, β + m > 0,m ∈ N,

(2.1)

which belong to S ′+ and has an important role in definition of the frac-
tional derivatives of distributions; f (m) ≡ Dm, m ∈ N0, denotes the m−th
derivative in the distributional sense and H is Heaviside’s function.

By f (−β) for f ∈ S ′+ we denote fβ ∗ f, where ∗ is the sign for the
convolution and β ∈ R. If β > 0, f (−β) is termed the operator of fractional
integral of order β, but if β < 0, f (−β) is the operator of fractional derivative
of order −β (cf. [11], p. 36) and [10], p. 89).

The class {fβ; β ∈ R} with the operation convolution forms an Abelian
group: fβ1 ∗ fβ2 = fβ1+β2 , f0 = δ.

If T ∈ S ′+ is the regular distribution defined by the function f, then we
write T = [f ].
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2.2. The space D′b
Let f be defined as: f(x) is integrable in the sense of Lebesgue on (−∞, b)

and f(x) = 0, x ∈ R−. This function defines the regular distribution [f ] ∈
D′(−∞, b), supp[f ] ⊂ [0, b). There always exists the distribution [f ] ∈ S ′+,
defined by f ∈ L1((−∞,∞)) with the properties: 1. f(x) = f(x), x ∈
(−∞, b); 2. f(x) = 0, x < 0.

We denote by RS ′+ the associative and commutative ring (with oper-
ation convolution, denoted by ∗), without divisors of zeros (Titchmarsh’s
theorem) consisting of regular distributions f defined by functions belong-
ing to L1(−∞,∞), suppf ⊂ [0,∞). Since all functions f defining [f ] ∈ RS ′
equal zero on (−∞, 0), we do not separately repeat this fact. Let A be the
ideal of RS ′+, A = {T ∈ RS ′+, suppT ⊂ [b,∞)}. In RS ′+ we can define the

following equivalence relation f ∼ g ⇐⇒ f − g ∈ A. An element [
•
f ] of the

quotient space RS ′+/A is the class defined by T = [f ] ∈ RS ′+.
Taking care of the property of the δ distribution: δ(k) ∗ f = Dkf ≡

f (k), f ∈ S ′+, we introduce two families of spaces.

Definition 2.1. Let Bm = {T = δ(m) ∗ [
•
U ]; [

•
U ] ∈ RS ′+/A}, m ∈

N0} (N0 = N ∪ {0}) and D′m = {v = δ(m) ∗ [U ]; U = U |(−∞,b), [U ] ∈
RS ′+}, m ∈ N0. Then D′b =

⋃
m∈N0

D′m and B =
⋃

m∈N0

Bm.

It is easily seen that

Lemma 2.1. D′b is algebraically isomorphic to B by the mapping: v =

δ(m) ∗ [U ] ∈ D′m → δ(m) ∗ [
•
U ] ∈ Bm.

The set {δ(m) ∗ RS ′+, m ∈ N0} is a large subset of S ′+. This follows
from the structure theorem of the space S ′, which says that if f ∈ S ′, then
there exists a continuous function g of slow growth and m ∈ N0 such that
f = Dm[g] ≡ δ(m) ∗ [g].

In D′b we define the convolution: Let δ(m) ∗ [f ] and δ(k) ∗ [g] belong to D′b
and let δ(m)∗[f ] and δ(k)∗[g] be from δ(m)∗RS ′+ and δ(k)∗RS ′+, respectively,
the representatives of corresponding elements from B, then (δ(m)∗[f ])∗(δ(k)∗
[g]) = δ(m+k) ∗ [(f ∗ g)|(−∞,b)] ∈ D′b.

It is easy to prove that this definition does not depend on the represen-
tatives we choose.

We will denote by Q an operator defined as:

Definition 2.2. Let T = δ(m) ∗ [f ] ∈ D′b, then QT = (−1)mδ(m) ∗ [Qf ],
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where Qf(x) = f(b− x), 0 ≤ x < b. (Qf(x) = 0, x < 0).

The properties of the operator Q, defined on D′b, we use, are: 1) QQ = I;
2) If A,B are constants, then Q(Afb+Bgb) = AQfb+BQgb; 3)(Q(Dkgb))(x) =
(−1)kDk((Qgb))(x), where fb, gb ∈ D′b.

