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Sciences mathématiques, No 34

REGULARLY VARYING SOLUTIONS OF GENERALIZED THOMAS-FERMI
EQUATIONS

T. KUSANO, V. MARIĆ AND T. TANIGAWA
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1. Introduction

The objective of this paper is to discuss the existence of regularly varying
solutions in the sense of Karamata for generalized Thomas-Fermi equations
of the form

(|x′|αsgn x′)′ = q(t)|x|βsgn x, (A)
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where α and β are distinct positive constants, and q : [a,∞) → (0,∞),
a > 0, is a continuous function. It is often useful to rewrite equation (A) in
the form

((x′)α∗)′ = q(t)xβ∗,

in terms of the asterisk notation

uγ∗ = |u|γsgn u, u ∈ R, γ > 0. (1.1)

In addition, we show how an application of the theory of regular variation
gives the possibility of obtaining the precise asymptotic behaviour of solu-
tions in question for some subclasses of equation (A).

For α = 1, β > 1 equation (A) is reduced to the one of Thomas-Fermi
type and for α = β it is reduced to the half-linear one:

((x′)α∗)′ = q(t)xα∗. (B)

The latter fact is suggestive to call (A) super-half-linear if α < β and sub-
half-linear if α > β.

Noting that if x(t) satisfies (A), then so does −x(t), we will focus our
attention on positive solutions of (A) which can be extended to infinity. Such
solutions are called proper positive solutions of (A). It should be noticed
that not all positive solutions are proper. In fact, it is known ([5]) that the
super-half-linear equation (A) always has a solution x(t) which is positive
on a finite interval [t0, t1) and satisfies

lim
t→t1−0

x(t) = lim
t→t1−0

x′(t) = ∞,

and that the sub-half-linear equation (A) always has a solution x(t) on an
infinite interval [t0,∞) such that

x(t) > 0 on some finite interval [t0, t1), and x(t) = 0 on [t1,∞).

Let x(t) be a positive solution of (A) on [t0,∞). Since equation (A)
implies that (x′(t))α∗ is increasing, it follows that either x′(t) < 0 on the
entire interval [t0,∞) or x′(t) > 0 on [t1,∞) for some t1 > t0. In the former
case x′(t) → 0 as t →∞, and x(t) decreases to a finite nonnegative limit as
t →∞.

In the latter case x′(t) increases to a finite or infinite positive limit x′(∞)
as t → ∞. If x′(∞) < ∞, then x(t) satisfies lim

t→∞x(t)/t = x′(∞), that is,

x(t) increases and is asymptotic to a constant multiple of t as t → ∞. If
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x′(∞) = ∞, then lim
t→∞x(t)/t = ∞, which means that x(t) increases faster

than any constant multiple of t as t →∞.
The problem of existence of proper solutions for equation (A) have been

studied by Mizukami, Naito and Usami [5]. Their main results are as follows.

Proposition 1.1. Equation (A), either super-half-linear or sub-half-
linear, has a proper solution x(t) such that

lim
t→∞x(t) = const > 0 (1.2)

if and only if
∞∫

a



∞∫

t

q(s)ds




1
α

dt < ∞. (1.3)

Proposition 1.2. Equation (A), either super-half-linear or sub-half-
linear, has a proper solution x(t) such that

lim
t→∞

x(t)
t

= const > 0 (1.4)

if and only if
∞∫

a

tβq(t)dt < ∞. (1.5)

Proposition 1.3. Super-half-linear equation (A) has a proper solution
x(t) such that

lim
t→∞x(t) = 0 (1.6)

if and only if
∞∫

a



∞∫

t

q(s)ds




1
α

dt = ∞. (1.7)

Proposition 1.4. Sub-half-linear equation (A) has a proper solution
x(t) such that

lim
t→∞

x(t)
t

= ∞ (1.8)
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if and only if
∞∫

a

tβq(t)dt = ∞. (1.9)

Our analysis is based on the use of the theory of regular variation (in
the sense of Karamata).

The most complete presentation of theory of regular variation and its
applications can be found in the book [1] of Bingham, Goldie and Teugels.
For a comprehensive survey of results on the asymptotic analysis of ordinary
differential equations in the framework of regular variation up to 2000 the
reader is referred to the monograph [4] of Marić.

For the reader’s benefit we state the definition and some basic properties
of regularly varying functions.

Definition 1.1. A measurable function f : [0,∞) → (0,∞) is said to
be regularly varying of index ρ ∈ R if

lim
t→∞

f(λt)
f(t)

= λρ for any λ > 0. (1.10)

One of the most important properties of regularly varying solutions is
the following representation theorem.

Proposition 1.5. f(t) ∈ RV (ρ) if and only if it is expressed in the form

f(t) = c(t) exp





t∫

t0

δ(s)
s

ds



 , t ≥ t0, (1.11)

for some t0 > 0 and some measurable functions c(t) and δ(t) such that

lim
t→∞ c(t) = c0 ∈ (0,∞), lim

t→∞ δ(t) = ρ. (1.12)

The totality of regularly varying solutions of index ρ is denoted by
RV (ρ). In particular SV stands for RV (0), and members of SV = RV (0)
are called slowly varying functions. If c(t) ≡ c0 in (1.11), f(t) is referred
to as a normalized regularly varying function of index ρ. By definition any
f(t) ∈ RV (ρ) is written as f(t) = tρL(t) with L(t) ∈ SV , and so the class
SV of slowly varying functions is of fundamental importance in the study
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of regularly varying functions. Typical examples of slowly varying functions
are: all functions tending to some positive constants,

N∏

n=1

(logn t)αn , αn ∈ R, and exp

{
N∏

n=1

(logn t)βn

}
, βn ∈ (0, 1),

where logn t denotes the n-th iteration of the logarithm.
The following result concerns operations which preserve slow variation.

Proposition 1.6. Let L(t), L1(t), L2(t) be slowly varying. Then, L(t)α

for any α ∈ R, L1(t) + L2(t), L1(t)L2(t) and L1(L2(t)) (if L2(t) → ∞ as
t →∞) are slowly varying.

A slowly varying function L(t) may grow to infinity or decay to zero as
t →∞. However, the order of growth or decay of L(t) at infinity is severely
limited as the following proposition shows.

Proposition 1.7. If L(t) is slowly varying, then for any ε > 0,

lim
t→∞ tεL(t) = ∞, lim

t→∞ t−εL(t) = 0.

The following result which encompasses the integration theorem due to
Karamata is useful in handling slowly (and regularly) varying functions an-
alytically.