Now we can extend the operators Dβ
0+ and Dβ

b− , β > 0, onto D′b. The
classial definitions of these operators for β = k + γ, k ∈ N0, γ ∈ (0, 1), is

Dβ
0+η =

( d

dx

)k+1
I1−γ
0+ η , Dβ

b−η =
(
− d

dx

)k+1
I1−γ
b− η ,

where Iβ
0+ and Iβ

b− denote the fractional integrals. The conditions on f

that Dβ
0+f and Dβ

b−f exist one can find for example in [6], Lemma 2.2 and
Theorem 14.9.

Definition 2.3. Let T = δ(m) ∗ [η] ∈ D′m ⊂ D′b and β = k + γ, k ∈
N0, γ ∈ (0, 1). Then by definition:

Dβ
0+T = δ(m+k+1) ∗

[
(I1−γ

0+ η)
∣∣∣
[0,b)

]
= δ(m+k+1) ∗ [(f1−γ ∗ η)|[0,b)] (2.2)

Dβ
b−T = QDβ

0+QT = (−1)k+1δ(k+1) ∗ [(I1−γ
b− ∗ η)|[0,b)] . (2.3)

Consequently, Dβ
0+ and Dβ

b− are defined for every element of D′b and map
D′b into D′b.

The next Lemma gives the connection between the operator Dβ
0+ on the

space of functions for β = k + γ, k ∈ N0, γ ∈ (0, 1).

Lemma 2.2. Let η ∈ L((−∞, b)), suppη ⊂ [0, b), η(x) = η(x), x ∈ (0, b)
and such that:

1) there exists (f1−γ∗η)(k+1+m)(x) for x ∈ (0, b), and belongs to L1
loc(−∞, b);

2) lim
x→0+

(f1−γ ∗ η)(i) = ci, i = 0, 1, ..., k + m. Then there exists Dβ
0+T =

[(Dβ
0+T ] +

k+m∑
o=0

ciδ
(k+m−i), T = δ(m) ∗ [η].

P r o o f. By Definition 2.3. we have

Dβ
0+T = δ(m+k+1) ∗

[
(I1−γ

0+ η)|[0,b)

]
.
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We can use the connection between the classical derivative and the derivative
in the sense of distributions (cf. [12], p. 51) to obtain

Dβ
0+T =

[
(I1−γ

0+ η)(m+k+1)|(0,b)

]
+

m+k∑
i=0

ciδ
(k+m−i)

=
[
(δ(k+1) ∗ δ(m) ∗ f1−γ ∗ η)|(0,b)

]
+

m+k∑
i=0

ciδ
(k+m−i)

= [Dβ
0+T

∣∣∣
(0,b)

] +
m+k∑
i=0

ciδ
(k+m−i) .

2.3. Some spaces of numerical functions ([6], p.246)

Hλ([0, b]) = {f ; |f(x1)− f(x2)| ≤ A|x1 − x2|λ,
x1, x2 ∈ [0, b], 0 < λ ≤ 1};

H =
⋃

0<λ≤1
Hλ;

H∗ ≡ H∗(a, b) =
{
f ; f(x) =

f∗(x)
x1−ε1(b− x)1−ε2

, 0 < x < b, ε1 > 0;

ε2 > 0, 0 < λ ≤ 1, f∗ ∈ Hλ([0, b])
}
;

Hλ
0 (ε1, ε2) = {f ∈ H∗, f∗(0) = f∗(b) = 0};

H∗α =
⋃

α<λ≤1
ε1.ε2>0

Hλ
0 (ε1, ε2) .

3. Solutions to equation

Dβ
0+f + ADβ

b−f = C, (3.1)

in D′m, where β = k + α, k ∈ N0, α ∈ (0, 1), m ∈ N0.