Proposition 1.8. Let L(t) be a slowly varying function. Then. we have
as t →∞

t∫

t0

sγL(s)ds ∼ tγ+1

γ + 1
L(t) if γ > −1; (i)

∞∫

t

sγL(s)ds ∼ − tγ+1

γ + 1
L(t) if γ < −1; (ii)

If γ = −1 the occurring integrals are new slowly varying functions
(iii).

Here and throughout the paper the symbol ∼ denotes the asymptotic
equivalence:

f(t) ∼ g(t) as t →∞⇔ lim
t→∞

f(t)
g(t)

= 1. (1.13)
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We note that a function f(t) satisfying

lim
t→∞

f(t)
tρ

= const > 0 (1.14)

is a simple example of regularly varying functions of index ρ. Such a function
is called a trivial regularly varying function of index ρ. If in particular ρ = 0,
f(t) is called a trivial slowly varying function. A function f(t) ∈ RV (ρ) not
satisfying (1.14) is said to be a nontrivial regularly varying function of index
ρ. Proposition 1.1 (resp. Proposition 1.2) shows that one can completely
characterize the existence of a trivial slowly varying solution (resp. of a
trivial regularly varying solution of index 1) for equation (A), either super-
half-linear or sub-half-linear.

Here we formulate some conditions under which equation (A) possesses a
nontrivial slowly varying solution and a nontrivial regularly varying solution
of index 1, for both super-half-linear and sub-half-linear cases of (A) by
making extensive use of the existence results explained in Section 2 for half-
linear equations (B). Our results are presented in Section 3 and 4 devoted,
respectively, to super-half-linear and sub-half-linear equations of the form
(A). It is hoped that this paper could provide a clue to the construction of
regularly varying solutions of general index ρ 6= 0, 1 for generalized Thomas-
Fermi type equations.

Since the inequalities occurring in the paper hold for t ≥ T , we shall
omit the adjective occasionally.

2. Half-linear equation

2.1. Slowly varying solutions. In this preparatory section we present
basic existence theorems of slowly varying solutions (SV-solutions for short)
and of regularly varying solutions of index 1 (RV(1)-solutions for short) for
the half-linear equation (B), upon which the proofs of our main results for
(A) essentially depend. We note that the existence of such solutions for (B)
was established for the first time by Jaroš, Kusano and Tanigawa [4]. Their
results are framed here in two propositions which follow.

Proposition 2.1. Equation (B) possesses a slowly varying solution x(t)
which decreases and for t ≥ T has the form

x(t) = exp



−

t∫

T

(Q(s)− v(s))1/α

s
ds



 , (2.1)
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where v(t) is some solution tending to zero of the integral equation

v(t) = αtα
∞∫

t

|v(s)−Q(s)|1+1/α

sα+1
ds, (2.2)

if and only if

Q(t) := tα
∞∫

t

q(s)ds → 0, as t →∞. (2.3)

P r o o f. For the proof of the ”only if” part of the proposition see [3.
Th. 2.2’]. We prove the ”if” part in a more direct way than in [3].

Suppose that (2.3) holds. Let l be a positive constant such that

λ :=
(

1 +
1
α

)
l

1
α < 1, (2.4)

and choose T > a large enough so that for t ≥ T ,

Q(t) ≤ l. (2.5)

Let V be the set

V = {v(t) ∈ C0[T,∞) : 0 ≤ v(t) ≤ l, t ≥ T}, (2.6)

where C0[T,∞) is the Banach space of all continuous functions on [T,∞)
that tend to 0 as t → ∞ with the norm ‖v‖0 = sup

t≥T
|v(t)|, and define the

integral operator F by

Fv(t) = αtα
∞∫

t

|v(s)−Q(s)|1+ 1
α

sα+1
ds. (2.7)

Then it can be shown that F is a self-map on V and satisfies

‖Fv1 −Fv2‖0 ≤ λ‖v1 − v2‖0.

In view of (2.4) this means that F is a contraction on V , and there exists
a fixed point v(t) ∈ V of F , which is a solution of the integral equation
(2.2). Then in virtue of Elbert lemma, [2], x(t) is a solution of equation (B)
because the function u(t) = (v(t)−Q(t))/tα satisfies the generalized Riccati
equation associated with (B):

u′ + α|u|1+ 1
α = q(t). (2.8)
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Since v(t) − Q(t) → 0 as t → ∞, x(t) is a slowly varying function due to
the representation (1.11) with ρ = 0. This establishes the existence of an
SV -solution for (B).

The following result is useful.

Corollary 2.1. Let φ(t) be a positive continuous function which de-
creases to 0 as t →∞ and satisfies for t ≥ T

tα
∞∫

t

q(s)ds ≤ φ(t). (2.9)

Then, equation (B) possesses a slowly varying solution x(t) expressed in the
form (2.1) for some T > a, where v(t) is a solution of (2.2) and satisfies

0 ≤ v(t) ≤ φ(t)1+ 1
α . (2.10)

For the proof first notice that, because of (2.3), such a function φ(t)
always exists. Then define the set Vφ by

Vφ = {v(t) ∈ C0[T,∞) : 0 ≤ v(t) ≤ φ(t), t ≥ T}

and follow the argument used in the proof of Proposition 2.1.
2.2. Regularly varying solution of index 1. Our next task is to

discuss the existence of an RV (1)-solution of equation (B).

Proposition 2.2. Equation (B) possesses a regularly varying solution
of index 1 which increases and for t ≥ T has the form

X(t) = exp





t∫

T

(
1−Q(s) + w(s)

sα

) 1
α

ds



 , (2.11)

where w(t) is some solution for t ≥ T tending to zero as t → ∞ of the
integral equation

w(t) =
α

t

t∫

T

F (s, w(s))ds (2.12)

with
F (t, w) = 1 +

(
1 +

1
α

)
w − (1−Q(t) + w)1+ 1

α , (2.13)
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if and only if (2.3) holds.

P r o o f. Only the proof of the ”if” part will be given. (For the ”only
if” part see [3. Th. 3.1 with c = 0]).

Suppose that (2.3) holds. Substituting u(t) = (1 − Q(t) + w(t))/tα in
the Riccati equation (2.8), we obtain the following differential equation for
w(t):

(tw)′ = α

(
1 +

(
1 +

1
α

)
w − |1−Q(t) + w|1+ 1

α

)
.

Whence, in virtue of (1.11) and Elbert lemma, X(t) is an RV (1) solution of
the equation (B) provided that we prove the existence for t ≥ T of a solution
w(t) of (2.12) which tend to zero as t →∞.

To that end, choose 0 < m < 1
4 such that for t ≥ T

|w(t)| ≤ m, Q(t) ≤ m2 and µ :=
(α + 1)(α + 4)

α
m < 1 (2.14)

and define the set W by

W = {w(t) ∈ C0[T,∞) : |w(t)| ≤ m, t ≥ T}. (2.15)

Notice that on this set the preceding differential equation is reduced to
(tw)′ = αF (t, w), whose integrated version being (2.12) and F (t, w) is de-
fined by (2.13).

Further, define the integral operator G

Gw(t) =
α

t

t∫

T

F (s, w(s))ds, t ≥ T. (2.16)

Since Q(t)− w(t) → 0, as t →∞ we can write (2.13) as

F (t, w) =
(

1 +
1
α

) (
Q(t)− 1

2α
(Q(t)− w)2R(t, w))

)
, (2.17)

where

R(t, w) =
∞∑

n=2

(−1)n 2α2

1 + α

(
1 + 1

α

n

)
(Q(t)− w)n−2, (2.18)

and
∂F

∂w
(t, w) =

1
α

(
1 +

1
α

)
(Q(t)− w)S(t, w), (2.19)
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where

S(t, w) =
∞∑

n=1

(−1)n−1α

(
1
α

n

)
(Q(t)− w)n−1. (2.20)

Since R(t, w) → 1 and S(t, w) → 1 as t →∞, we have for t ≥ To, and some
To

0 ≤ R(t, w) ≤ 2 and 0 ≤ S(t, w) ≤ 2. (2.21)

Then from (2.15), (2.17) and (2.21) one has for t ≥ T

|F (t, w)| ≤ m

α
and |Gw(t)| ≤ m.

Hence G is a self-map.
Likewise, from (2.15), (2.19) and (2.20) one obtains for t ≥ T

∣∣∣∣
∂F

∂w

∣∣∣∣ ≤
µ

α
.

Thus

|Gw1(t)− Gw2(t)| ≤ α

t

t∫

T

∣∣∣∣
∂F

∂w

∣∣∣∣ |w1 − w2|ds ≤ µ‖w1 − w2‖0.

This shows that G is a contraction on W , so that there exists a fixed point
w(t) of G in W , which is a solution of the integral equation (2.12) on [T,∞),
which tends to 0 as t →∞ (QED).

Often, a more precise estimate for w(t) is needed. The following result
may help in some situations.

Corollary 2.2. Suppose that there exists a (continuous) slowly varying
function ψ(t) on [a,∞) which tends to 0 as t →∞ such that

Q(t) := tα
∞∫

t

q(s)ds ≤ ψ(t) for all large t.

Then, equation (B) possesses a regularly varying solution of index 1 ex-
pressed in the form (2.11) for some T > a, where w(t) is a solution of the
integral equation (2.12) such that

w(t) = O(ψ(t)) as t →∞.
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The proof mimics the one of Corollary 2.1 with the integral operator G
given by (2.16) on the set

Wψ = {w(t) ∈ C0[T,∞) : |w(t)| ≤
√

ψ(t), t ≥ T}.

The condition on ψ(t) makes possible the use of Karamata’s integration
theorem ((i) of Proposition 1.8) to the effect that there exists a constant
γ ≥ 1 such that

1
t

t∫

a

ψ(s)ds ≤ γψ(t), t ≥ a

which is needed to show that G is a self-map.

3. Super-half-linear equation

3.1. Slowly varying solutions. This section is devoted to the super-
half-linear equation (A), i.e. when α < β, where q : [a,∞) → (0,∞) is a
continuous function. We begin with the existence of slowly varying solutions.

Theorem 3.1. Equation (A) possesses a decreasing slowly varying so-
lution if

Q(t) := tα
∞∫

t

q(s)ds → 0 as t →∞. (3.1)

This solution is a trivial or a nontrivial one according as the integral

∞∫

a

Q(t)1/α

t
dt (3.2)

converges or diverges.

P r o o f. Let l be a positive constant such that

λ :=
(

1 +
1
α

)
l

1
α < 1. (3.3)

and choose T > a so that

Q(t) ≤ l, t ≥ T. (3.4)
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Let Ξ denote the set of continuous functions ξ(t) on [T,∞) which are non-
increasing and satisfy

1 ≥ ξ(t) ≥ exp



−

t∫

T

Q(s)
1
α

s
ds



 , t ≥ T. (3.5)

It is clear that Ξ is a closed convex subset of the locally convex space C[T,∞)
equipped with the topology of uniform convergence on compact subintervals
of [T,∞). For any ξ(t) ∈ Ξ define

qξ(t) = q(t)ξ(t)β−α, Qξ(t) = tα
∞∫

t

qξ(s)ds, (3.6)

and consider the family of half-linear differential equations

(x′(t)α∗)′ = qξ(t)x(t)α∗, ξ(t) ∈ Ξ. (3.7)

Since Qξ(t) ≤ Q(t) for any ξ(t) ∈ Ξ, we have

Qξ(t) ≤ l, t ≥ T, and lim
t→∞Qξ(t) = 0.

It follows from Proposition 2.1 that each member of (3.7) possesses a slowly
varying solution xξ(t) for t ≥ T having the representation

xξ(t) = exp



−

t∫

T

(
Qξ(s)− vξ(s)

sα

) 1
α

ds



 , (3.8)

where vξ(t) is positive and satisfies

vξ(t) = αtα
∞∫

t

|vξ(s)−Qξ(s)|1+ 1
α

sα+1
ds. (3.9)

Each solution xξ(t) is decreasing and satisfies

1 ≥ xξ(t) ≥ exp



−

t∫

T

Qξ(s)
1
α

s
ds



 ≥ exp



−

t∫

T

Q(s)
1
α

s
ds



 . (3.10)

Our basic idea which pervades throughout most of the future consider-
ations in this paper, is to show that there is at least one function ξ(t) ∈ Ξ
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such that ξ(t) = xξ(t) where xξ(t) is defined by (3.8) and satisfies one mem-
ber of the family (3.7), which is at the same time a solution of equation
(A). In that the Schauder-Tychonoff fixed point theorem is our main tool.
However, it is the choice of the set Ξ which makes the procedure feasible.

Let us define the mapping Φ : Ξ → C[T,∞) by

Φξ(t) = xξ(t), t ≥ T. (3.11)

It can be verified that Φ is a self-map on Ξ and sends Ξ continuously into a
relatively compact subset of Ξ.

(i) Φ maps Ξ into itself. This is an immediate consequence of (3.10).
(ii) Φ(Ξ) is relatively compact in C[T,∞). The inclusion Φ(Ξ) ⊂ Ξ

implies that Φ(Ξ) is locally uniformly bounded on [T,∞). The inequality

0 ≥ (Φξ)′(t) = −xξ(t)
(vξ(t)−Qξ(t))

1
α

t
≥ −Qξ(t)

1
α

t
≥ −Q(t)

1
α

t
, t ≥ T,

holding for all ξ(t) ∈ Ξ, shows that Φ(Ξ) is locally equicontinuous on [T,∞).
The relative compactness of Φ(Ξ) then follows from the Arzela-Ascoli lemma.