Theorem 3.1. A necessary and sufficient condition that equation (3.1)
has a solution f = δ(m) ∗ [η], η ∈ H∗ is that C = δm+k+1 ∗ [ξ], ξ ∈ H∗1−α. If
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(−1)k+1A > 0, the solution is unique in the space {f = δ(m)∗ [η]; η ∈ H∗} ⊂
D′m; if (−1)k+1A < 0 it contains an arbitrary constant. The analytical form
of η is:

η(x) =
c

x1−α+θ/2π(b− x)1−θ/2π
+

sin(1− α)π
Nπ

d

dx

x∫

0

ξ(t)
(x− t)1−α

dt

−(−1)k+1 A

N

(sin(1− α)π
π

)2 d

dx

x∫

0

Z(t)dt

(x− t)1−α

d

dt

t∫

0

dτ

(t− τ)α

b∫

τ

ξ(s)ds

Z(s)(s− τ)1−α
,

(3.2)
where c = 0, if (−1)k+1A > 0 and c is arbitrary, if (−1)k+1A < 0;

N = 1+(−1)k+1A cos(1−α)π+A2; θ = arg
1 + e(α−1)πi(−1)k+1A

1 + e(1−α)πi(−1)k+1A
, 0 < θ < 2π;

Z(t) = t2−(1−α)−θ/2π(b− t)−α+θ/2π if (−1)k+1A > 0 and

Z(t) = (t/(b− t))α−θ/2π, if (−1)k+1A < 0 .

P r o o f. By definition of Dβ
0+ and Dβ

b− in D′m+k+1 (cf. (2.2) and (2.3))
and by the analytical form of C = δ(m+k+1) ∗ [ξ], equation (3.1) can be
written as:

δ(k+m+1) ∗
([

(I1−α
0+ η)|[0,b)

]
+ (−1)k+1A

[
(I1−α

b− η)|[0,b)

]
−

[
ξ|[0,b)

])
= 0.

To this equation there corresponds in S ′

δ(k+m+1) ∗
(

[I1−α
0+ η] + (−1)k+1A[I1−α

b− η]− [ξ]− [M ]

)
= 0,

where [M ] is any element of A.

By the properties of δ distribution and definition of the primitive of a
distribution (cf. [7], Chapter I, §4), we have

[
I1−α
0+ η

]
+ (−1)k+1A

[
I1−α
b− η

]
−

[
ξ
]

=
[ m+k∑

i=0

aix
i
]
+ [M ]
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in S ′, where ai, i = 0, 1, ..., m + k are undefined constants. Consequently,

I1−α
0+ η + (−1)k+1AI1−α

b− η − ξ −M =
m+k∑

i=0

aix
i, (3.3)

for almost every x ∈ R. But this is possible only if ai = 0, i = 0, 1, ..., m+k,
because of the support of the function on the left-hand side of equation (3.3).

In such a way we reduced equation (3.1) to the form

(I1−α
0+ η)(x) + (−1)k+1A(I1−α

b− η)(x) = ξ(x), 0 < x < b. (3.4)

We used of the property of M, suppM ⊂ [b,∞).
By Theorem 30.7 in [6] equation (3.4) is solvable in the space H∗ what-

ever ξ(x) ∈ H∗1−α was. Its solution is given by (3.2).
A solution f = δ(m) ∗ [η], η ∈ H∗ can exist if and only if C can be

given as: C = δ(k+m+1) ∗ [ξ], ξ ∈ H∗1−α. This follows from Theorem 13.14
in [6], p. 248, which says that the fractional integration operators Iα

0+ and
Iα
b− , 0 < α < 1, map H∗ one-to-one onto H∗α : Iα

0+(H∗) = Iα
b−(H∗) = H∗α.

This completes the proof of the theorem. 2

Remarks. Let us analyse the result of Theorem 1.
1. The parameter θ can be zero if and only if A = 0.

2. If f = δ(m) ∗ [η], m ∈ N0 and η ∈ H∗, then Dβ
0+f 6= (−1)kADβ

b−f for
every A, (−1)kA > 0, f 6= 0.

3. There exists f = δ(m) ∗ [η], m ∈ N0 and η ∈ H∗, such that Dβ
0+f =

(−1)kADβ
b−f, for every A, (−1)kA < 0 and

η =
c

x1−α+θ/2π(b− x)1−θ/2π
, 0 < θ < α2π,

where c is an arbitrary constant.
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21000 Novi Sad
Serbia