(iii) Φ is a continuous mapping. Let {ξn(t)} be a sequence in Ξ converg-
ing to ξ(t) ∈ Ξ as n →∞ uniformly on compact subintervals of [T,∞). We
have to prove that Φξn(t) converges to Φξ(t) on any compact subinterval of
[T,∞). We first note that

|Φξn(t)− Φξ(t)| =
∣∣∣∣∣∣
exp



−

t∫

T

(
Qξn(s)− vξn(s)

sα

) 1
α

ds



− exp



−

t∫

T

(
Qξ(s)− vξ(s)

sα

) 1
α

ds





∣∣∣∣∣∣

≤
t∫

T

∣∣∣∣∣∣

(
Qξn(s)− vξn(s)

sα

) 1
α

−
(

Qξ(s)− vξ(s)
sα

) 1
α

∣∣∣∣∣∣
ds. (3.12)

We also remark that if α ≥ 1, then
∣∣∣∣∣∣

(
Qξn(s)− vξn(s)

sα

) 1
α

−
(

Qξ(s)− vξ(s)
sα

) 1
α

∣∣∣∣∣∣

≤
(∣∣∣∣

vξn(s)− vξ(s)
sα

∣∣∣∣ +
∣∣∣∣
Qξn(s)−Qξ(s)

sα

∣∣∣∣
) 1

α

,
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and if α < 1, then
∣∣∣∣∣∣

(
Qξn(s)− vξn(s)

sα

) 1
α

−
(

Qξ(s)− vξ(s)
sα

) 1
α

∣∣∣∣∣∣

≤ C2

(∣∣∣∣
vξn(s)− vξ(s)

sα

∣∣∣∣ +
∣∣∣∣
Qξn(s)−Qξ(s)

sα

∣∣∣∣
)

,

where C2 = l
1
α
−1/αT 1−α. Combining the above remark with (3.12), we see

that the continuity of Φ is assured if it is proved that the two sequences

1
tα
|vξn(t)− vξ(t)|, 1

tα
|Qξn(t)−Qξ(t)|, (3.13)

converge to 0 as n → ∞ uniformly on any compact subinterval of [T,∞).
The convergence of the second sequence in (3.13) follows from the Lebesgue
dominated convergence theorem applied to the right hand integral of the
inequality

1
tα
|Qξn(t)−Qξ(t)| ≤

∞∫

t

q(s)|ξn(s)β−α − ξ(s)β−α|ds.

To evaluate the first sequence, using (3.9), we obtain

1
tα
|vξn(t)− vξ(t)| ≤ α

∞∫

t

∣∣∣∣∣
|vξn(s)−Qξn(s)|1+ 1

α − |vξ(s)−Qξ(s)|1+ 1
α

sα+1

∣∣∣∣∣ ds

≤ αλ

∞∫

t

|vξn(s)− vξ(s)|
sα+1

ds + αλ

∞∫

t

|Qξn(s)−Qξ(s)|
sα+1

ds, t ≥ T. (3.14)

The substitution

z(t) =
∞∫

t

|vξn(s)− vξ(s)|
sα+1

ds

transforms (3.14) into the differential inequality

−tz′(t) ≤ αλz(t) + αλ

∞∫

t

|Qξn(s)−Qξ(s)|
sα+1

ds

or

−(tαλz(t))′ ≤ αλtαλ−1

∞∫

t

|Qξn(s)−Qξ(s)|
sα+1

ds. (3.15)
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Integrating (3.15) from t to ∞ and noting that tαλz(t) → 0 as t → ∞, we
have

z(t) ≤ 1
tαλ

∞∫

t

|Qξn(s)−Qξ(s)|
sα(1−λ)+1

ds,

which, combined with (3.14), yields

1
tα
|vξn(t)− vξ(t)| ≤ αλ

tαλ

∞∫

t

|Qξn(s)−Qξ(s)|
sα(1−λ)+1

ds + αλ

∞∫

t

|Qξn(s)−Qξ(s)|
sα+1

ds,

for t ≥ T . This clearly ensures that |vξn(t) − vξ(t)|/tα → 0 uniformly
on compact subintervals of [T,∞). Thus, the continuity of Φ has been
established.

This enables us to apply the Schauder-Tychonoff fixed point theorem to
Φ, which leads us to the conclusion that there exists a ξ0(t) ∈ Ξ such that
ξ0(t) = Φξ0(t) = xξ0(t) for t ≥ T . By the definition (3.11) of Φ, the function
ξ0(t) is slowly varying and satisfies

((ξ′0(t))
α∗)′ = qξ0(t)ξ0(t)α = q(t)ξ0(t)β−αξ0(t)α = q(t)ξ0(t)β

for t ≥ T , which means that ξ0(t) is a solution of equation (A) of the form
(3.8).

To prove the second statement of the theorem, observe that each solution
xξ(t) is decreasing and satisfies (3.10) which then holds for ξ0(t) i.e.

1 ≥ ξ0(t) ≥ exp



−

t∫

T

Q(s)
s

1/α

ds



 .

Therefore, if the occurring integral (3.2) is convergent, ξ0(t) tends to a
positive constant and so is trivial. It is easy to see that this condition is
also necessary: Suppose ξ0(t) → c > 0, as t →∞. Then, the convergence of
(3.2) follows from Proposition 1.1.

It is clear that if (3.2) diverges then ξ0(t) cannot be trivial (and tends
to zero) for otherwise, due to Proposition 1.1, the integral would converge
giving a contradiction. Conversely, if ξ0(t) is nontrivial, then the definition
of Ξ implies the divergence of (3.2). This completes the proof.

If one further restricts the coefficient q(t) of equation (A) one can obtain
some additional properties of its (nontrivial) slowly varying solutions. There
holds

Theorem 3.2. Let q(t) ∈ RV (−γ − 1) for some γ > 0 then equation
(A) (with α < β) may possess a nontrivial slowly varying solution x(t) only
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if γ = α i.e. when q(t) = t−α−1L(t), where L(t) → 0, as t → ∞ to satisfy
condition (3.1). Then it has the exact asymptotic representation for t →∞,
of the form

x(t) ∼

β − α

α1+ 1
α

t∫

T

(sq(s))
1
α ds




α
α−β

=


β − α

α1+ 1
α

t∫

T

L(s)
1
α

s
ds




α
α−β

. (3.16)

P r o o f. Suppose that (A) has a nontrivial SV -solution x(t). By

Proposition 1.3 q(t) must satisfy
∞∫ (∞∫

t
q(s)ds

) 1
α

dt = ∞, which preclude

the possibility that γ > α. On the other hand, integrating (A) from t to ∞
we have

(−x′(t))α =
∞∫

t

q(s)x(s)βds,

which, via Karamata’s integration theorem, yields

(−x′(t))α ∼ 1
γ

tq(t)x(t)β,

or
−x(t)−

β
α x′(t) ∼ 1

γ
1
α

(tq(t))
1
α as t →∞. (3.17)

Assume now that γ < α. Integrating (3.17) from T to t gives

x(t) ∼ β − α

αγ
1
α




t∫

T

(sq(s))
1
α ds




α
α−β

as t →∞. (3.18)

Since q(t) ∈ RV (−γ − 1), we see from (3.18) that x(t) ∈ RV
(

α−γ
β−α

)
, that

is, x(t) is not slowly varying, a contradiction. Thus the case γ < α is also
impossible, and hence it must hold that γ = α, i.e. q(t) ∈ RV (−α − 1)
which gives (3.16).

Remark 3.1. Proposition 1.8(iii) shows that x(t) in (3.16) is indeed an
SV-function.

Remark 3.2. It is tacitly assumed here that condition (3.1) holds to
ensure the existence of an SV-solution. It is, however, not used in the
proof. Consequently, Theorem 3.2 is valid regardless what result guarantees
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the existence of a nontrivial solution. A similar remark hold obviously for
Theorems 3.4, 4.2 and 4.4.

Example 3.1. Consider the equation

(x′(t)α∗)′ = q(t)x(t)β∗, q(t) =
αr(t)

tα+1(log t)α(log log t)2α−β
, (3.19)

where r(t) is a positive continuous function such that lim
t→∞ r(t) = ρ > 0.

As is easily seen,

Q(t) = tα
∞∫

t

q(s)ds ∼ ρ

(log t)α(log log t)2α−β
→ 0, as t →∞

which means that (3.1) holds. Since

Q(t)1/α

t
∼ ρ1/α

t log t(log log)2−
β
α

and
∞∫

ρ
1
α ds

s log s(log log s)2−
β
α

= ∞,

Theorem 3.1 ensures that equation (3.19) has a nontrivial slowly varying
x(t), which, by Theorem 3.2, satisfies

x(t) ∼ ρ
1

α−β

log log t
, t →∞.

If in particular,

r(t) = 1 +
1

log t
+

2
log t log log t

,

then, equation (3.19) possesses an exact SV -solution x(t) = 1/ log log t.

3.2. Regularly varying solutions of index 1. Let

L(t) = b exp





t∫

a

δ(s)
s

ds



 , t ≥ a, b > 0, (3.20)

be a (normalized) slowly varying function increasing to ∞ as t →∞, which
implies that L(t) is continuously differentiable and

δ(t) = t
L′(t)
L(t)

> 0 and
∞∫

a

δ(s)
s

ds = ∞. (3.21)
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We prove

Theorem 3.3. Suppose that there exists a constant K > 0 such that for
all large t

Q(t) := tα
∞∫

t

q(s)(sL(s))β−αds ≤ Kδ(t). (3.22)

Then, equation (A) possesses an increasing regularly varying solution X(t)
of index 1 such that X(t) ≤ tL(t) for all large t.

P r o o f. Denote by Ξ the set of positive continuous nondecreasing
functions ξ(t) on [T,∞) satisfying for t ≥ T

(
3

4Tα

) 1
α

t ≤ ξ(t) ≤ tL(t)
TL(T )

. (3.23)

Define for any ξ(t) ∈ Ξ

qξ(t) = q(t)ξ(t)β−α, Qξ(t) = tα
∞∫

t

qξ(s)ds (3.24)

and consider the family of half-linear equations

(x′(t)α∗)′ = qξ(t)x(t)α∗, ξ(t) ∈ Ξ. (3.25)

Using (3.22), (3.23) and (3.24) we see that for t ≥ T

Qξ(t) ≤ Kδ(t)
(TL(T ))β−α

. (3.26)

Since δ(t) → 0, an application of Proposition 2.2 shows that every mem-
ber of the family (3.25) possesses for t ≥ T an increasing RV (1) solution
Xξ(t) of the form

Xξ(t) = exp





t∫

T

(
1−Qξ(s) + wξ(s)

sα

)1/α

ds



 (3.27)

where wξ(t) is a solution of the integral equation

wξ(t) =
α

t

t∫

T

Fξ(s, wξ(s))ds. (3.28)
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Here Fξ(t, w) stands for the function

Fξ(t, wξ) = 1 +
(

1 +
1
α

)
wξ − (1−Qξ(t) + wξ)1+ 1

α . (3.29)

Since by (2.13)

Fξ(t, wξ) ≤
(

1 +
1
α

)
Qξ,

there follows from (3.28) and (3.26)

wξ(t) ≤ (α + 1)K
(TL(T ))β−α

1
t

t∫

T

δ(s)ds. (3.30)

Now, we define the mapping Ψ : Ξ → C[t,∞) by

Ψξ(t) = Xξ(t) for t ≥ T (3.31)

and, as before, show that it satisfies the hypotheses of the Schauder-Tychonoff
theorem.

(i) Ψ(Ξ) ⊂ Ξ.
By using (3.30) we obtain the following estimate for the solution Xξ(t)

given by (3.27)

Xξ(t) ≤ exp





t∫

T

(1 + |wξ(s)|)
1
α

ds

s



 ≤ exp





t∫

T


1 +

AC(α)
s2

s∫

T

δ(z)dz


 ds

s





(3.32)
where C(α) is some positive constant and

A =
K(α + 1)

(TL(T ))β−α
.

Further, by integrating partially in the last integral we get

t∫

T


 1

s2

s∫

T

δ(z)dz


 ds ≤

t∫

T

δ(z)
z

dz

and so by (3.32) and (3.20) and choosing T in such a way that AC(α) ≤ 1,
there follows

Xξ(t) ≤ tL(t)
TL(T )

for t ≥ T. (3.33)
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On the other hand, since X ′(t) increases, and for e.g. Qξ(t) < 1/4

X ′
ξ(t) ≥ X ′

ξ(T ) =
(1−Qξ(T ))1/α

T
≥

(
3
4

)1/α 1
T

, (3.34)

for t ≥ T and all ξ(t) ∈ Ξ, we easily have the lower bound

Xξ(t) ≥
(

3
4Tα

) 1
α

t. (3.35)

Whence (i) holds
(ii) Ψ(Ξ) is relatively compact in C[T,∞).
The local uniform boundedness follows from (i). We get local equicon-

tinuity as follows: From (3.34), (3.33) and since e.g. |wξ(t)| < 1 for all
ξ(t) ∈ Ξ and t ≥ T , one gets

(
3
4

)1/α 1
T
≤ X ′

ξ(t) ≤ Xξ(t)
(1 + |wξ(t)|)1/α

t
≤ 21/αL(t)

TL(T )
.

Then, an application of the Arzela-Ascoli lemma proves (ii).
(iii) The continuity of Ψ can be proved in the following manner. We

let {ξn(t)} be a sequence in Ξ converging to ξ(t) ∈ Ξ as n → ∞ uniformly
on compact subintervals of [T,∞), and prove that {Ψξn(t)} converges to
Ψξ(t) uniformly on any compact subinterval of [T,∞). Arguing as in the
proof of the continuity of Φ in Theorem 3.1, it suffices to verify that the two
sequences

1
tα
|wξn(t)− wξ(t)| and

1
tα
|Qξn(t)−Qξ(t)|

converge to 0 uniformly on compact subintervals of [T,∞). The second
sequence can be handled easily. To deal with the first sequence, using (3.28)
and the inequality

|Fξn(s, wξn(s))− Fξ(s, wξ(s))| ≤
(

1 +
1
α

)
|wξn(t)− wξ(t)|

+
(

1 +
1
α

)
mα(|wξn(t)− wξ(t)|+ |Qξn(t)−Qξ(t)|), mα =

(
5
4

) 1
α

,

we obtain

|wξn(t)− wξ(t)| ≤ α

t

t∫

T

|Fξn(s, wξn(s))− Fξ(s, wξ(s))|ds (3.36)
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≤ Mα

t

t∫

T

|wξn(s)− wξ(s)|ds +
Nα

t

t∫

T

|Qξn(s)−Qξ(s)|ds,

where
Mα = (1 + α)(1 + mα), Nα = 1 + α.

The substitution z(t) =
t∫

T
|wξn(s)− wξ(s)|ds transforms (3.36) into

(
z(t)
tMα

)′
≤ Nα

tMα+1

t∫

T

|Qξn(s)−Qξ(s)|ds,

which, integrated over [T, t], yields

z(t) ≤ Nα

Mα
tMα

t∫

T

|Qξn(s)−Qξ(s)|
sMα

ds. (3.37)

Using (3.37) in (3.36), we have

|wξn(t)−wξ(t)| ≤ NαtMα−1

t∫

T

|Qξn(s)−Qξ(s)|
sMα

ds+
Nα

t

t∫

T

|Qξn(s)−Qξ(s)|ds,

or

1
tα
|wξn(t)−wξ(t)| ≤ NαtMα−Nα

t∫

T

|Qξn(s)−Qξ(s)|
sMα

ds+
Nα

tNα

t∫

T

|Qξn(s)−Qξ(s)|ds,

for t ≥ T . This shows that |wξn(t)−wξ(t)|/tα → 0 uniformly on any compact
subinterval of [T,∞), and establishes the continuity of Ψ.

The Schauder-Tychonoff theorem then guarantees the existence of a
function ξ0(t) ∈ Ξ such that ξ0(t) = Xξ0(t) for t ≥ T . This means that
ξ0(t) satisfies

(ξ′0(t)
α)′ = qξ0(t)ξ0(t)α = q(t)ξ0(t)β−αξ0(t)α = q(t)ξ0(t)β, t ≥ T,

that is, ξ0(t) is a solution of equation (A) on [T,∞). It is clear that ξ0(t) is a
regularly varying function of index 1. Thus (A) possesses an RV (1)-solution,
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with the wanted upper bound due to (3.23) and with an representation of
the form (3.27). (QED)

Example 3.2. Let α < β and consider the equation

(x′(t)α∗)′ = q(t)x(t)β∗, q(t) =
α

tβ+1(log t)β−α|1

(
1 +

1
log t

)α−1

. (3.38)

It is clear that (3.38) has a trivial RV (1)-solution since q(t) satisfies
∞∫

tβq(t)dt <
∞. (cf. Proposition 1.2). It also satisfies (3.22) with L(t) = log t where
δ(t) = 1/ log t. (In this case condition (3.22) implies the former one i.e.
(1.5)). However, equation (3.38) also has a nontrivial RV (1)-solution x(t) =
t log t.

Like in the case of slowly varying solutions, we shall restrict further the
coefficient q(t) to obtain an additional information on nontrivial RV (1)-
solutions.

We prove

Theorem 3.4. Suppose that q(t) ∈ RV (−β − 1) i.e. of the form

q(t) = t−β−1L∗(t) and such that
∞∫ L∗(t)

t dt converges. Then, for any non-
trivial RV(1) solution X(t) of equation (A) (β > α) there holds for t →∞

X(t) ∼ t


β − α

α

∞∫

t

sβq(s)ds




1
α−β

= t


β − α

α

∞∫

t

L∗(s)
s

ds




1
α−β

. (3.39)

P r o o f. Suppose equation (A) has a nontrivial RV (1)-solution X(t) =
ty(t), implying y(t) ∈ SV and y(t) = X(t)/t → ∞, as t → ∞. Hence,
integrating on both sides of (A) over (T, t) one obtains

X ′(t) ∼



t∫

T

L∗(s)y(s)β

s
ds




1
α

, as t →∞

where, due to Karamata theorem, Proposition 1.8 (iii), the right hand side
function is a slowly varying function.

Another integration and the use Proposition 1.8 (i), leads to

X(t) ∼ t




t∫

T

L∗(s)y(s)β

s
ds




1
α

, as t →∞,
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so that

y(t) ∼



t∫

T

L∗(s)y(s)β

s
ds




1
α

.

To determine the behaviour of y(t) put

z(t) =
t∫

T

L∗(s)y(s)β

s
ds

so that y(t) ∼ z(t)
1
α and

z′(t)
z(t)β/α

∼ L∗(t)
t

.

Noting that β > α, and z(t) → ∞ as t → ∞, an integration over [t,∞)
leads for t →∞, to

y(t) ∼

β − α

α

∞∫

t

L∗(s)
s

ds




1
α−β

and (3.39) follows.

4. Sub-half-linear equation

4.1. Slowly varying solutions. Sub-half-linear equations of the form
(A) with α > β are under consideration.

Let M(t) be a normalized slowly varying function on [a,∞) which de-
creases to 0 as t →∞

M(t) = b exp





t∫

a

δ(s)
s

ds



 , t ≥ a, b > 0. (4.1)

This implies

δ(t) = t
M ′(t)
M(t)

< 0, and
∞∫

a

δ(s)
s

ds = −∞. (4.2)

Theorem 4.1. Suppose that there exists a constant K > 0 such that

Q(t) := tα
∞∫

t

q(s)(M(s))β−αds ≤ K(−δ(t))α for all large t. (4.3)
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Then, equation (A) possesses a decreasing slowly varying solution x(t) such
that x(t) ≥ M(t) for all large t.

P r o o f. Choose T > a so that, in addition to (4.3), the following
inequalities hold for t ≥ T :

K(M(T ))α−β ≤ 1, (4.4)

(
1 +

1
α

)
(−δ(t))α ≤ l, (4.5)

where l ∈ (0, 1) is a given constant.
We denote by Ξ the set of continuous positive nonincreasing functions

ξ(t) on [T,∞) satisfying

1 ≥ ξ(t) ≥ M(t)
M(T )

, t ≥ T. (4.6)

For any ξ(t) ∈ Ξ define

qξ(t) = q(t)ξ(t)β−α, Qξ(t) = tα
∞∫

t

qξ(s)ds, (4.7)

and consider the family of half-linear equations

((x′(t))α∗)′ = qξ(t)(x(t))α∗, ξ(t) ∈ Ξ. (4.8)

Since ξ(t)β−α ≤ (M(t)/M(T ))β−α, using (4.7), (4.4) and (4.3), we have

Qξ(t) ≤ K(M(T ))α−β(−δ(t))α ≤ (−δ(t))α. (4.9)

Because of (4.3) Proposition 2.1 is applicable, and each equation of (4.8) has
a decreasing SV -solution xξ(t) of the form

xξ(t) = exp



−

t∫

T

(Qξ(s)− vξ(s))1/α

s
ds



 , t ≥ T, (4.10)

where vξ(t) satisfies

vξ(t) = αtα
∞∫

t

|vξ(s)−Qξ(s)|1+ 1
α

sα+1
ds, (4.11)
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and 0 ≤ vξ(t) ≤ (−δ(t))1+ 1
α for t ≥ T . We note that xξ(t) is decreasing and

satisfies

1 ≥ xξ(t) ≥ exp



−

t∫

T

Qξ(s)
1
α

s
ds



 ≥ exp





t∫

T

δ(s)
s

ds



 =

M(t)
M(T )

. (4.12)

We now define the mapping Φ : Ξ → C[T,∞) by

Φξ(t) = xξ(t), t ≥ T, (4.13)

and want to show that the Schauder-Tychonoff fixed point theorem is ap-
plicable to Φ.

(i) Φ(ξ) ⊂ Ξ. This is a trivial consequence of (4.12).
(ii) Φ(Ξ) is relatively compact in C[T,∞). This follows from the fact

that Φ(Ξ) is locally uniformly bounded and locally equicontinuous on [T,∞).
The uniform boundedness is a direct consequence of the inclusion Φ(ξ) ⊂ Ξ,
while the equicontinuity is assured by the inequality

0 ≥ (Φξ)′(t) = −xξ(t)
(

Qξ(t)− vξ(t)
tα

)1/α

≥ −Qξ(t)
1
α

t
≥ δ(t)

t
, t ≥ T.

(iii) Φ is continuous. We omit the proof since it is essentially the same
as that of the continuity of Φ defined by (3.11) (cf. the proof of Theorem
3.1). Consequently, Φ has a fixed point ξ0(t) ∈ Ξ, which provides a slowly
varying solution x(t) = ξ0(t) of the sub-half-linear equation (A), with the
representation of the form (4.10) satisfying x(t) ≥ M(t) due to (4.6).

If one again restricts the attention to the case q(t) ∈ RV (γ), it is easily
obtained, due to (4.2) and by the use of Proposition 1.8, (i), that condition
(4.3) implies (1.5) so that equation (A) has a trivial SV -solution. Neverthe-
less it might have also a nontrivial one as it is illustrated by

Example 4.1. Let α > β and consider the equation

(x′(t)α∗)′ = q(t)x(t)β∗, q(t) =
α

tα+1(log t)2α−β

(
1 +

2
log t

)
. (4.14)

This equation has a trivial SV -solution and a nontrivial one at the same
time. In fact, by inspection a nontrivial SV function 1/ log t satisfies (4.14),

and since
(∞∫

t
q(s)ds

) 1
α

is integrable on [e,∞), the existence of a trivial

SV -solution follows from Proposition 1.1.
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By choosing

M(t) =
1

log t
, for which δ(t) = − 1

log t
,

a simple computation shows that condition (4.3) is fulfilled and so Theorem
4.1 ensures the existence of a slowly varying solution for equation (4.14). No
criterion is available for deciding whether the obtained solution is a trivial
SV -function or a nontrivial one.

The following result provides some further information about the non-
trivial SV -solutions:

Theorem 4.2. Let q(t) ∈ RV (−α − 1) i.e. q(t) = t−α−1L(t), then, for
any nontrivial slowly varying solution x(t) of equation (A) (α > β) there
holds for t →∞,

x(t) ∼

α− β

α1+ 1
α

∞∫

t

(sq(s))1/αds




α
α−β

=


α− β

α1+ 1
α

∞∫

t

L(s)
1
α

s
ds




α
α−β

. (4.15)

P r o o f. Let x(t) be a nontrivial SV -solution of equation (A). Then
x(t) → 0 and x′(t) → 0 as t → ∞. Integrating twice over (t,∞) on both
sides of (A), one obtains (4.15).

4.2. Regularly varying solutions of index 1.

Theorem 4.3. Let Equation (A) has an increasing regularly varying
solution of index 1 if

Q(t) := tα
∞∫

t

sβ−αq(s)ds → 0, as t →∞. (4.16)

P r o o f. Let m ∈
(
0, 1

4

)
be a constant such that

(α + 1)(α + 4)
α

m ≤ 1. (4.17)

Put

µα =
(

3
2

) 1
α

, να =
(

3
4

) 1
α

.

Choose T > a so that
ναTµα−1 ≥ 1, (4.18)
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and
Q(t) ≤ m2 for t ≥ T. (4.19)

Let Ξ denote the closed convex subset of C[T,∞) consisting of continuous
nondecreasing function ξ(t) on [T,∞) such that

t ≤ ξ(t) ≤ tµα , t ≥ T. (4.20)

Define the functions qξ(t) and Qξ(t) by

qξ(t) = q(t)ξ(t)β−α, Qξ(t) = tα
∞∫

t

qξ(s)ds, (4.21)

and consider the family of half-linear equations

(x′(t)α∗)′ = qξ(t)x(t)α∗, ξ(t) ∈ Ξ. (4.22)

Since ξ(t)β−α ≤ tβ−α, we have for t ≥ T , and each ξ(t) ∈ Ξ,

Qξ(t) ≤ Q(t) ≤ m2, (4.23)

and so by Proposition 2.2 each equation of (4.22) possesses for t ≥ T an
RV (1)-solution Xξ(t) of the form

Xξ(t) = exp





t∫

T

(
1−Qξ(s) + wξ(s)

sα

) 1
α

ds



 , (4.24)

where wξ(t) solves the integral equation

wξ(t) =
α

t

t∫

T

Fξ(s, wξ(s))ds,

and satisfies |wξ(t)| ≤ m.
(For the definition of Fξ(s, w) see (3.29).) It is easy to see that Xξ(t) given
by (4.24) satisfies

να
t

T
≤ Xξ(t) ≤

(
t

T

)µα

,

which, in view of (4.18), implies

t ≤ TµαXξ(t) ≤ tµα , t ≥ T. (4.25)
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Let us define Ψ to be the mapping which assigns to each ξ(t) ∈ Ξ the
function Ψξ(t) given by

Ψξ(t) = TµαXξ(t), t ≥ T. (4.26)

(i) Ψ maps Ξ into itself. This is a trivial consequence of (4.25).
(ii) Ψ(Ξ) is relatively compact. The inclusion Ψ(Ξ) ⊂ Ξ implies that

Ψ(Ξ) is locally uniformly bounded on [T,∞). For any ξ(t) ∈ Ξ we easily
have

3
4
≤ (Ψξ)′(t) ≤ 5

4
tµα−1, t ≥ T,

which shows that Ψ(Ξ) is locally equicontinuous on [T,∞). The conclusion
then follows from the Arzela-Ascoli lemma.

(iii) Ψ is continuous. Letting {ξn(t)} be a sequence in Ξ converging to
ξ(t) ∈ Ξ uniformly on compact subintervals of [T,∞), we have to prove
that {Ψξn(t)} converges to Ψξ(t) uniformly on any compact subinterval of
[T,∞). Since

|Ψξn(t)−Ψξ(t)| = Tµα

∣∣∣∣∣∣
exp





t∫

T

(
1−Qξn(s) + wξn(s)

sα

) 1
α

ds





− exp





t∫

T

(
1−Qξ(s) + wξ(s)

sα

) 1
α

ds





∣∣∣∣∣∣

≤ tµα

t∫

T

∣∣∣∣∣∣

(
1−Qξn(s) + wξn(s)

sα

) 1
α

−
(

1−Qξ(s) + wξ(s)
sα

) 1
α

∣∣∣∣∣∣
ds, t ≥ T,

to show the continuity of Ψ it suffices to verify that the sequences

1
tα
|Qξn(t)−Qξ(t)| and

1
tα
|wξn(t)− wξ(t)| (4.27)

converge to 0 uniformly on compact subintervals of [T,∞). We need only
to deal with the second sequence in (4.27). A straightforward computation
leads to the inequality

|wξn(t)−wξ(t)| ≤ 2k

t

t∫

T

|wξn(s)−wξ(s)|ds+
k

t

t∫

T

|Qξn(s)−Qξ(s)|ds, (4.28)
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for t ≥ T , where k = 1 + 1
α . Putting z(t) =

t∫
T
|wξn(s) − wξ(s)|ds, (4.28) is

transformed into

(
z(t)
t2k

)′
≤ k

t2k+1

t∫

T

|Qξn(s)−Qξ(s)|ds,

whence it follows that

z(t) ≤ t2k

t∫

T

k

s2k+1

s∫

T

|Qξn(r)−Qξ(r)|drds ≤ t2k

t∫

T

|Qξn(s)−Qξ(s)|
2s2k

ds, t ≥ T.

(4.29)
Using (4.29) in (4.28), we obtain

1
tα
|wξn(t)−wξ(t)| ≤ kt2k

tα+1

t∫

T

|Qξn(s)−Qξ(s)|
s2k

ds+
k

tα+1

t∫

T

|Qξn(s)−Qξ(s)|ds,

for t ≥ T , which ensures that |wξn(t)|/tα → 0 uniformly on every compact
subinterval of [T,∞). Thus, Ψ is a continuous mapping. Consequently, by
the Schauder-Tychonoff fixed point theorem Ψ has a fixed point ξ0(t) ∈ Ξ,
which by definition satisfies

ξ0(t) = TµαXξ0(t), t ≥ T. (4.30)

From (4.30) we conclude that

(ξ′0(t)
α)′ = Tαµα(X ′

ξ0(t)
α)′ = Tαµαqξ0(t)Xξ0(t)

α

= qξ0(t)(T
µαXξ0(t))

α = qξ0(t)ξ0(t)α = q(t)ξ0(t)β

for t ≥ T , which means that ξ0(t) is a solution of equation (A) on [T,∞).
It is obvious that ξ0(t) is a regularly varying function of index 1 with the
representation of the form (4.24). (QED)

Example 4.2. Let α > β and consider the equation

(x′(t)α∗)′ = q(t)x(t)β∗, q(t) =
L(t)
tβ+1

, (4.31)

where L(t) is a slowly varying function such that

lim
t→∞L(t) = 0 and

∞∫
L(t)

t
dt = ∞.
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Since

tα
∞∫

t

sβ−αq(s)ds ∼ L(t)
α

→ 0, t →∞,

Theorem 4.3 implies that (4.31) has a regularly varying solution of index
1. In view of Proposition 1.4, this solution is automatically a nontrivial one

because
∞∫

tβq(t)dt = ∞.
If we choose in particular

L(t) =
r(t)(log log t)α−β−1

log t

with r(t) = α

(
1− 1

log t

) (
1 +

1
log t log log t

)α−1

, Theorem 4.3 is still ap-

plicable, giving the existence of a nontrivial RV (1)-solution. Indeed t log log t
is such a solution.

If one restricts q(t) to the Karamata class as in previous cases, one can
obtain further information on solutions:

Take q(t) = tγL(t) where γ is a constant and L(t) is a slowly varying
function. Condition (4.16) then reduces to

Q(t) ∼ 1
α− (γ + β + 1)

tγ+β+1L(t) → 0.

This is possible if a) γ + β + 1 < 0 and if b) γ + β + 1 = 0 and L(t) → 0.
Then an application of Propositions 1.2 and 1.4 leads to the conclusion that
the RV (1)-solution whose existence is proved in Theorem 4.3, is a trivial
one in case a) and a nontrivial one in case b), provided that L(t)/t = tβq(t)
is not integrable on [a,∞).

In the later case we obtain

Theorem 4.4. Suppose that q(t) ∈ RV (−β − 1) i.e. q(t) = t−β−1L(t)
and L(t) → 0 then, for any nontrivial RV (1)-solution of equation (A) (α >
β) there holds for t →∞

x(t) ∼ t


α− β

α

t∫

T

sβq(s)ds




1
α−β

= t


α− β

α

t∫

T

L(s)
s

ds




1
α−β

.

For the proof an argument similar to the proof of Theorem 3.3 is used.
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